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Development of effective treatments requires understanding of disease mechanisms. For

diseases of the central nervous system (CNS), such as multiple sclerosis (MS), human

pathology studies and animal models tend to identify candidate disease mechanisms.

However, these studies cannot easily link the identified processes to clinical outcomes,

such as MS severity, required for causality assessment of candidate mechanisms.

Technological advances now allow the generation of thousands of biomarkers in living

human subjects, derived from genes, transcripts, medical images, and proteins or

metabolites in biological fluids. These biomarkers can be assembled into computational

models of clinical value, provided such models are generalizable. Reproducibility of

models increases with the technical rigor of the study design, such as blinding, control

implementation, the use of large cohorts that encompass the entire spectrum of

disease phenotypes and, most importantly, model validation in independent cohort(s).

To facilitate the growth of this important research area, we performed a meta-analysis

of publications (n = 302) that model MS clinical outcomes extracting effect sizes,

while also scoring the technical quality of the study design using predefined criteria.

Finally, we generated a Shiny-App-based website that allows dynamic exploration of

the data by selective filtering. On average, the published studies fulfilled only one of

the seven criteria of study design rigor. Only 15.2% of the studies used any validation

strategy, and only 8% used the gold standard of independent cohort validation. Many

studies also used small cohorts, e.g., for magnetic resonance imaging (MRI) and blood

biomarker predictors, the median sample size was <100 subjects. We observed inverse

relationships between reported effect sizes and the number of study design criteria

fulfilled, expanding analogous reports from non-MS fields, that studies that fail to limit bias

overestimate effect sizes. In conclusion, the presented meta-analysis represents a useful

tool for researchers, reviewers, and funders to improve the design of future modeling

studies in MS and to easily compare new studies with the published literature. We expect

that this will accelerate research in this important area, leading to the development of

robust models with proven clinical value.
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INTRODUCTION

Multiple sclerosis (MS) is a polygenic, immune-mediated,
demyelinating disease of the central nervous system (CNS) that
causes substantial personal and societal burden. Understanding
the pathophysiology of the initial stages of MS revealed that
focal influx of immune cells into CNS tissue can be non-
invasively monitored by contrast-enhancing lesions (CELs) on
brainmagnetic resonance imaging (MRI) (1). CELs, as surrogates
of focal inflammation, allowed rapid screening of therapeutic
agents (2), identifying many treatments that effectively block the
formation of MS lesions.

However, these treatments are not curative, and their efficacy
decreases with advancing age at treatment initiation. Indeed,
after the age of approximately 54 years, no net benefit on
disability progression can be demonstrated in Phase III clinical
trials (3). This is partially due to inflammation becoming
compartmentalized to CNS tissue during MS evolution (4,
5), making it largely inaccessible to systemically administered
treatments. However, neurodegenerativemechanisms (6, 7) likely
contribute to the decreasing efficacy of immunomodulatory
treatments. To develop effective treatments of MS beyond
inhibiting the formation of focal lesions, the MS field must
expand its earlier success in gaining pathophysiological insights
from early to late disease mechanisms.

Therefore, future therapeutic progress in MS requires the
identification and validation of biomarkers that reflect the
mechanisms that cause the development of clinical disability
in later stages of MS or in patients who no longer form MS
lesions thanks to current immunomodulatory treatments. Due
to the complexity of these later pathophysiological mechanisms,
it is unlikely that a single biomarker can replicate the success
of CELs. Indeed, the ability of a single biomarker to reflect
key patient-specific outcomes, namely, clinical disability and the
rate of its development [as measured by MS severity outcomes
(8)] is extremely limited. Consequently, investigators use simple
or complex statistical techniques (including machine learning
[ML]) to aggregate biomarkers into models with enhanced
predictive power.

To our best knowledge, no review exists that summarizes

state-of-the-art modeling strategies in MS. The goal of this
paper is to present such a critical meta-analysis, to help

the MS community, including funders, to identify gaps and
opportunities in this important research. We performed a

systematic assessment of the technical quality of the reviewed
studies, such as sample size, blinding, adjustment for covariates,
adjustment for multiple comparisons, integration of healthy
volunteer (HV) data to differentiate physiological processes such
as aging and gender effects from MS-driven pathologies and,
most importantly, we evaluated the level of model validation.
Because it has been repeatedly demonstrated that low technical
quality (9, 10) and small sample sizes (11–13) overestimate
effect sizes and lower the likelihood of reproducible results (14,
15), the attributes we summarize are essential determinants of
the generalizability of published models. The broad domain of
knowledge included in this work can be utilized as a reference for
MS researchers, funders, and reviewers.

METHODS

Search Method
We conducted a literature search to identify studies that
generated statistical models to predict clinical outcomes among
patients with MS. This systematic review was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. PubMed
searches were performed using keywords related to MS,
predictive models, and outcomes. Five PubMed searches were
performed to identify relevant MRI studies using various
combinations of the following keywords: “multiple sclerosis,”
“disability,” “correlate,” “MRI,” “machine learning,” “predict,”
“AI,” “artificial intelligence,” and “neuroimaging.” Two searches
were performed to identify other relevant studies reporting on
statistical modeling in MS with the following PubMed search
criteria: “[(Multiple Sclerosis [Title/Abstract]) AND (Prediction)
AND (Outcome) AND (Model OR Machine Learning)]”
on 24 May 2021 and “(((Multiple Sclerosis [Title/Abstract])
AND (Prediction [Title/Abstract]) AND (Outcome))” on 16
August 2021.

Exclusion Criteria
Two reviewers (JL and EK) independently screened the studies
that reported effect sizes for image-, clinical-, or biomarker-
based models predicting a clinical outcome. We excluded studies
with no predictive models, studies with no imaging, clinical,
or biomarker predictors, studies with no clinical outcomes,
non-human studies, non-MS studies, and studies with no full
text available.

Information Extraction
The following features were extracted from the methods and
results of these studies: (1) types of predictors used for
modeling (i.e., clinical, MRI, blood biomarkers, CSF biomarkers,
and genes); (2) clinical outcome(s) modeled (e.g., expanded
disability status scale (EDSS), secondary-progressive MS (SPMS)
conversion); (3) cohort sample size; (4) all reported effect sizes
(e.g., for modeling continuous outcomes: R2 [i.e., coefficient of
determination; a statistical measure of how well the regression
prediction approximate the measured data], Spearman’s ρ [a
non-parametric correlation coefficient that measures the strength
of association between two variables], Pearson’s R [a parametric
correlation coefficient that measures the strength of association
between two variables; should be used only with normally
distributed data as it is very sensitive to the effect of outliers]; for
dichotomized outcomes such as progression or non-progression:
hazard ratios [HR: i.e., an estimate of the ratio of the hazard
rate such as disability progression in one vs. other groups: e.g.,
in treated vs. untreated patients], odds ratios [OR; i.e., the
cumulative measure of association between events A and B; with
OR = 1 signifying independence between A and B, while OR
> 1 signifies that A and B are positively associated while OR <

1 means that A and B are negatively associated] and finally, p-
value [i.e., the probability of obtaining results at least as extreme
as observed if the null hypothesis was correct; please note that
because p-value depends not only on effect size but also on
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variance and cohort size, it is an extremely poor indicator of effect
size alone].

