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A Commentary on

Automated Machine Learning Model Development for Intracranial Aneurysm Treatment

Outcome Prediction: A Feasibility Study

by Ou, C., Liu, J., Qian, Y., Chong, W., Liu, D., He, X., Zhang, X., and Duan, C.-Z. (2021). Front.
Neurol. 12:735142. doi: 10.3389/fneur.2021.735142

We read with great interest the article by Ou and colleagues (1) reporting on the application of
an automated machine learning (AutoML) approach to predict recanalization after endovascular
aneurysm occlusion. The authors are commended on accounting for key factors in outcome
prediction such as (i) imbalanced datasets (2) by considering both the area under precision-recall
curve (AUPRC) and the area under receiver-operating characteristic curve (AUROC), as well as
the F1-score, (ii) the risk of overfitting by performing repeated cross-validations of the training
and evaluation procedure, (iii) including graphical illustrations of the model building procedure
as suggested in the literature (3) and (iv) providing code examples (4). Their results underlines
the increased predictive performance of an AutoML approach compared to traditional logistic
regression and a typical machine learning algorithm (Random Forest). Given the high predictive
performance and the ease of using statistical software—as exemplified by the code and procedures
in the Python language—the AutoML tool might provide a tool to bridge the implementation gap
of such methods in medical practice (5).

From our own experience, we found the following points critical in applying ML models in
outcome prediction.

While the discriminatory ability of the AutoML approach is highest among the statistical
approaches in the study presented, the authors did not assess the calibration of the various
algorithms. Calibration gives an estimate of how well the observed outcomes and predictions
agree and are crucial in the clinical decision-making (6–8), thus we argue that an assessment of
the calibration could be a further step to both evaluate and compare classical statistical methods
with AutoML approaches to provide a more holistic estimate of the performance of various
classifiers. As it is argued that one of the main advantages of AutoML is the possibility for non-
ML experts to utilize ML models without prior know-how, we would like to point out that the
application of AutoML as exemplified in the software code in Figure 4 of the paper still requires
rather profound knowledge of the hyperparameters of the algorithm used in the model building
pipeline—in the present application more than a dozen parameters need to be set. Thus, while the
AutoML framework hides most of the parameter tuning and feature selection in a more easy-to-use
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software wrapper, a certain essential knowledge of ML—such
as the concept of hyperparameters and cross-validation—is
still required from the user to obtain robust and unbiased
results. The authors mention further drawbacks of an AutoML
approach, for example in terms of the black-box problems,
which could be tackled by novel interpretation techniques
such as SHAP values. However, while these techniques provide
information regarding the importance of individual predictors,
we argue that by considering the predictive performance of
an ensemble of classifiers for two performance metrics jointly
provides additional valuable information to compare different
algorithms (9). Thus, an illustration of the performance of
various algorithms within the search for the optimal pipeline
of an AutoML application might provide additional and helpful
information regarding the performance and robustness of
both standard statistical methods such as multivariable logistic
regression and modern machine learning methods.

From a clinical perspective, recanalization and recurrences
following endovascular therapy of intracranial aneurysms is not
infrequently encountered. The authors indeed list the number
of patients analyzed and the short-term follow-up as a study
limitation. However, the short follow-up time limits its validity.
Although it has been shown that coiled aneurysms that showed
complete occlusion at 6 months remained stable in most cases,

up to 6.5% of those aneurysm occluded completely at 6-month
later showed a recanalization (10). To evaluate recurrences rates

dictating the treatment effectiveness after coiling, long-term
follow-up is thus warranted (11). Although a low risk of rupture
of coiled aneurysms with a follow-up period of up to 20 years
have been described, larger aneurysms need to be followed for
a longer time period (10, 12), as do aneurysms with residual
filling after the initial treatment (13). Delayed recanalization,
although rare, and the possibility of de novo aneurysm
formation, however calls for continuous monitoring beyond 36
months (14).

We commend the authors on presenting an interesting and
important application of a novel ML approach applicable for
non-AI-experts that outperforms the commonly used statistical
methods in predicting treatment outcome, as the latter is
of utmost importance in any clinical practice evaluating its
treatment outcomes.
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