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Accurate early predictions of a patient’s likely cognitive improvement as a result of

a stroke rehabilitation programme can assist clinicians in assembling more effective

therapeutic programs. In addition, sufficient levels of explainability, which can justify

these predictions, are a crucial requirement, as reported by clinicians. This article

presents a machine learning (ML) prediction model targeting cognitive improvement after

therapy for stroke surviving patients. The prediction model relies on electronic health

records from 201 ischemic stroke surviving patients containing demographic information,

cognitive assessments at admission from 24 different standardized neuropsychology

tests (e.g., TMT, WAIS-III, Stroop, RAVLT, etc.), and therapy information collected during

rehabilitation (72,002 entries collected between March 2007 and September 2019).

The study population covered young-adult patients with a mean age of 49.51 years

and only 4.47% above 65 years of age at the stroke event (no age filter applied).

Twenty different classification algorithms (from Python’s Scikit-learn library) are trained

and evaluated, varying their hyper-parameters and the number of features received as

input. Best-performing models reported Recall scores around 0.7 and F1 scores of 0.6,

showing the model’s ability to identify patients with poor cognitive improvement. The

study includes a detailed feature importance report that helps interpret the model’s inner

decision workings and exposes the most influential factors in the cognitive improvement

prediction. The study showed that certain therapy variables (e.g., the proportion of

memory and orientation executed tasks) had an important influence on the final prediction

of the cognitive improvement of patients at individual and population levels. This type of

evidence can serve clinicians in adjusting the therapeutic settings (e.g., type and load of

therapy activities) and selecting the one that maximizes cognitive improvement.

Keywords: cognitive improvement, AI explainability, machine learning (ML), ischemic stroke, predictive models,

cognitive therapy, web-based therapy
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1. INTRODUCTION

A stroke event occurs when the blood supply to part of the
brain is interrupted. There are two types of stroke depending
on the problem in the blood vessel supplying the brain: ischemic
stroke (blockage blood vessel) and hemorrhagic stroke (bleeding
blood vessel). Out of these two, ischemic stroke is reported for
almost 87% of all stroke episodes (1), with an increased incidence
among adults aged 55 years and under in both the United
States and Europe (2, 3). Among developed countries, stroke is
considered the leading cause of death with a mortality rate of
nearly 30% (4) and a disability rate of surviving patients close
to 40% (5). For stroke survivors, the event can result in motor
and/or cognitive impairments (e.g., body weakness, disturbances
of cognitive functioning), and their outcome can vary from
permanent disability to complete recovery (6, 7).

In this context, cognitive rehabilitation aims to maximize
patients’ recovery and achieve an optimal level of cognitive
functioning to promote their reintegration into normal activities
of daily living (8, 9). The clinical pathway of cognitive
rehabilitation starts often with a clinical interview and several
assessments to diagnose the patients’ cognitive condition.
This information is then used to formulate a personalized
rehabilitation plan for the patient. Performance information can
be recorded during the patient’s therapy so the initial treatment
plan can be adjusted. Although the rising of computerized
cognitive programs has shown good advantages in therapy
management and systematization (10, 11), a large part of the
rehabilitation process still relies on the clinician’s experience and
availability. Thus, planning the best rehabilitation scheme for a
large number of patients and closely monitoring their progress
can turn into a very demanding task for a clinician (12, 13).

Due to their capacity to find patterns and relationships
across data, machine learning (ML) models have shown
promising results in solving complex problems in different
fields, including medical diagnosis and prognosis prediction
(14). In recent years, researchers have explored their integration
into the stroke rehabilitation process, either as prediction
tools or as part of larger clinical decision support systems
(CDSS) (15–17). These ML-based tools can provide treatment
recommendations and predictions of relevant outcomes such as
the length of rehabilitation, the patient’s performance throughout
therapy, and the patient’s cognitive and physical improvement
after rehabilitation (18). For the specific case of cognitive
improvement, having accurate predictions early in rehabilitation
can help clinicians assemble a realistic therapy plan, adjust
it to obtain better results, or anticipate additional care after
the therapy.

Several studies have applied ML models to predict the
cognitive condition of stroke survivors after therapy. These
models often target scores from standardized scales such as the
cognitive portion of the Functional Independence Measure (c-
FIM), the Glasgow Outcome Scale (GOS), the National Institutes
of Health Stroke Scale (NIHSS), or the Disability Rating Scale
(DRS) (19–22). Other studies have developed models to predict
outcomes for specific cognitive domains such as memory (risk
of dementia) and language (aphasia recovery) (23, 24). Most of

them rely on demographic and admission assessment variables
to make predictions of a binary outcome (e.g., whether or not
a patient achieves a specified score for a particular standardized
scale), but only a few have explored the inclusion of therapy
variables (22). Having reliable evidence of the impact that a
therapy configuration (e.g., type and load of therapy activities)
exerts on the cognitive rehabilitation outcome can help clinicians
plan more effective rehabilitation programs. Moreover, it’s been
observed that despite the number of models developed over the
years, clinical adoption has been cautious because of the limited
capacity of models to explain their operations or outcomes and
the ethical concerns this introduces regarding patient safety
(25, 26). In this context, developing ML models with the
capacity to produce actionable predictions and a sufficient level
of explainability is crucial for clinical adoption, as pointed out by
Stinear et al., in their review study (27).

This article presents a ML prediction model targeting the
cognitive improvement after therapy of surviving patients with
stroke. Themodel relies on patients’ demographic characteristics,
cognitive assessments at admission, and their corresponding
therapy records. These records are integrated and pre-processed
using standardized techniques commonly applied over data
science projects and following clinicians’ recommendations to
avoid biased entries. Different models are trained and evaluated,
varying the ML algorithm, their hyper-parameters and the
number of features received as input. Then, predictions of the
best-performing model are analyzed at global and individual
levels using explanation methods. Through the development
and analysis of this model this article seeks 1) to enable better
design of rehabilitation therapy by exploring the impact of
therapy configurations on patients’ cognitive improvement; 2) to
understand the underlying factors that improve/inhibit patients
from improving on cognitive capacities after therapy using
feature importance reports at individual and global levels; and
3) to explore visualization reports that could explain models’
outcomes and bolster clinicians’ trust.