We also extracted seven dichotomized/categorical factors used
to assess the quality of the study design (see Section Assessment
of the Quality of Study Design in the Reviewed Models). We will
refer to these as indicators of the “technical quality” of the study.

Assessment of the Quality of Study Design
in the Reviewed Models
Seven technical quality indicators were extracted from the
methods and results sections of each paper, with the following
justifications: (1) presence and type of model validation (i.e.,
(A) independent validation cohort (16) [gold standard] or (B)
out-of-bag (OOB)/cross-validation of the training cohort (17).
ML algorithms are so powerful that, contrary to expectations,
developing models that have surprisingly high effect sizes in
the training data set is common and easy. Without a validation
strategy, it is not possible to determine the utility of such
models, as most artificially and greatly inflate the true effect
sizes (15). Thus, the presence and type of model validation are
the most important indicators of model reproducibility. The
next four attributes of methodological study rigor safeguard
against bias. Their pre-specification (e.g., in the protocol) before
performing the analysis ensures that the analysis is not modified
to increase the likelihood of obtaining the desired results.
These include: (2) described process of dealing with outliers
to prevent bias (yes/no); useful models should be generally
applicable and therefore their effect size should not depend
on highly influential observations. Such observations should be
identified (and excluded) prior to unblinding by a predefined
outlier analysis. If such an analysis is not predefined and the
description of methods does not specify how many outliers
were excluded and based on what criteria, then the model
might be biased (18). (3) Described process of dealing with
data missingness (19) to prevent bias (yes/no); another way
of modeling results may be biased by excluding observations
that do not fit the model post-analysis (e.g., with a justification
that these observations were technically inadequate) or by not
detecting that some observations were systematically omitted
(e.g., measurements were not performed on the sickest patients).
Finally, a large amount of missingness that is not disclosed
in the paper can also falsely overestimate the generalizability
and clinical utility of the model. (4) Adjusting for covariates
(yes/no); another way to introduce bias is by failing to detect
and adjust for effects of confounding factors that influence the
model predictors independently of the outcome (such as age,
gender, application of treatments, and different socioeconomic
status). For example, such confounders may explain up to 60%
of the variance in volumetric brain MRI data (20), which may
be mistakenly attributed to the model(s) of neurodegenerative
diseases, especially if the patient groups are not carefully
matched. (5) Blinding (yes/no); the most effective way to prevent
bias during the generation of predictors or during data analysis is
to blind the investigators who generate the data, and to perform
the aforementioned data cleaning steps before unblinding the
data analyst (21). Although randomization is also an essential

bias-preventing attribute of methodological design, it is mostly
applicable to interventional studies, not to modeling studies. (6)
The number of comparisons made (i.e., the number of predictors
multiplied by the number of outcomes) and whether p-values
were adjusted for multiple comparisons (yes/no); this attribute
affects the strength of the statistical evidence with which the
null hypothesis is rejected. The p-value represents the probability
of obtaining results at least as extreme as the presented results
if the null hypothesis was valid. We would like to present an
analogy that provides a reader without statistical knowledge with
a practical intuition of how to judge p-values in the contexts
of performing multiple comparisons: let us imagine we have 20
cards numbered from1 to 20 and we are assessing the ability of a
blinded person (i.e., a model) to select the card with the number
1 on it. If this person pulls the card #1 on the first attempt, we
may be tempted to conclude that the person knows how to select
card #1, as there is only a 5% chance (p = 0.05) that she/he
will select card #1 on the first attempt randomly. Although we
eagerly accept the p-value of 0.05 to rule out the null hypothesis
in scientific applications related to human health, it is likely that
most people would demand stronger evidence that the person
can reliably select card #1 in this example. Most people would
ask the person to repeat the experiment before they would accept
this “model” as valuable. If the person repeats the experiment
and selects the card #1 again, then our confidence that she/he
knows how to select card #1 will increase to p = 0.025 (0.05/2).
Now, what happens if the person says that she/he knows how
to correctly select the card with a specific number on it: you
suggest 19 different numbers and each time the person fails to
select the correct one. On the last attempt, you suggest card #1
and the person correctly selects card #1. Will you still conclude
that the person represents a good model for selecting card #1?
We intuitively understand that if we ignore the previous failed
attempts, we reach the wrong conclusion. Yet, when the same
is done in reported biomedical research (e.g., the researchers
correlated 20 different predictors with the measured outcome
and only one of them correlates with p = 0.05), we readily
accept such a result to reject the null hypothesis. The science
of when and how to adjust for multiple comparisons is more
complicated (22), but the principle is that we must consider how
many comparisons the investigators performed and whether they
appropriately adjusted the p-values to make a correct inference.
(7) Controls utilized (yes/no); this final attribute of the technical
rigor deals with the specificity of the model and thus its clinical
value: e.g., a model claims to differentiate relapsing-remitting
MS (RRMS) from progressive MS. However, when applied to
HVs, the model also differentiates two groups of people: younger
and older. Clearly, this is not biologically valuable model of MS
progression. Or a model claims to be a diagnostic test of MS, buts
its accuracy is tested only by differentiating MS from HV, instead
of including appropriate controls such as people with non-MS
white matter lesions and focal neurological deficits.

Depending on how many of these criteria study fulfilled, the
quality of the study design ranged from 0 to 7. Although it
is not necessary for a study to fulfill all seven criteria to be
reproducible, the score assesses methodological rigor between
studies and identifies areas for improvement.
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FIGURE 1 | Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) chart summarizing the disposition of records identified from PubMed

searches. The searches identified 782 records, of which 663 were unique. After several exclusion criteria defined in the figure, 302 unique records were included in

the review.

The Master worksheet containing all these extracted data
as well as PubMedIDentifiers (PMID) of individual papers is
provided as Supplementary Table S1.

Validation of Published Inverse
Relationships Between Study Design
Quality and Reported Effect Sizes
Previous studies on non-MS fields showed that (1) small
cohort studies; (2) studies of low experimental quality; and (3)
studies performed only in the training cohort, all significantly
overestimate true effect sizes (10, 11, 13, 14). To assess whether
the same can be observed in the MS field we investigated the
relationships between the technical quality of studies (including
cohort sizes and comparisons of training vs. cross-validation vs.
independent validation cohorts) and reported effect sizes.