The remainder of this document is divided as follows. Section
2 presents an overview of ML tools developed for stroke
rehabilitation outcome prediction. In Section 3, the data and
methods used in the study are described. Section 4 presents
the data preparation, predictions, and model explanation results.
Finally, Sections 5 and 6 present a detailed discussion and the
overall conclusions of the study.

2. RELATED STUDY

Studies suggest that better rehabilitation outcomes can be
achieved through 1) early rehabilitation and mobilization, 2)
higher-intensity therapy, and 3) personalized therapy plans (28,
29). However, finding the best therapy options for an individual
patient can be a very challenging task, even for a well-experienced
clinician. Unlike traditional expert systems, which are restricted
to hardcore knowledge and a set of rules, ML-based tools
can learn solutions outside the expert knowledge and adapt
themselves to each patient’s condition providing more accurate
and personalized solutions (30). In this context, ML models are
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an appealing option to assist clinicians during the rehabilitation
process. The potential benefits of applying these new tools have
drawn enormous attention to this field in recent years (27, 31).
Most of the literature focuses on precision and personalized
medicine in the area of diagnosis rather than the prognosis of
cognitive improvement; however, the following studies represent
some recent advancements in research into this area.

The authors of the study by Sale et al. (19), assessed the
predictive value of common inflammatory biomarkers and
other blood biomarkers in predicting cognitive and motor
improvement upon completion of rehabilitation treatment. A
two-step procedure was implemented consisting of feature
selection among the biochemical and hematological parameters
based on mutual information criteria and the application of a
Support Vector Machine (SVM) classifier. This study confirmed
previous reports of the prognostic value of biomarkers on motor
function and cognitive performance in patients with post-stroke;
however, it did not establish a link between the biomarkers
and the type, intensity, and duration of the rehabilitation
program and the corresponding impact of the rehabilitation on
cognitive improvement.

The automatic cognitive prognosis model by Serrà et al.
(32), implemented multiple methodologies, including decision
tree learning, instance-based learning, probabilistic learning,
and support vector machines, in order to build classifiers for
cognitive improvement in the areas of attention, memory,
and executive functioning. This study identified predictors
such as patient age at the time of injury, the etiology,
and pre-treatment neuropsychological evaluation scores as
essential for accurate cognitive prognosis. However, this cross-
sectional study focused on pre-treatment diagnosis data,
without including cognitive rehabilitation treatment, discharge,
or compliance data that would aid therapists in creating
personalized rehabilitation programs.

In their research into the personalization of rehabilitation
programs, García-Rudolph et al., built various classifiers
based upon Knowledge Discovery in Databases (KDD)
framework (33), focusing on pre-processing, patterns, and
knowledge extraction. They implemented rehabilitation
programs (cognitive computerized tasks) as sequences of
sessions with pattern recognition utilizing methodologies
such as association rules, classification, clustering and shallow
neural models in order to assess patient rehabilitation task
execution patterns with positive and negative responses to the
rehabilitation treatment (34). This framework allowed for a finer
representation of the design and configuration of successful
rehabilitation programs for patients and the identification of
small variations within these configurations that can aid in
personalizing rehabilitation programs.

Finally, in the study by García-Rudolph (22), the authors
evaluated and compared multiple predictive techniques and
models to gain insight into the efficiency of rehabilitation
programs in terms of the largest gain in function with the
lowest duration of treatment. Traditional outcome prognosis
models with demographic and clinical variables were compared
to models augmented with additional variables describing
the execution and configuration of cognitive computerized

tasks, predicting optimal use of rehabilitation resources.
The comparison and evaluation procedures involved robust
parameter tuning, varied resampling methods of the traditional
variables, with and without rehabilitation configuration variables,
as well as model-dependent and model-independent ranking
techniques to assess variables’ importance. This study highlights
the importance of utilizing variables describing the cognitive
rehabilitation configuration. It provides therapists and clinicians
with actionable predictions facilitating their decision-making
for the rehabilitation intensity and duration and more specific
interventions for patients.

3. MATERIALS AND METHODS

The methodology followed in this study is presented in the
workflow diagram in Figure 1. The diagram depicts three
main phases with their associated tasks: data preparation,
modeling, and explanation. It also includes a field indicating
the involvement of healthcare professionals across tasks at each
phase. This section presents a brief description of the data and
methods used in this study.

3.1. Data Sources
This study relies on clinical data from ischemic stroke surviving
patients admitted at the Acquired Brain Injury rehabilitation
Department of Institut Guttmann (Barcelona, Spain). All
participants were anonymized and non-identifiable. For this
study, no specific written consent was required from participants;
however, when admitted to Institut Guttmann’s rehabilitation
center, all patients provided written informed consent to be
included in research studies carried out by the Institut Guttmann.
The authors confirm that this study is compliant with the
Helsinki Declaration of 1975, as revised in 2008, and it was
approved by the Ethics Committee of Clinical Research of
Guttmann Institut.

3.1.1. Cognitive Records
Patients that are admitted at the Institut Guttmann rehabilitation
center go through an interview and a set of neuropsychological
assessments where demographic and clinical characteristics
are entered into electronic health records from the hospital.
A qualified neuropsychologist is in charge of conducting
all neuropsychological assessments during admission.
These standardized assessments aim to identify the level of
cognitive impairment of the patient within different domains.
Similarly, whenever a patient is to be discharged from the
rehabilitation center (i.e., the patient completed the therapy
at the center), the same set of assessments are conducted
and recorded to analyze the patient’s improvement. Table 1

lists the cognitive assessments included in this study, the
cognitive domain they target, and the scale they use to report
their results. Cognitive assessments report their results on
different scales, as observed in the Scale column from Table 1.
Except for TMT-A, TMT-B, and WCST Errors, cognitive
assessments use scales where higher numbers are considered
good outcomes.
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FIGURE 1 | Diagram of the methodology used in this study.

3.1.2. Therapy Records
The implementation of computerized rehabilitation platforms
has gained increasing interest in recent years (10, 11).
Studies have shown that these platforms can bring advantages
such as therapy monitoring and feedback for patients, easy
access (e.g., home-based care settings), and cost benefits (10).
For therapy purposes, Institut Gutmann uses the Guttmann,
NeuroPersonalTrainer R© (GNPT) (43) which is a rehabilitation
platform for treatment systematization. The system contains 149
different cognitive rehabilitation web-based tasks assigned to the
patient without a specific order. Therapy sessions are scheduled
2–5 times per week during the entire therapy, lasting from
2 to 6 months depending on the therapist’s recommendation.
A single therapy session can take 45 min to 1 h, and it can
include 4–10 cognitive rehabilitation tasks. Each task targets a
particular cognitive domain like orientation, attention, memory,

language, executive functioning, calculus, gnosias, and praxias.
After each task execution, the patient receives performance
feedback ranging from 0 to 100 (0 being the lowest and 100
the highest). The system organizes this information as temporal
entries and stores each task execution and its result with a set of
relevant variables such as the date of execution and identifiers for
the patient, the therapist, and the executed task. Despite this type
of automation, therapists always have the capacity to select and
adjust the treatment whenever they consider it necessary.