In addition to univariate analyses, we also classified groups of
studies based on the combination of cohort size and technical
quality criteria: studies were considered high quality if they
reached 1 standard deviation (SD) above the mean for both
factors, whereas low quality were 1 SD below the mean for
both. To compare all identified low- and high-quality studies
(two-sample Wilcoxon [Mann–Whitney] test), we normalized

the different metrics of effect sizes to yield common metrics
ranging from 0 to 1.

Public Database Exploration Tool
To allow readers to independently explore the data beyond
the relationships described in this paper, we developed a
Shiny App in R version 3.6.1. This application includes
selection tools that allow user to select all predictor or specific
types, all clinical or specific outcomes and all or specific
effect size statistic tools and then generates a set of two-
dimensional plots that visualize the relationships between the
extracted features. The user can also rapidly identify the
PMID for a specific study by clicking a specific point in the
two-dimensional plots.

RESULTS

Clinical Outcomes
A total of 663 studies were screened, excluding duplicate records
(Figure 1; PRISMA diagram). After applying the exclusion
criteria, 302 studies were included in the review. A total of 189
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FIGURE 2 | Distribution of modeled clinical outcomes. The large pie chart in the center of the figure shows the distribution of categories of modeled outcomes. The

three most frequent outcome categories are disability (37%, red), severity (26%, purple), and patient-reported outcomes (PROs; 15%, teal). The surrounding bar plots

show the breakdown of each of these three categories.

clinical outcomes were predicted in the 302 included studies. The
breakdown of outcomes by category is shown in Figure 2.

The largest category of clinical outcomes was MS progression
as measured by traditional disability outcomes (Figure 2, red
color; 37% of the studies reviewed). Of these, the most prevalent
outcomes were EDSS-based (n = 81 studies), such as predicting
EDSS on an ordinal scale, followed by the prediction of EDSS as a
dichotomous variable. Cognitive disability outcomes constituted
the second largest subcategory (n = 44). These included the
Paced Auditory Serial Addition Test (PASAT), the Stroop test,
the Symbol Digit Modalities Test (SDMT), etc. The third most
prevalent progression outcomes were gait-based (n = 27), which
included the timed 25-foot walk (T25FW), Hauser ambulation
index, 6-min walk test, Timed Up and Go [TUG], dynamic gait
index, etc.

Following MS progression/disability outcomes, the next
largest category of outcomes was MS severity outcomes, which
were modeled by 26% of the studies reviewed (Figure 2, purple
color). A total of 69 studies predicted changes in EDSS over
time, including EDSS worsening and time to reach a specific
EDSS score. A total of 10 studies predicted the conversion to
SPMS, eight predicted EDSS-based MS Severity Score (MSSS),
five predicted conversions to clinically definite MS, and the
remaining outcomes were studied by fewer than five studies.

Finally, patient-reported outcomes (PROs; Figure 2, teal color)
were modeled by 15% of the studies reviewed. This category was
fractionated, with falls predicted in six studies, the MS Impact

Scale (MSIS-29) and Beck Depression Inventory (BDI) by five
studies each. The remaining outcomes were studied by fewer than
five studies.

Predictor Variables
Five categories of predictor variables were used in these models,
namely, clinical (n = 166 studies), MRI (n = 103), genes
(n = 13), blood biomarkers (n = 20), and CSF biomarkers
(n= 9) (Figure 3A).

We hypothesized, and confirmed, that the sample sizes would
be the largest for models using clinical predictors because they
are the easiest to collect. Using similar reasoning, we expected the
smallest sample sizes for CSF predictors due to an invasive nature
of lumbar punctures. Instead, we observed the smallest sample
sizes for models utilizing MRI predictors and blood biomarkers,
where most studies had sample sizes of <100 patients, with some
as low as 10 patients (Figure 3B).

Technical Quality
In addition to recording cohort sizes for each study reviewed,
we collected seven study design factors aimed to minimize bias
(see Section Methods for details) and therefore maximize the
probability that the reported results would be generalizable
(Figure 3C). These were: (1) blinded analyses; (2) pre-
defined/described missing data; (3) pre-defined/described
methodology for outlier identification and removal to minimize
bias; (4) adjustment for covariates; (5) presence of controls, such
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FIGURE 3 | Important characteristics of the studies reviewed. (A) Number of studies (x-axis) per predictor type (y-axis). (B) Number of subjects (y-axis) by predictor

type (x-axis). (C) Percentage of studies (x-axis; number of studies in parentheses) fulfilling each preselected criteria of experimental design/technical quality of the

study (y-axis). (D) Percentage of studies (y-axis) per each predictor type fulfilling a number of technical criteria (x-axis).

as HVs, to differentiate physiological processes, such as aging
or gender effects, from MS-related processes; (6) the number of
comparisons performed and whether investigators employed
any strategy to adjust significance thresholds if the number
of comparisons was high; and finally (7) the level of model
validation (if any), differentiating cross-validation methods that
reuse training cohort samples from true independent cohort
validation, considered the gold standard.

Although no study needs to fulfill all seven criteria to yield
reliable results, it was unexpected to observe that majority of
the studies fulfilled one or fewer criteria and only 1% of the
studies fulfilled more than four. When comparing the technical
quality of studies based on different predictors (Figure 3D), we
observed the highest technical quality of the studies that used
genes, followed by MRIs and blood biomarkers. Astonishingly,
more than 20% of the studies that used clinical or CSF biomarker
predictors fulfilled zero technical quality criteria.

Finally, because current modeling algorithms are highly
susceptible to overfitting, an essential determinant of model’s
generalizability is the level of its validation. Overfitting is caused
by the ability of ML algorithms to find and amplify subtle
changes in the data, including noise, to achieve fit that is much

stronger than biologically plausible. Consequently, when the
model is applied to a new set of samples/patients, it will have a
much lower fit or may not validate at all. There are two types
of validation: the first reuses training cohort data, in various
manners that are beyond the scope of this review. It is often
called “cross-validation” or “OOB data.”We will use term “cross-
validation” to signify any validation strategy that reuses training
cohort data. To what degree cross-validation faithfully predicts
the generalizability of the model depends on the details of how
it was performed. Cross-validation may be overly optimistic
if researchers fail to prevent bias, and this is often the case.
Therefore, the gold standard is independent cohort validation,
which implies using the model on a new set of samples/subjects
that did not contribute, in any way, to model generation.

We observed that only 15% of the studies used any
type of validation with only 8% of all studies used
independent validation.