3.2. Study Population
This study included an initial cohort of 1,162 ischemic
stroke patients admitted to the rehabilitation unit of the
Institut Guttmann (Barcelona, Spain), between March 2007 and
September 2019. For this study, the inclusion criteria, applied
over the initial cohort, were based on the neuropsychologist’s
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TABLE 1 | List of neuropsychological assessments administrated at the

Guttmann Institut at admission and discharge.

Assessment Cognitive domain Scale

TB Personal Orientation (35) Orientation [0–7]

TB Spatial Orientation (35) Orientation [0–5]

TB Temporal Orientation (35) Orientation [0–23]

Digits Span (36) Attention [0–9]

TMT-A (37) Attention [0–Inf]

Stroop-Words (38) Attention [0–Inf]

Stroop-Color (38) Attention [0–Inf]

Stroop-Words/Colors (38) Attention [0–Inf]

TB Language Repetition (35) Language [0–10]

TB Language Denomination (35) Language [0–14]

TB Language Comprehension (35) Language [0–16]

Digit Span Backwards WAIS-III (36) Memory [0–8]

Numbers and Letters WAIS-III (36) Memory [0–16]

RAVLT Learning (39) Memory [0–75]

RAVLT Free Recall (39) Memory [0–15]

RAVLT Recognition (39) Memory [0–15]

TMT-B (37) Executive Functions [0–Inf]

WCST Categories (40) Executive Functions [0–6]

WCST Errors (40) Executive Functions [0–Inf]

Stroop-Interference (38) Executive Functions [Inf]

PMR (41) Executive Functions [0–Inf]

Visuospatial WAIS-III (36) Visual [0–Inf]

Images WAIS-III (36) Visual [0–20]

Cubes WAIS-III (36) Visual [0–Inf]

(*) NIHSS (42) Overall impairment [0–42]

TB, Test Barcelona; TMT, Trail Making Test; WAIS-III, Wechsler Adult Intelligence Scale

3rd version; RAVLT, Rey Auditory Verbal Learning Test; WCST, Wisconsin Card Sorting;

NIHSS, National Institutes of Health Stroke Scale; (*), administrated only at admission.

input: 1) admission at the rehabilitation center during the first
6 months since the stroke event; 2) patients who went through
therapy and had records in the GNPT platform, and 3) a
maximum length of therapy of 180 days. Applying these criteria
resulted in the removal of 678 patients from the initial cohort
leaving 484 patients with 77 descriptive variables.

Clinicians recommended another criterion to avoid including
misleading entries. They commented that, in some cases, patients
who could not complete their cognitive assessments in the first
trial had to be assessed again on the same day. This procedure
would erroneously record a therapy duration of 0 days. They
recommended adding a minimum length of therapy (e.g., 14
days) to avoid including registries with inconsistent therapy
lengths. The minimum length of therapy was established at 14
days, resulting in 475 patients with 77 descriptive variables.

Finally, both admission and discharge assessments were
required to measure the improvement of a patient; however,
as it is common when dealing with real-world data, the level
of completeness was different for most cognitive variables. This
posed a huge limitation because, in order to have a set of
patients with all cognitive assessments, the dataset needed to
be shrunk to the lowest completeness percentage of cognitive

variables (around 26% of the current 475 patient entries).
Removing all entries with missing assessments would have
reduced the dataset to 81 patient entries and 77 accompanying
variables. Although data imputation is usually applied to treat
missing values, this practice is not always recommended when
dealing with clinical data (44, 45). Thus, to mitigate the
impact of removing entries with missing values, the assessments
with the lowest completeness levels were selected for removal
(assessments with less than 30% of completeness rate). Eight
variables were selected for removal: Stroop-words, Stroop-color,
Stroop-words/color, TMT-B, WCST categories, WCST errors,
Stroop-interference, and Visuospatial WAIS-III. This procedure
resulted in a dataset containing 201 patient entries with 69
descriptive variables. Although the number of entries is reduced,
the approach aims to retain the data description capacity across
all cognitive domains.

3.3. Feature Engineering
Through data aggregation, therapy variables like daily sessions
and the number of tasks were constructed by summing the
number of days and tasks registered in the GNPT therapy
records. Non executed tasks and non executed proportion are two
variables that capture the number of tasks with performance
scores of “0.” Obtaining a score of “0” after a task execution
indicates that the patient could not fulfill the minimum required
by the rehabilitation task, which can be considered normal
during an early stage of the rehabilitation process. However,
from a neuropsychologist’s perspective, patients that accumulate
a large amount of “0” scores evidence difficulties completing
their rehabilitation therapy. Therefore, variables that can capture
this condition, such as non executed tasks and non executed
proportion, might carry relevant information for cognitive
outcome and therapy compliance predictions.

Admission compliance and discharge compliance are two
variables derived from a neuropsychologist’s expertise. From
their analysis, it was observed that the level of completeness
of cognitive assessments varied from admission to discharge.
Neuropsychologists perceive this as a common occurrence
since some patients tend to skip some assessments at admission
because of their initial condition, especially when they are
admitted very close to the date of the stroke event. Once
they have completed their therapy and regained some of their
cognitive capacities, they usually complete more assessments.
On that account, the level of assessment compliance, i.e.,
the number of cognitive assessments patients complete
at admission, can be a relevant indicator of the patient’s
cognitive capacity.

The global improvement was calculated by evaluating the
difference between discharge and admission assessment scores
and the summation of assigned markers. For instance, if
the score difference between discharge and admission is
positive, then the improvement of that assessment is “1,” if
it is negative, then improvement is “–1,” and if there is no
difference, the improvement is “0.” The global improvement
is obtained by summing the improvement markers from all
cognitive assessments and dividing the result by the number
of assessments. The same process is carried out to generate
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improvement values for all cognitive domains (e.g., attention
improvement, memory improvement, etc.). For cognitive
assessments like TMT-A, TMT-B, and WCST Errors, which
have an inverse score scale, a reverse procedure was applied to
calculate the improvement.

Finally, gain proportion is introduced as a variable that tries
to capture the relative gain after the execution of each task.
This variable was derived from the weighted summation of
all task results based on their performance ranges. For this
study, different markers are assigned to each execution: a “0”
marker is assigned to tasks with results of “0,” a “0.5” marker
is assigned to tasks with results falling in “1–64” and “86–100”
ranges, finally, a marker “1” is assigned to tasks with results
in the range of “65–85.” The assignment of these markers is
based on the assumption that “65–85” is the optimal range of
performance for task execution (46). The intuition behind the
definition of this optimal therapeutic range is that it is best to
avoid results that are too low (“1–64”) from tasks that are too
difficult to get responses from a damaged area of the brain; or
extremely high results (“86–100”) from tasks that are too simple
to exercise such damaged areas. During their therapy, a patient
accumulates different markers for each task execution. These
markers are then summed to obtain the total gain after therapy.
The gain proportion results from dividing the total gain by the
number of tasks. Equivalent variables are calculated for each
cognitive domain (attention execution gain, memory execution
gain, etc.).

3.4. Data Exploration
In addition to measures like mean, variance, minimum, and
maximum, which can help describe the variables individually,
correlation and clustering analyses are applied over the
rehabilitation dataset to explore the relevant relationships among
the available features.

For this study, correlation heatmaps were used to understand
how the numeric variables relate to each other within the
rehabilitation dataset. This type of analysis is a good starting
point to identify multicollinearity scenarios where two or
more variables present a strong correlation. From a data
scientist’s standpoint, evidence from this analysis can serve to
reduce overlap in input variables by removing variables that
do not add prediction power to the model or to assist in
mitigating sparse data by complementing missing information
from variables. For the cluster exploration, the analysis was
carried out using the Principal Component Analysis (PCA)
and the t-Distributed Stochastic Neighbourhood Embedding (t-
SNE) techniques (47, 48). The objective was to identify possible
patterns, unseen structures, or possible anomalies across the
available demographic, cognitive, and therapy data. Both PCA
and t-SNE are dimensionality reduction techniques that ease data
visualization and allow the discovery of veiled insights from it.
They differ in the sense that PCA is linear and deterministic, and
it tries to retain the global structure of the data; meanwhile, t-SNE
is non-linear and non-deterministic (randomized), and it tries to
preserve the local structure of data.

3.5. Modeling
3.5.1. Cognitive Outcome
For this study, the global improvement was considered as
the target variable to predict the cognitive outcome. The
global improvement combines improvement indicators of all
standardized cognitive assessments administered to the patient,
which can help describe the patient’s overall status after
therapy. This variable can rely on demographic, cognitive,
and therapy variables to act as predictor features. For this
study, the global improvement was adapted to fit a common
binary classification problem. A threshold was used to separate
patients with positive improvement scores and negative (or zero)
improvement scores. (Class “0”: global improvement<=0, Class
“1”: global improvement>0). From a binary classification
perspective, the positive class is referred to as the class of interest
for a defined problem. In this study, the main focus was to
identify patients “at risk,” that is, patients reporting negative or
zero global improvement values. Therefore, Class “0” was selected
as the positive class.

3.5.2. Pre-processing
A pre-processing step is recommended to standardize and format
the features before training the ML model. Although some
families of ML algorithms are able to handle features with
different scales and formats, pre-processing before training the
model is recommended to guarantee better performance (49). It
is also desired for features to maintain a normal distribution so
they can be applied to different ML algorithms. For this study,
input variables were scaled using the StandardScaler method
from the Scikit-learn Python library. This method removes
the mean of features (i.e., set it to zero) and scale values to
unit variance. For variables with a skewed distribution, the
Scikit-learn implementation of the PowerTransformer method
(50) was used to treat features to obtain a more “Gaussian-
like” distribution. Finally, nominal features were encoded and
transformed into numeric features to allow for performing
mathematical operations.

3.5.3. Classification Algorithms
Twenty different classification algorithms from nine different
families were considered for this study: five Linear Models,
one Nearest Neighbor, two Decision Trees, two Support Vector
Machines, two Naive Bayes, five Ensemble Methods, one
Gaussian Process, one Linear Discriminant Analysis, and one
Boosted Trees. The implementation of these algorithms, available
at the scikit-learn library and the xgboost package for Python, were
used for training and evaluation.

3.5.4. Performance Evaluation
The algorithms’ performance was measured using standard
classification metrics like F1 score, Recall, Precision, and the
Area Under the Receiver Operator Characteristic Curve (ROC-
AUC). The Recall score was selected as the main evaluation
criteria as it prioritizes the correct positive instances that
are correctly classified, i.e., patients with zero or negative
improvement scores (class “0”). To cope with a low number
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of entries in the dataset, a k-fold (k = 5) cross-validation re-
sampling method with 5 repetitions was used to evaluate the
performance of different classification algorithms. For this task,
the algorithms were assessed using default Scikit-learn settings
with no customized parameters.

3.5.5. Feature Selection
Before the optimization, feature selection was carried out
to identify the most important features using the model
performance as the main criteria. Different from the selection
made using the clinicians and data scientists as a reference,
this procedure uses the relationship between input and target
variables to rank the contribution of each input feature. The
idea is to verify the models’ performance using different amounts
of input features. Using fewer features while maintaining good
performance is a desirable characteristic as it reduces the number
of assessments required by the patient (51). This also aligns with
the data minimization principle from the European General Data
Protection Regulations (GDPR) (52). The feature selection step
was carried out using the SelectKBest method implemented in
Scikit-learn. For a classification problem, this method uses an
implementation of the ANOVA f-test to rank features and select
the ones with higher scores. For this case study, the entire set
of features, plus the best 20 and 10 features, were selected and
included in the hyper-parameter optimization setting.

3.5.6. Hyper-Parameters Optimization
To find the best performing parameters, a grid-search was
carried out using the GridSearchCV method implemented in
Scikit-learn along with a k-fold (k = 5) cross-validation method.
Table 2 presents the sets of values selected to carry out the
grid-search for each parameter and pre-selected algorithm.
For the ExtraTreesClassifier and RandomForestClassifier,
similar parameters were set for optimization; meanwhile, the
KNeighborsClassifier, XGBClassifier, and LogisticRegression had
specific tuning parameters. The models were optimized based on
their Recall performance. Then, using the best parameters from
the Recall optimization, F1, Precision, and ROC-AUC scores
were evaluated via k-fold (k = 5) cross-validation.