Effect Sizes
Effect sizes for each of these studies were included as reported
(for an explanation of these metrics, see Section Methods). The
most reportedmetric was R2 in 101 studies with Pearson’s R being
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FIGURE 4 | Relationship between technical quality of the study and reported effect size. The proportion of studies fulfilling the sum of the seven technical quality

criteria (zero weakest experimental design to seven strongest experimental design) for 253 studies with training cohorts (A) and cross-validation cohorts (B). The

number of studies in each category is listed above the bars. Effect sizes reported by studies categorized based on the number of technical quality criteria they fulfilled

(0–7) for training cohort (C; n = 253) and cross-validation (D; n = 28) results. In both cohorts, the reported effect sizes decreased as the number of technical quality

criteria fulfilled by these studies increased.

reported in 53 studies, HR in 46 studies, OR in 43 studies, and
Spearman’s ρ in 29 studies. Values of p were reported alongside
these metrics in 202/302 studies.

Overall, we observed a highly selective, rather than
comprehensive use of statistical outcomes that reflect effect
sizes. This selectivity limits the ability to compare effect sizes
between different studies.

Association Between Study Quality and
Effect Size
It is estimated that between 51% and 89% of the published
literature in biomedical sciences is not reproducible (15, 23, 24)
and poor study design, based on small sample sizes (11, 13) and
the failure to prevent bias (25–27) is the major contributor to
this reproducibility crisis. Indeed, as outlined in the introduction,
previous studies highlighted an inverse relationship between the
technical quality of study design (10) [including cohort sizes
(11, 13)] and reported effect sizes, validating the notion that the
technical quality of study design is a major determinant of the
generalizability of gained scientific knowledge.

To assess whether we can identify analogous inverse
relationships between reported effect sizes and our pre-defined
systematic grading of technical quality of the reported study
design, we performed two types of analyses. In first analysis, we
compiled all studies that reported any effect size separately for the
training (Figure 4A) and cross-validation cohorts (Figure 4B).
We then assessed whether there is any relationship between
the number of technical quality criteria a study fulfilled vs.

the reported effect size. For both the training cohort data
(Figure 4C) and cross-validation (Figure 4D), we observed an
inverse relationship between the technical quality of the study
and the reported effect size.

Because the above strategy ignored cohort size, which is an
important determinant of model generalizability, in the second
analysis we construed the two-dimensional assessment of the
study design (Figure 5A), integrating both grading of reported
technical quality with reported sample sizes. Using means ±

one SD of all studies, we identified low-quality studies (i.e.,
at least one SD below the average for both technical quality
and sample size) vs. high-quality studies (i.e., at least one SD
above the average for both domains). We observed significantly
higher reported standardized effect sizes for low quality studies
compared with high quality studies (Figure 5B). As expected,
effect sizes for the remaining studies were centered between the
low- and high-quality studies.

Effect Sizes for EDSS-Based Models of MS
Progression and MS Severity
To facilitate the interpretation of any future models, we
compared the strength of models for different predictors using
EDSS-based MS progression (Table 1) andMS severity outcomes
[MSSS and age-related MSS (ARMSS); Table 2]. EDSS-based
outcomes are the most broadly used in MS field. We found
them to be modeled most, and they are accepted by regulatory
agencies for assessing the therapeutic efficacy of MS drugs. For
each outcome and predictor pair, we provide the highest reported

Frontiers in Neurology | www.frontiersin.org 7 May 2022 | Volume 13 | Article 884089

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. Modeling MS Clinical Outcomes

FIGURE 5 | Relationship between technical quality and sample size of the study and reported effect sizes. (A) Study quality is defined by the number of subjects and

number of criteria fulfilled with high quality studies falling 1 SD above both criteria and low-quality studies falling 1 SD below both criteria. (B) Boxplot compares the

normalized effect sizes between low- and high-quality studies using a two-sample Wilcoxon (Mann–Whitney) test. Low-quality studies were found to have higher effect

sizes at a significant p-value of 0.017.

effect size and the effect size reported by the study of highest
technical quality. Whenever available, we also reported effect
sizes for cross-validation and independent validation studies.

For modeling MS progression using the ordinal EDSS
(Table 1), we found comparable highest reported effect sizes
between studies that used clinical (i.e., R2 = 0.67) and MRI
(R2 = 0.64) predictors. The decrease in effect size for best-in
class studies was larger for clinical predictors (i.e., R2 = 0.26)
than for MRI predictors (R2 = 0.52). Only MRI predictors
reported cross-validation results, which further decreased the
effect size to R2 = 0.19. We identified no independent validation
cohorts. Blood biomarker predictors achieved a much lower
effect size in predicting EDSS: the strongest effect size (R2 =

0.19) was reported by a study that included only 23 subjects
and achieved the technical quality score of 1, whereas the
highest quality study reported R2 = 0.06. We identified no cross-
validation or independent validation studies for blood predictors
of EDSS. Finally, we identified no studies reporting genetic or
CSF biomarker-based predictors of EDSS.

For predicting MS severity (Table 2) measured by MSSS,
the strongest reported effect size was R2 = 0.45 for MRI and

R2 = 0.24 for clinical predictors. However, these were derived
from small training cohorts (n = 67 for MRI and n = 54 for
clinical predictors) and were not validated. We identified several
studies using genetic predictors of MS severity; effect sizes for
independent validation of MSSS and ARMSS were reported only
as correlation coefficients and ranged from Pearson’s R = 0.17–
0.2. We did not identify any blood or CSF biomarker-based
models of MS severity.

Shiny-App Exploration Tool
To facilitate independent exploration of the rich data set
we collected beyond the Excel worksheet containing all
extracted data and deposited as Supplementary Table S1, we
also developed the Shiny App that allows selective filtering of
the data (e.g., to isolate specific predictors, specific outcomes,
and specific statistical metrics of effect sizes). It can be found
at the following link: https://jliu159.shinyapps.io/MS_Models_
LitSearch_Data_Exploration/. This tool was designed to facilitate
comparisons of any future models with the reviewed literature. A
user manual can be found in the Supplementary Material.
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TABLE 1 | This set of tables shows the models of expanded disability status scale (EDSS; modeled as ordinal scale) using the following predictor types: clinical, magnetic

resonance imaging (MRI), and blood, respectively.