3.6. Explanation Methods
In addition to the classification metrics that report the
performance of the model, explanatory material that allows
clinicians to interpret the inner workings of the model is needed
(53–55). From several explanation classes, clinicians identified
that having a report of the most influential features on a model’s
outcome was critical, as it allowed them to compare the model’s
decision process with their clinical judgment process (53). The
SHapley Additive exPlanations (SHAP) method (56) was used
to analyze the trained models and describe the model’s inner
rationale. SHAP is a unified framework based on six feature
importance methods that facilitate the interpretation of ML
models’ predictions. The underlying logic behind SHAP’s inner
workings is based on evaluating the trained model using different
sets of feature permutations and calculating each feature’s average
contribution to the model’s output; this average value is called
the SHAP value. Computing SHAP values for each input feature

TABLE 2 | Sets of hyper-parameters used for the grid-search corresponding to

the pre-selected classification algorithms.

Algorithm Hyper-paramets set

ExtraTreesClassifier n_estimators = [10, 100, 1,000]

max_depth = [3, 7, 9]

min_samples_split=[2,10,20]

criterion=[“gini,” “entropy”]

min_weight_fraction_leaf = [0,0.2,0.3,0.5]

RandomForestClassifier criterion=[“gini,” “entropy”]

n_estimators = [10, 100, 1,000]

max_features = [“sqrt,” “log2”]

max_depth = [9, 15]

min_samples_split=[2,10,20]

min_weight_fraction_leaf = [0,0.2,0.5]

KNeighborsClassifier n_neighbors = [2, 10, 21]

weights = [“uniform,” “distance”]

metric = [“euclidean,” “manhattan,” “minkowski”]

XGBClassifier eta = [0.001, 0.01, 0.1, 0.2, 0.3]

gamma = [0.05, 0.5, 1, 1.5]

min_child_weight = [5, 7, 9, 10]

subsample = [0.5, 0.8, 1]

colsample_bytree = [0.6, 0.8, 1]

lambda_par = [0.1, 0.5, 1]

LogisticRegression solver = [“newton-cg,” “lbfgs,” “liblinear”]

penalty = [“L2”]

C = [100, 10, 1.0, 0.1, 0.01]

max_iter = [1,000]

allows interpreting each feature’s average contribution to the
model’s prediction. For this study, the implementation of the
SHAP library for Pythonwas used to examine the trained models.

4. RESULTS

4.1. Experiment Data
Table 3 presents basic statistics of all demographic, cognitive,
and therapy variables from the rehabilitation dataset to help
understand the characteristics of the available data. The TMT-
A and TMT-B assessments showed higher standard deviation
values (48.43 and 82.51); meanwhile, TB Personal and TB
Language Repetition assessments reported the lowest variability
among assessments (0.00). For therapy variables, the total
number of tasks showed a SD value of 85.22, which evidence the
load of therapy differences among patients. The same variable
reported a maximum value of 480, meaning that a single patient
executed this amount of rehabilitation tasks. Table 4 presents the
task performance (grouped by ranges) given by the GNPT system
after each task execution. Executed tasks with a performance
result of “0” represent 16.2% of all executed tasks. Results falling
in the “65–85” range represent 18.9% of the executed tasks.
Within the GNPT platform, this range is considered optimal
since it balances the cognitive gain of the patient (46). The
distribution of executed tasks shows that memory tasks are the
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TABLE 3 | Basic statistics of demographic, cognitive and therapy variables from the rehabilitation dataset.

Group Variable Mean SD Min Max

Demographic

Age 49.70 10.18 16.74 81.92

Age at injury (mc) 49.52 10.18 16.65 81.84

Time since injury in days 66.46 40.30 1.60 173.43

Length of therapy 65.35 30.79 15.00 173.00

Sex (c)

Male N/A N/A N/A N/A

Female N/A N/A N/A N/A

Marital status (c)

Married N/A N/A N/A N/A

Single N/A N/A N/A N/A

Divorce N/A N/A N/A N/A

Separate N/A N/A N/A N/A

Widow N/A N/A N/A N/A

Cognitive

Admission compliance 0.90 0.11 0.67 1.00

Discharge compliance (mc) 0.94 0.09 0.67 1.00

Global improvement (t) 0.18 0.21 -0.50 0.75

Attention improvement (mc) 0.02 0.17 -0.33 0.67

Orientation improvement (mc) 0.27 0.40 -0.80 1.00

Language improvement (mc) 0.04 0.15 -0.33 0.67

Memory improvement (mc) 0.27 0.44 -1.00 1.00

Ex. Functions improvement (mc) 0.23 0.39 -1.00 1.00

Visual improvement 0.31 0.41 -0.67 1.00

NIHSS 9.86 4.65 1.00 22.00

Variable Mean SD Min Max

Adm Dis Adm Dis Adm Dis Adm Dis

Orientation TB Personal Orientation 6.99 7.00 0.12 0.00 6 7 7 7

TB Spatial Orientation 4.97 4.99 0.17 0.10 4 4 5 5

TB Temporal Orientation 22.59 22.71 1.41 1.22 12 11 23 23

Attention Digits Span 5.91 6.03 1.10 1.07 3 4 9 9

TMT-A 67.44 53.42 48.43 31.70 4 6 289 240

Stroop - Words (md) 78.43 82.05 16.37 15.51 37 40 123 125

Stroop - Color (md) 55.51 57.70 12.45 12.54 23 27 89 90

Stroop - Words/Colors (md) 32.04 34.03 10.71 11.04 6 8 85 73

Language TB Language Repetition 9.99 10.00 0.10 0.00 9 10 10 10

TB Language Denomination 13.96 14.00 0.27 0.00 11 14 14 14

TB Language Comprehension 15.78 15.91 0.76 0.50 9 12 16 16

Memory Digit Span Backwards WAIS-III 4.19 4.35 0.98 0.98 2 2 7 8

Numbers and Letters WAIS-III 8.14 8.72 2.61 2.52 1 3 14 15

RAVLT Learning 42.14 46.23 10.66 11.49 21 9 70 70

RAVLT Free Recall 8.26 9.35 3.51 3.41 0 0 15 15

RAVLT Recognition 11.44 12.19 3.91 3.20 0 1 15 15

Executive Functions TMT-B (md) 141.13 112.07 82.51 48.63 30 30 565 300

WCST Categories (md) 4.11 4.24 2.11 2.13 0 0 6 6

WCST Errors (md) 18.36 16.25 15.07 14.64 0 0 63 72

Stroop - Interference (md) -0.21 0.41 7.20 7.48 -21 -22 35 25

PMR 31.93 35.10 13.25 13.30 3 5 72 84

(Continued)
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TABLE 3 | Continued