Cohort Study type R∧2 (PMID, #QC, N) |Spearman ρ| (PMID, #QC, N) |Pearson R| (PMID, #QC, N)

Outcome: EDSS Predictor: Clinical

Training Strongest effect size 0.67 (31218917, 1, 100) 0.77 (18184917, 0, 161) 0.51 (32615409, 1, 38)

Highest quality 0.26 (26362898, 2, 362) 0.61 (31218917, 1, 100) -

Cross-validation Strongest effect size - - -

Highest quality - - -

Independent validation Strongest effect size - - -

Highest quality - - -

Outcome: EDSS Predictor: MRI

Training Strongest effect size 0.64 (33598931, 1, 115) 0.82 (24508617, 1, 9) 0.36 (20373349, 0, 107)

Highest quality 0.52 (30657011, 3, 366) 0.49 (18556361, 4, 74) 0.26 (26115736, 3, 195)

Cross-validation Strongest effect size 0.19 (32924846, 2, 250) - -

Highest quality - - -

Independent validation Strongest effect Size - - -

Highest quality - - -

Outcome: EDSS Predictor: Blood

Training Strongest effect size 0.19 (31801106, 1, 23) - 0.47 (31801106, 1, 23)

Highest quality 0.06 (30564615, 3, 117) - 0.15 (22354743, 2, 68)

Cross-validation Strongest effect size - - -

Highest quality - - -

Independent validation Strongest effect size - - -

Highest quality - - -

Effect sizes were reported for studies with the strongest effect sizes as well as for studies with the highest quality. The following metrics were explored: R2, Spearman’s ρ, and Pearson’s

R. PMID, PubMed unique Identifier; #QC, sum of technical quality criteria that the study fulfilled; n, number of subjects in the study.

DISCUSSION

Technological advances make measuring thousands of genes,
transcripts, proteins, and metabolites and hundreds of imaging
and clinical biomarkers relatively easy and common. Thanks to
analogous computational advances, these measurements can be
aggregated into models that are expected to elucidate disease
mechanisms and provide clinical (e.g., prognostic) value. These
are valuable developments; however, to fulfill the expectations
of providing reproducible knowledge and clinical value, these
technological advances must be paired with the rigor of
experimental design.

This review shows great potential to improve modeling of
clinical disease characteristics inMS. It is startling that 21% of the
published studies failed to implement any of the seven attributes

of a strong experimental design (9, 11–13, 15) to limit bias
and enhance reproducibility. An additional 36% of the studies
reviewed implemented only one of the seven technical criteria,

making this the median attribute of experimental design quality
in MS models. This is clearly suboptimal.

This inferior experimental design is compounded by the

frequent use of small sample sizes (i.e., fewer than 100
subjects): in fact, for MRI and blood non-genetic biomarker

studies, the median cohort sizes were <100. Considering the

complexity of disease mechanisms in polygenic diseases like MS,
a modeling cohort of<100 patients withMS cannot comprise the
entire spectrum of disease heterogeneity. Moreover, such small
studies are highly susceptible to bias (11, 13), especially when
<20% used blinding, <25% adjusted for covariates, and <30%
addressed missingness or adjusted the threshold of significance
for the number of comparisons performed (sometimes more
than hundreds).

Evidence from other scientific areas (10, 11, 13, 14), supported
by this paper, shows that poor experimental design, intensified
by small cohort sizes, overestimates effect sizes. This is inevitable,
as statistical power is positively associated with cohort and effect
sizes (25). Consequently, the only way for small studies to reach
statistical significance is for them to demonstrate unusually high
effect sizes. These high effect sizes are almost always inflated as
abnormalities in individual transcripts, proteins, or metabolites
are only mild or moderate, with severe disturbances being
incompatible with life (28).

Another underappreciated aspect of complex modeling
algorithms is their incredible overfitting power. Contrary
to laymen’s understanding, it is surprisingly easy to derive
seemingly strong models in training cohorts, especially if
one measures a comparably higher number of biomarkers
to the number of subjects. Such disproportional richness of
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TABLE 2 | This set of tables includes EDSS-based multiple sclerosis (MS) severity outcomes MS Severity Score (MSSS) and age-related MSS (ARMSS), showing the

studies that reported the highest effect sizes and those that achieved the highest technical quality, reporting R2, Spearman’s ρ, and Pearson’s R.

Cohort Study type R∧2 (PMID, #QC, N) |Spearman ρ| (PMID, #QC, N) |Pearson R| (PMID, #QC, N)

Outcome: MSSS Predictor: MRI

Training Strongest effect size 0.45 (24122185, 1, 67) - -

Highest quality - - -

Cross-validation Strongest effect size - - -

Highest quality - - -

Independent validation Strongest effect size - - -

Highest quality - - -

Outcome: MSSS Predictor: Blood

Training Strongest effect size 0.24 (20965962, 2, 54) - 0.19 (22354743, 2, 68)

Highest quality - - -

Cross-validation Strongest effect size - - -

Highest quality - - -

Independent validation Strongest effect size - - -

Highest quality - - -

Outcome: MSSS Predictor: Genes

Training Strongest effect size 0.16 (20378664, 2, 605) - -

Highest quality - - -

Cross-validation Strongest effect size - - 0.58 (31396954, 6, 205)

Highest quality - - -

Independent validation Strongest effect size - 0.06 (31396954, 6, 94) 0.20 (31396954, 6, 94)

Highest quality - - -

Outcome: ARMSS Predictor: Genes

Training Strongest effect size - - -

Highest quality - - -

Cross-validation Strongest effect size - - 0.58 (31396954, 6, 205)

Highest quality - - -

Independent validation Strongest effect size - 0.12 (31396954, 6, 94) 0.17 (31396954, 6, 94)

Highest quality - - -

PMID, PubMed unique Identifier; #QC, sum of technical quality criteria that the study fulfilled; n, number of subjects in the study.

predictors poses a high probability of spurious associations
between predictors and the outcome(s), akin to the example
we introduced in Section Methods when explaining the ease
of making the wrong conclusion if we fail to consider how
many “comparisons” were performed during the modeling
strategy. Thus, the validation of such models is essential: the
probability that the same spurious (i.e., not caused by biology)
relationship(s) will occur again in the completely independent set
of observations is low. However, validation was included only in
15% of all studies, and most of these (56%) used cross-validation
rather than independent validation. Indeed, <8% of all studies
validated their model(s) on a completely new set of subjects (i.e.,
independent validation cohort), which is the gold standard.

Cross-validation (also called rotation estimation or OOB
testing) reuses some of the training cohort data by partitioning
or resampling the data to train and test models on different

iterations. For example, a training cohort may be randomly
partitioned (many times) to generate “internal” training and
validation splits; this partitioning may be as large as 50:50 split
or as small as leaving out only one sample. The model then
tests the accuracy of the predictions of these OOB samples.
Because cross-validation does not require any new data sets, it
should be included in all studies, not just 10% of them. Although
cross-validation is certainly better than no validation, it may still
overestimate the power/accuracy of the classifier in comparison
to true independent validation (29). We have always observed
decreases in model performance (e.g., predictive accuracy) from
training cohort to cross-validation and from cross-validation
to independent validation (30–32). These decreases happen
regardless of whether we use clinical data (33), functional
data (34), MRI data (32, 35), soluble biomarkers (30, 36),
or genes (31); and they are often substantial, especially when
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comparing cross-validation with true independent validation
[e.g., from R2 0.72 in the training cohort to 0.64 in the 5-fold
cross-validation with 10 repetitions to 0.01 in the independent
validation (34)]. Please note that the effect sizes for the EDSS-
based outcomes summarized in Tables 1, 2 also show decreasing
effect sizes with increasing quality of experimental design, and
from training to cross-validation results. Finally, we emphasize
that an exceptionally low p-value achieved in the training cohort
(even in the cross-validation cohort) does not guarantee the
dramatic loss of model accuracy observed in the independent
validation cohort (15, 31).