Group Variable Mean SD Min Max

Visual Visuospatial WAIS-III (md) 41.21 46.23 15.59 16.04 10 13 92 92

Images WAIS-III 19.30 19.67 1.49 0.94 11 14 20 20

Cubes WAIS-III 26.96 30.31 11.97 11.94 2 6 66 66

Variable Mean SD Min Max

Therapy

Daily sessions 12.15 7.91 1.00 52.00

Total number of tasks (mc) 111.89 85.22 2.00 480.00

Total non executed tasks (mc) 15.84 18.93 0.00 117.00

Non executed proportion 0.14 0.10 0.00 0.53

Total gain proportion (mc) 0.53 0.08 0.25 0.75

Attention Number of tasks (mc) 20.93 18.36 1.00 123.00

Task proportion 0.19 0.10 0.01 0.67

Non executed tasks 2.01 3.85 0.00 40.00

Execution gain 11.25 10.22 0.00 72.00

Memory Number of tasks (mc) 45.65 40.40 2.00 294.00

Task proportion 0.40 0.15 0.07 1.00

Non executed tasks 5.22 8.08 0.00 53.00

Execution gain 25.57 23.53 0.50 181.00

Ex. Functions Number of tasks (mc) 38.16 30.58 1.00 170.00

Task proportion 0.35 0.13 0.05 0.75

Non executed tasks 8.12 9.13 0.00 62.00

Execution gain 18.08 15.17 0.00 96.50

Language Number of tasks (mc) 8.86 13.35 1.00 55.00

Task proportion 0.16 0.28 0.01 1.00

Non executed tasks 0.71 1.10 0.00 3.00

Execution gain 5.04 9.10 0.50 37.00

Orientation Number of tasks (mc) 4.31 5.27 1.00 31.00

Task proportion 0.03 0.04 0.00 0.20

Non executed tasks 0.39 1.30 0.00 10.00

Execution gain 2.06 2.58 0.00 15.00

Calculus
Number of tasks (mc) 11.81 11.45 1.00 62.00

Task proportion 0.09 0.07 0.01 0.31

Non executed tasks 1.42 2.32 0.00 11.00

Execution gain 6.25 6.29 0.00 36.50

Gnosias
Number of tasks (mc) 8.50 14.68 1.00 81.00

Task proportion 0.06 0.09 0.01 0.49

Non executed tasks 0.47 1.47 0.00 8.00

Execution gain 4.81 8.11 0.00 40.00

Praxias Number of tasks (mc) 3.71 2.99 2.00 12.00

Task proportion 0.02 0.01 0.01 0.07

Non executed tasks 0.24 0.64 0.00 2.00

Execution gain 1.82 1.74 0.00 6.50

N = 201; Adm, admission; Dis, discharge; c, categorical variable; mc, removed to prevent multicollinearity issues; md, removed to prevent missing data issues; t, target variable.

most repeated, as they represent 40.2% of all performed tasks.
Meanwhile, attention and executive functions cover 19.5% and
29.4% of all entries.

4.2. Exploratory Analysis
For this study, two correlation heatmaps were generated
using the demographic, cognitive, and therapy variables. For

visualization purposes, correlation outcomes are presented in
separated plots: Figure 2 (demographic + cognitive) and Figure 3
(demographic + therapy). Color bars were used to a show strong
positive correlation (red) and a strong negative correlation (blue).

Figure 2 (demographic + cognitive) shows several clusters
of low-to-moderate positive correlation coefficients (0.2–0.6),
corresponding to standardized cognitive assessment variables.
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Smaller clusters of strong correlation coefficients (0.7–0.8)
belonging to variables from the same group of standardized
assessments are observed near the diagonal. This trait was
also observed for variables admission compliance and discharge
compliance. These results show that some assessments carry very
similar information, especially when they belong to the same
cognitive domain. Other variables like age, time since injury,
NIHSS, and global improvement reported low-to-moderate
negative correlation coefficients (−0.2 to −0.6). For some
variables, a strong correlation is expected, and it can be easily
explained like for the pair of features age and age at injury. In a
stroke rehabilitation context, it is expected that patients start their
therapy within the first 6 months of a stroke occurring; thus, it is
likely that these two variables have close values. On that account,
including only one of these variables in the descriptor set might
be sufficient for modeling purposes.

Figure 3 (demographic + therapy) shows a more sparse
distribution of correlation outcomes. For this analysis, strong
correlation clusters are more abundant, and they are related,
in most cases, to three variables: daily sessions, number of
tasks, and non executed tasks. The heatmap shows that these
clusters are formed across each cognitive domain, and that they
are stronger among the ones with a higher number of tasks
executions (attention, memory and executive functions). The
pair of variables daily sessions and number of tasks reported
strong correlation coefficients. Since they both depend on the
length of the therapy (more therapy sessions will result in more
executed tasks), a strong correlation between these two variables
is expected. Again, keeping only one of these variables for
modeling purposes seems to be a valid suggestion.

Including groups of highly correlated variables as input to
train an ML model might not affect the model’s performance,
but it can reduce the capacity to interpret the effect of variables
on the model’s outcome. Thus, to develop explainable ML tools,
data scientists recommend handling multicollinearity instances
before training the model (57). Based on the findings from the
correlation analysis, a few variables were selected for removal
to mitigate possible overlapping effects. Thirteen variables were
removed from the dataset: age at injury, discharge compliance,
number of tasks, non executed tasks, gain proportion, attention
tasks, memory tasks, F. executive tasks, language tasks, orientation
tasks, calculus tasks, gnosias tasks, and praxias tasks. After this
procedure, the number of available variables is 56 (54 numeric
and 2 nominal).