Cross-validation frequently overestimates the accuracy of the
model because it often includes a circular argument: somewhere
in the modeling process the OOB samples contributed to
model construction. For example, we already mentioned that
“overfitting” tends to happen when models are generated from
a disproportionally large number of predictors in comparison
to the number of observations. To avoid this problem, the
data analyst may “constrict” the number of predictors for
model development, e.g., by correlating predictors with the
modeling outcome and selecting only predictors with significant
correlations. If this initial step was done in all training cohort
observations (which is usually the case), the OOB samples
were “compromised”; they contributed to model development
and, therefore, will likely overestimate the model effect size in
comparison to independent validation.

Furthermore, these early modeling steps (such as quality
control, outlier removal, and feature selection), if performed
unblinded, may introduce bias and are often omitted from the
publication altogether [a problem called “selective reporting”
(37–39)]. Consequently, bias may not be identified during
the review process. Another source of bias that leads to
major misinformation in the scientific literature is publication
bias (40): when so-called “positive” studies (i.e., those that
achieved arbitrary the value of p < 0.05) are published, but
“negative” studies, including negative independent validation
studies, frequently remain unpublished. This collectively causes
unrealistically optimistic view of the reproducibility of the
published results.

We initiated this work with the goal of identifying
opportunities to advance the modeling of MS outcomes. Based
on this work, we endorse the following recommendations:

Enhance the Experimental Design of
Future Studies
To minimize bias and maximize reproducibility, no modeling
study should fulfill less than four criteria of sound experimental
design, and all should include at minimum cross-validation.
Studies should also be of sufficient size, including all MS
phenotypes, to increase the probability that the results will
be generalizable.

Include Most Common Outcomes (E.g.,
EDSS-Based) as Comparators
Although modeling new and possibly better clinical or functional
outcomes (including PROs) are desirable, unless EDSS-based

outcomes are included, it is impossible to compare different
models and understand their clinical utility.

Prioritize Modeling Continuous (or Ordinal)
Over Dichotomized Outcomes
Even though the EDSS is an ordinal scale and EDSS-based
severity outcomes (i.e., MSSS and ARMSS) are continuous,
71/138 (51%) studies used the EDSS in a dichotomized manner:
e.g., predicting progression (yes/no) within a certain period. Of
the 71 studies that used dichotomized EDSS-based outcomes,
dichotomization was not uniform across studies. For example,
EDSS worsening was defined as a 1-point increase in one
study, a 0.5-point increase in another study, and a 0.5- or
1-point increase depending on some EDSS threshold, which
varied between EDSS 4 and 6. Without justification for a
specific definition of EDSS dichotomization and assurance that
this definition was selected before data analyses, non-uniform
selection of EDSS-based outcomes may lead to bias, while also
preventing comparison between studies. Such call for greater
standardization of clinical outcomes has been made previously in
the MS field (16). We strongly recommend that even studies that
chose to dichotomize the EDSS-based outcome include models
that predict the EDSS as an ordinal scale and MSSS/ARMSS as
continuous scales. Predicting when and how much progression
will occur is a mathematically harder problem than predicting
whether a patient is likely to progress. While the dichotomized
model may predict that two patients will progress in the next
5 years, the continuous model may predict that one patient
will progress 3 EDSS points starting next year and another
will progress 0.5 EDSS points by the 5th year. This level of
granularity, if validated, provides a greater biological insight
into the mechanisms of disease progression and a stronger
information gain for clinical management. Because the data
(i e., EDSS) are already collected, applying different modeling
strategies and reporting their outcomes are not difficult.

Report Broad and Accurate Metrics of
Model Accuracy
We observed highly inadequate reporting of model accuracy
metrics, at times limited only to the p-value. Values of p do not
reliably reflect model accuracy; in fact, one can get a low p-value
for a model that has an inverse relationship with a measured
outcome. Or, in large cohorts, a clinically insignificant model
(explaining <1% of the variance) may have a surprisingly low
p-value. For continuous outcomes, correlation coefficients only
reflect the strength of the association between measured and
predicted outcomes, but not the accuracy of the model: e.g., let us
imagine that measured and predicted outcomes are distributed
in perfect (positive) line, resulting in correlation coefficients of 1.
However, while the measured EDSS has spread of values between
0 and 10, the predicted EDSS may have a different spread of
values: e.g., 4–6 or 1–2. In fact, such “mis-calibrated” models are
quite common. The R2, reflecting the proportion of the variance
explained by the model is preferable to correlation coefficients.
However, the best indicator of model accuracy reflects how
closely the model predictions match the absolute values of the
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measured outcomes (i.e., 1:1 line), such as Lin’s concordance
coefficient (CCC). Current statistical packages, including freely
available options such as R, can calculate all these statistical
parameters. Their reporting will provide a better assessment of
model accuracy and would facilitate comparison between studies.

Addressing the Clinical Utility of the
Models
Not all models have, or must have clinical utility; as indicated
above, molecular, genetic, or cellular biomarker predictors
might be useful by simply linking specific pathophysiological
processes or pathways to MS clinical outcomes. However, even
these models should assess and publish metrics of clinical
utility, such as receiver operating characteristic (ROC), accuracy,
sensitivity/specificity, and positive and negative predictive values,
so that clinicians correctly understand their potential clinical
value (or lack thereof).

Validation of the Most Promising
Observations in the Independent Cohort(s)
The low rate of independent validation (i.e., 8% of the studies)
observed in this meta-analysis is, unfortunately, consistent
with similar reports of very low independent validation
rates (17). Because a “lack of validated predictive tools
in MS” has been recognized before (18), funders need to
devote more funding to high-quality, definite independent
validation studies. Analogously, reviewers and readers should
recognize that training cohort data, even cross-validation, has
high probability to overestimate the generalizability of the
model(s), and reward publications that include independent
validation cohorts.

Deposit the Raw Data
Most journals do not limit the amount of Supplementary Data.
Data sharing is essential to independently validate the
algorithms that underlie published models, but also to explore
stronger algorithms/models.

CONCLUSIONS

Finally, as evidenced by the summary of current EDSS-based
models, we identified a strong need to develop validated models
of MS clinical outcomes using cellular or molecular biomarkers.
Vast majority of the models reviewed used clinical or MRI

predictors. Although they may provide clinical value, they are
less likely to yield the mechanistic insight into MS progression
or MS severity necessary for the development of effective
treatments for progressive MS or treatments that would abrogate
the accumulation of disability in patients treated by current
disease-modifying agents that successfully limit the formation of
new lesions.

While most of these recommendations have no financial or
logistical implications (i.e., they can be performed immediately
on existing cohorts as they relate to the analytical steps of
model development), increasing cohort sizes, and especially
the inclusion of independent validation cohorts, requires
substantial financial and human resources and cannot be
accomplished without funders recognizing the importance of
such properly powered studies and prioritizing them for
financial support.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

JL and EK performed the literature search and extracted all data
for this meta-analysis. JL analyzed the data, generated the figures
and Shiny App, and contributed to this paper. BB construed the
project conceptually, guided and supervised all aspects of this
study, and contributed to the writing of this paper. All authors
critically reviewed and edited this paper.

FUNDING

This study was supported by the intramural research program
(IRP) of the National Institute of Allergy and Infectious Diseases
(NIAID) at the National Institutes of Health (NIH).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2022.884089/full#supplementary-material

REFERENCES

1. Markovic-Plese S, McFarland HF. Immunopathogenesis of the

multiple sclerosis lesion. Curr Neurol Neurosci Rep. (2001) 1:257–62.

doi: 10.1007/s11910-001-0028-4

2. Harris JO, Frank JO, Patronas N, McFarlin DE, McFarland HF. Serial

gadolinium-enhanced magnetic resonance imaging scans in patients with

early, relapsing-remitting multiple sclerosis: implication for clinical trials and

natural history. Ann Neurol. (1991) 29:548–55. doi: 10.1002/ana.410290515

3. Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B.

Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments.

Front Neurol. (2017) 8:577. doi: 10.3389/fneur.2017.00577

4. Komori M, Blake A, Greenwood M, Lin YC, Kosa P, Ghazali D, et al. CSF

markers reveal intrathecal inflammation in progressivemultiple sclerosis.Ann

Neurol. (2015) 78:3–20. doi: 10.1002/ana.24408

5. Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, et al. A

Gradient of neuronal loss and meningeal inflammation in multiple sclerosis.

Ann Neurol. (2010) 68:477–93. doi: 10.1002/ana.22230

6. Campbell GR, Mahad DJ. Mitochondrial changes associated with

demyelination: consequences for axonal integrity. Mitochondrion. (2012)

12:173–9. doi: 10.1016/j.mito.2011.03.007

7. Lassmann H, van Horssen J, Mahad D. Progressive multiple

sclerosis: pathology and pathogenesis. Nat Rev Neurol. (2012)

8:647–56. doi: 10.1038/nrneurol.2012.168

Frontiers in Neurology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 884089

https://www.frontiersin.org/articles/10.3389/fneur.2022.884089/full#supplementary-material
https://doi.org/10.1007/s11910-001-0028-4
https://doi.org/10.1002/ana.410290515
https://doi.org/10.3389/fneur.2017.00577
https://doi.org/10.1002/ana.24408
https://doi.org/10.1002/ana.22230
https://doi.org/10.1016/j.mito.2011.03.007
https://doi.org/10.1038/nrneurol.2012.168
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Liu et al. Modeling MS Clinical Outcomes

8. Manouchehrinia A, Westerlind H, Kingwell E, Zhu F, Carruthers R,

Ramanujam R, et al. Age related multiple sclerosis severity score: disability

ranked by age.Mult Scler. (2017) 23:1938–46. doi: 10.1177/1352458517690618

9. Fanelli D, Costas R, Ioannidis JP. Meta-assessment of bias in science. Proc Natl

Acad Sci U S A. (2017) 114:3714–9. doi: 10.1073/pnas.1618569114

10. Hackam DG, Redelmeier DA. Translation of research evidence from animals

to humans. JAMA. (2006) 296:1731–2. doi: 10.1001/jama.296.14.1731

11. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES,

et al. Power failure: why small sample size undermines the reliability of

neuroscience. Nat Rev Neurosci. (2013) 14:365–76. doi: 10.1038/nrn3475

12. IntHout J, Ioannidis JP, Borm GF, Goeman JJ. Small studies are more

heterogeneous than large ones: a meta-meta-analysis. J Clin Epidemiol.

(2015). doi: 10.1016/j.jclinepi.2015.03.017

13. Ioannidis JP. Why most discovered true associations are inflated.

Epidemiology. (2008) 19:640–8. doi: 10.1097/EDE.0b013e31818131e7

14. Ioannidis JP, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D,

et al. Increasing value and reducing waste in research design, conduct, and

analysis. Lancet. (2014) 383:166–75. doi: 10.1016/S0140-6736(13)62227-8

15. Ioannidis JPA. Why replication has more scientific value than original

discovery. Behav Brain Sci. (2018) 41:e137. doi: 10.1017/S0140525X18000729

16. Riley RD, Ensor J, Snell KI, Debray TP, Altman DG, Moons KG, et al. External

validation of clinical prediction models using big datasets from e-health

records or IPD meta-analysis: opportunities and challenges. BMJ. (2016)

353:i3140. doi: 10.1136/bmj.i3140

17. Xu Y, Goodacre R. On splitting training and validation set: a comparative

study of cross-validation, bootstrap and systematic sampling for estimating

the generalization performance of supervised learning. J Anal Test. (2018)

2:249–62. doi: 10.1007/s41664-018-0068-2

18. Li JS, Hamann A, Beaubien E. Outlier detection methods to improve

the quality of citizen science data. Int J Biometeorol. (2020) 64:1825–

33. doi: 10.1007/s00484-020-01968-z

19. Vanderaa C, Gatto L. Replication of single-cell proteomics data reveals

important computational challenges. Expert Rev Proteomics. (2021) 18:835–

43. doi: 10.1080/14789450.2021.1988571

20. Potvin O, Mouiha A, Dieumegarde L, Duchesne S. Alzheimer’s Disease

Neuroimaging I. Normative data for subcortical regional volumes over

the lifetime of the adult human brain. Neuroimage. (2016) 137:9–

20. doi: 10.1016/j.neuroimage.2016.05.016

21. Williams JL, Chu HC, Lown MK, Daniel J, Meckl RD, Patel D, et al.

Weaknesses in experimental design and reporting decrease the likelihood of

reproducibility and generalization of recent cardiovascular research. Cureus.