Following the exploratory stage, a cluster analysis was carried
out using the Principal Component Analysis (PCA) and the
t-Distributed Stochastic Neighbourhood Embedding (t-SNE)
methods (47, 48). The objective was to identify possible patterns,
unseen structures, or possible anomalies across the available
demographic, cognitive, and therapy data. Figure 4 presents 2D
visualizations generated using the PCA and t-SNE methods.
Each data point, representing a patient, was labeled according
to the severity of the condition of the patient (from the NIHSS
score) and the improvement after the therapy (from the global
improvement variable). This type of visualization can help display
homogeneous groups of patients and verify if predictor variables
correlate with the target labels of the model.

TABLE 4 | Summary report from temporal records of the GNPT platform.

Variable n = 72,002

Task performance by result ranges, n (%)

[0] 11,669 (16.2%)

[1–64] 23,501 (32.6%)

[65–85] 13,573 (18.9%)

[86–100] 23,259 (32.3%)

Number of tasks per cognitive function, n (%)

Attention 14,015 (19.5%)

Memory 28,963 (40.2%)

Ex. Functions 21,172 (29.4%)

Language 1,923 (2.7%)

Orientation 979 (1.4%)

Calculus 2,377 (3.3%)

Gnosias 2,379 (3.3%)

Praxias 158 (0.2%)

The PCA analysis presented in Figure 4A reported an
accumulated explained variance of 0.42 for the two components
(PCA1 and PCA2). Figure 4A shows four clusters plus two
smaller sets of data points slightly separated from two of
the main clusters. For the t-SNE method, different perplexity
and rate parameters were tested at different runs of the
method. The scatter plot in Figure 4B shows the results from
setting the perplexity parameter at 10 and the learning rate
at 200. The scatter plot reported three main clusters plus a
few smaller sets of data points. Both methods were able to
produce relatively dense clusters and separate classes at some
level. Yet, the formation of these clusters does not seem to
be linked to the level of stroke severity (NIHSS score) or the
outcome of patients (global improvement), as no patterns are
perceived among the shapes and colors of the data points. These
findings highlight that both severity and improvement labels
were not strongly correlated with the information carried by the
input features.

4.3. Cognitive Improvement Prediction
For this study, the global improvement was adapted to fit a
common binary classification problem. Figure 5 shows the
distribution of the improvement scores and the threshold
used to separate patients with positive improvement
scores and negative (or zero) improvement scores (Class
“0”: global improvement<=0, Class “1”: global improvement>0).
The histogram shows that there were fewer cases with
negative or no improvement scores (58 out of 201
registries), which evidence the imbalanced distribution of
the target.

Twenty different ML classification algorithms were trained
and evaluated using a k-fold (k = 5) cross-validation re-
sampling method with 5 repetitions. Table 5 list the ten
best-performing algorithms and their corresponding results for
Recall, F1, Precision, and AUC-ROC scores. The algorithms
reported Recall scores around 0.70; meanwhile, the reported
F1 scores reached 0.63. Based on these results, five algorithms
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FIGURE 2 | Correlation outcomes from demographic + cognitive variables. Red: strong positive correlation (+1), blue: strong negative correlation (–1).

were pre-selected to be considered for hyper-parameter
optimization: RandomForestClassifier, ExtraTreesClassifier,
KNeighborsClassifier, XGBClassifier, and LogisticRegression.

All five pre-selected algorithms were trained using three
different sets of input features: “All”: no feature selection,
“20”: best 20 features, and “10”: best 10 features. Table 6

presents the optimized values for each parameter for all
five classification algorithms and the corresponding sets of

input features; meanwhile, the performance results from the
Recall, F1, Precision, and AUC-ROC scores are presented
in Table 7. These results showed no significant improvement
for any algorithm compared to the results presented in
Table 5. Recall and F1 scores floated around 0.7 and 0.6,
respectively, for most classification algorithms. In addition, no
considerable performance differences were reported regarding
the number of features used to train the models. These
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FIGURE 3 | Correlation outcomes from demographic + therapy variables. Red: strong positive correlation (+1), blue: strong negative correlation (–1).

results imply that it is possible to train a model with fewer
features at a low cost in performance. Despite the room
for performance improvement, these results show the model’s
ability to identify patients with poor cognitive improvement
after therapy.

4.4. Explanation Reports
For this study, the feature importance analysis was organized
at two levels: a general interpretation covering the model’s

behavior and feature relevance across the entire dataset and an
individual interpretation exploring the cases of four particular
subjects from the dataset. The analysis was made using the best
performing hyper-parameters found during the optimization
process (Table 6) and the entire set of features since no significant
difference was observed among the input sets of features.
Due to the absence of an outstanding algorithm in terms of
performance, the XGBClassifier_All model was selected for the
explanatory analysis.
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FIGURE 4 | Cluster analysis using PCA and t-SNE over demographic, cognitive, and therapy variables. Data points labeled according to severity (NIHSS score) and

improvement (global improvement). PCA: accumulated explained variance 0.42 (A). t-SNE: perplexity 10, learning rate 200 (B).

4.4.1. General Interpretation
Interpretation at a general level seeks to provide information
for patient populations and the key parameters guiding the
model’s outcome. Through this type of analysis, relevant trends of
outcomes and the features that influenced them can be identified.
The SHAP method assigns different values to each feature
based on their contribution to the model’s outcome (positive
or negative); these values are denoted as SHAP values. For the
general interpretation analysis, the mean absolute SHAP values
(for each feature) are computed over all entries in the dataset, and
they are presented in Figure 6. The features were sorted based
on their absolute impact on the model’s outcome, and they are
presented over two cohorts: sex (male and female) and age (below
and above 50 years old). This visualization reveals if different
features have a different effect depending on the sex of the patient
or their age group.

Figures 6A,B show that the time since injury was the most
determining feature for predicting the global improvement of
a patient. This feature seemed to have a slightly stronger
effect on men under 50 years of age. Admission compliance
was identified as the second most important feature with no
significant difference in terms of sex or age group. Out of the
group of standardized cognitive assessments, TMT-A (attention),
Cubes (visual), and Ravlt learning (memory) were among the
most important features for the global improvement prediction.
From this group, only Ravlt learning exhibits a noticeable
difference within the sex cohort. As for therapy features,memory
task proportion and orientation task proportion were the most
important features for the model prediction. With respect to its

FIGURE 5 | Scores distribution of global improvement. Class

“0”: global improvement<=0, Class “1”: global improvement>0.

effect across sex and age, orientation task proportion was the only
variable showing a clear difference over these cohorts.