(2022) 14:e21086. doi: 10.7759/cureus.21086

22. Jafari M, Ansari-Pour N. Why, when and how to adjust your p-Values? Cell J.

(2019) 20:604–7. doi: 10.22074/cellj.2019.5992

23. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer

research. Nature. (2012) 483:531–3. doi: 10.1038/483531a

24. Freedman LP, Cockburn IM, Simcoe TS. The economics

of reproducibility in preclinical research. PLoS Biol. (2015)

13:e1002165. doi: 10.1371/journal.pbio.1002165

25. Ioannidis JP. Why most published research findings are false. PLoS Med.

(2005) 2:e124. doi: 10.1371/journal.pmed.0020124

26. YoungNS, Ioannidis JP, Al-Ubaydli O.Why current publication practices may

distort science. PLoS Med. (2008) 5:e201. doi: 10.1371/journal.pmed.0050201

27. Ioannidis JP. An epidemic of false claims. Competition and conflicts

of interest distort too many medical findings. Sci Am. (2011)

304:16. doi: 10.1038/scientificamerican0611-16

28. Bielekova B, Vodovotz Y, AnG, Hallenbeck J. How implementation of systems

biology into clinical trials accelerates understanding of diseases. Front Neurol.

(2014) 5:102. doi: 10.3389/fneur.2014.00102

29. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External

validation of prognostic models: what, why, how, when and where? Clin

Kidney J. (2021) 14:49–58. doi: 10.1093/ckj/sfaa188

30. Barbour C, Kosa P, Komori M, Tanigawa M, Masvekar R, Wu T, et al.

Molecular-based diagnosis of multiple sclerosis and its progressive stage. Ann

Neurol. (2017) 82:795–812. doi: 10.1002/ana.25083

31. Jackson KC, Sun K, Barbour C, Hernandez D, Kosa P, Tanigawa M, et al.

Genetic model of MS severity predicts future accumulation of disability. Ann

Hum Genet. (2019). doi: 10.1111/ahg.12342

32. Pham L, Harris T, Varosanec M, Morgan V, Kosa P, Bielekova B. Smartphone-

based symbol-digit modalities test reliably captures brain damage in multiple

sclerosis. NPJ Digit Med. (2021) 4:36. doi: 10.1038/s41746-021-00401-y

33. Weideman AM, Barbour C, Tapia-Maltos MA, Tran T, Jackson K, Kosa P, et

al. New multiple sclerosis disease severity scale predicts future accumulation

of disability. Front Neurol. (2017) 8:598. doi: 10.3389/fneur.2017.

00598

34. Messan KS, Pham L, Harris T, Kim Y, Morgan V, Kosa P,

et al. Intra-individual reproducibility as essential determinant

of clinical utility of smartphone-based neurological disability

tests. medRxiv. (2021):2021. doi: 10.1101/2021.06.01.2125

8169

35. Kosa P, Ghazali D, Tanigawa M, Barbour C, Cortese I,

Kelley W, et al. Development of a sensitive outcome for

economical drug screening for progressive multiple sclerosis

treatment. Front Neurol. (2016) 7:131. doi: 10.3389/fneur.2016.0

0131

36. Barbour C, Kosa P, Varosanec M, Greenwood M, Bielekova B. Molecular

models of multiple sclerosis severity identify heterogeneity of pathogenic

mechanisms. medRxiv. (2020):2020. doi: 10.1101/2020.05.18.2010

5932

37. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW,

et al. A call for transparent reporting to optimize the predictive value of

preclinical research. Nature. (2012) 490:187–91. doi: 10.1038/nature11556

38. Kong XZ, Group ELW, Francks C. Reproducibility in the absence of selective

reporting: An illustration from large-scale brain asymmetry research. Hum

Brain Mapp. (2020).

39. Friese M, Frankenbach J. p-Hacking and publication bias interact to

distort meta-analytic effect size estimates. Psychol Methods. (2020) 25:456–

71. doi: 10.1037/met0000246

40. Stanley TD, Doucouliagos H, Ioannidis JP. Finding the power to reduce

publication bias. Stat Med. (2017) 36:1580–98. doi: 10.1002/sim.7228

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liu, Kelly and Bielekova. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 13 May 2022 | Volume 13 | Article 884089

https://doi.org/10.1177/1352458517690618
https://doi.org/10.1073/pnas.1618569114
https://doi.org/10.1001/jama.296.14.1731
https://doi.org/10.1038/nrn3475
https://doi.org/10.1016/j.jclinepi.2015.03.017
https://doi.org/10.1097/EDE.0b013e31818131e7
https://doi.org/10.1016/S0140-6736(13)62227-8
https://doi.org/10.1017/S0140525X18000729
https://doi.org/10.1136/bmj.i3140
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1007/s00484-020-01968-z
https://doi.org/10.1080/14789450.2021.1988571
https://doi.org/10.1016/j.neuroimage.2016.05.016
https://doi.org/10.7759/cureus.21086
https://doi.org/10.22074/cellj.2019.5992
https://doi.org/10.1038/483531a
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0050201
https://doi.org/10.1038/scientificamerican0611-16
https://doi.org/10.3389/fneur.2014.00102
https://doi.org/10.1093/ckj/sfaa188
https://doi.org/10.1002/ana.25083
https://doi.org/10.1111/ahg.12342
https://doi.org/10.1038/s41746-021-00401-y
https://doi.org/10.3389/fneur.2017.00598
https://doi.org/10.1101/2021.06.01.21258169
https://doi.org/10.3389/fneur.2016.00131
https://doi.org/10.1101/2020.05.18.20105932
https://doi.org/10.1038/nature11556
https://doi.org/10.1037/met0000246
https://doi.org/10.1002/sim.7228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Current Status and Future Opportunities in Modeling Clinical Characteristics of Multiple Sclerosis
	Introduction
	Methods
	Search Method
	Exclusion Criteria
	Information Extraction
	Assessment of the Quality of Study Design in the Reviewed Models
	Validation of Published Inverse Relationships Between Study Design Quality and Reported Effect Sizes
	Public Database Exploration Tool

	Results
	Clinical Outcomes
	Predictor Variables
	Technical Quality
	Effect Sizes
	Association Between Study Quality and Effect Size
	Effect Sizes for EDSS-Based Models of MS Progression and MS Severity
	Shiny-App Exploration Tool

	Discussion
	Enhance the Experimental Design of Future Studies
	Include Most Common Outcomes (E.g., EDSS-Based) as Comparators
	Prioritize Modeling Continuous (or Ordinal) Over Dichotomized Outcomes
	Report Broad and Accurate Metrics of Model Accuracy
	Addressing the Clinical Utility of the Models
	Validation of the Most Promising Observations in the Independent Cohort(s)
	Deposit the Raw Data

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