The isolated effect of features on the model’s prediction was
represented using the dependence scatter plots presented in
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Figure 7. These plots show the normalized range of values a
feature can take vs. the SHAP value assigned to each instance
in the dataset. The plots include a histogram at the bottom
showing the distribution of the feature values. For this case study,
negative SHAP values contribute to the patient being classified
as class “0” (no cognitive improvement). Meanwhile, positive
SHAP values push the model toward classifying the patient as
class “1” (cognitive improvement). The dependence scatter plots
presented in Figure 7 show how the trained model reacts to
different feature instances and identifies what values the model
considers relevant for the final decision.

Dependence scatter plots were generated for six input features,
as observed in Figure 7. Scatter plots for the time since injury,
length of therapy, and non executed proportion are presented in

TABLE 5 | Evaluation of the classification algorithms without hyper-parameter

tuning.

Algorithm F1 Recall Precision AUC

RandomForestClassifier 0.638 (0.08) 0.701 (0.05) 0.652 (0.08) 0.526 (0.05)

ExtraTreesClassifier 0.630 (0.08) 0.697 (0.07) 0.640 (0.11) 0.528 (0.05)

KNeighborsClassifier 0.614 (0.10) 0.671 (0.08) 0.606 (0.13) 0.512 (0.06)

XGBClassifier 0.636 (0.08) 0.664 (0.07) 0.642 (0.08) 0.543 (0.07)

LogisticRegression 0.643 (0.06) 0.658 (0.06) 0.646 (0.08) 0.549 (0.08)

RidgeClassifier 0.633 (0.05) 0.651 (0.05) 0.637 (0.07) 0.534 (0.07)

BaggingClassifier 0.610 (0.08) 0.642 (0.06) 0.632 (0.06) 0.533 (0.07)

LinearSVC 0.634 (0.06) 0.641 (0.07) 0.639 (0.07) 0.544 (0.07)

LinearDiscriminant

Analysis

0.614 (0.06) 0.625 (0.06) 0.616 (0.07) 0.515 (0.07)

BernoulliNB 0.611 (0.06) 0.619 (0.07) 0.626 (0.07) 0.516 (0.07)

Results sorted by the mean Recall scores accompanied by their corresponding SD. Re-

sampling at k-fold (k = 5) cross-validation with 5 repetitions. The bold values indicated to

highlight the recall columns.

the first row; meanwhile, memory gain, memory non executed,
and memory task proportion are presented in the second row.
Being memory the cognitive domain with the highest proportion
of assigned tasks (40.2%), the three features related to this
cognitive domain were selected for analysis.

For the time since injury, the dependence plot in Figure 7A

shows that the trained model considered that higher values for
the feature corresponded to lower SHAP values. Therefore, the
model interprets that delays in the start of the rehabilitation
(high time since injury values) increase the chances of a patient
being placed in the no improvement class (class “0”). For the
length of therapy presented in Figure 7B, higher SHAP values are
assigned to therapy lengths up to a certain point (approximately
1 on the normalized x-axis), after this point, SHAP values start
decreasing. For this feature, it looks like the model identified an
optimal length of therapy which pushes the decision toward a
positive cognitive outcome (class “1”). The plot for non executed
proportion in Figure 7C shows that higher SHAP values were
given to feature instances falling in the [–1, 1] range on the x-
axis. In this case, the model seemed to penalize instances where
the proportion of non executed tasks was too low or too high.

Dependence plots generated for the memory features showed
similarities with the previous cases. For memory gain, the plot
presented in Figure 7D shows that the model penalized extreme
feature instances as in Figure 7C. The model assumes that
memory gain values (i.e., memory task executions falling in the
optimal result range) increased the chances of a patient being
classified as having cognitive improvement only at a defined
range of values (between 0 and 1 in the normalized x-axis). The
memory non executed feature, presented in Figure 7E, shows the
same behavior as the time since injury feature. For this case, the
model interprets that patients with low therapy compliance (i.e.,
large amounts of task executions with “0” results) are more likely
to be classified as having no cognitive improvement. Formemory

TABLE 6 | Best performing sets of hyper-parameters gathered during the grid-search optimization process.

Algorithm Hyper-parameters

ExtraTreesClassifier_All criterion: gini, max_depth: 9, min_samples_split: 2, min_weight_fraction_leaf: 0, n_estimators: 1,000

ExtraTreesClassifier_20 criterion: gini, max_depth: 3, min_samples_split: 2, min_weight_fraction_leaf: 0.2, n_estimators: 10

ExtraTreesClassifier_10 criterion: gini, max_depth: 3, min_samples_split: 2, min_weight_fraction_leaf: 0.2, n_estimators: 10

RandomForestClassifier_All criterion: entropy, max_depth: 15, max_features: log2, min_samples_split: 10, min_weight_fraction_leaf: 0, n_estimators: 1,000

RandomForestClassifier_20 criterion: entropy, max_depth: 15, max_features: sqrt, min_samples_split: 20, min_weight_fraction_leaf: 0.2, n_estimators: 10

RandomForestClassifier_10 criterion: gini, max_depth: 15, max_features: log2, min_samples_split: 2, min_weight_fraction_leaf: 0.2, n_estimators: 10

KNeighborsClassifier_All metric: euclidean, n_neighbors: 17, weights: distance

KNeighborsClassifier_20 metric: manhattan, n_neighbors: 19, weights: uniform

KNeighborsClassifier_10 metric: euclidean, n_neighbors: 19, weights: uniform

XGBClassifier_All colsample_bytree: 0.6, eta: 0.01, gamma: 1, min_child_weight: 5, reg_lambda: 0.5, subsample: 0.8

XGBClassifier_20 colsample_bytree: 0.8, eta: 0.1, gamma: 0.5, min_child_weight: 9, reg_lambda: 0.1, subsample: 0.5

XGBClassifier_10 colsample_bytree: 0.6, eta: 0.001, gamma: 0.05, min_child_weight: 5, reg_lambda: 0.1, subsample: 0.5

LogisticRegression_All C: 0.01, max_iter: 300, penalty: l2, solver: newton-cg

LogisticRegression_20 C: 0.01, max_iter: 300, penalty: l2, solver: newton-cg

LogisticRegression_10 C: 0.01, max_iter: 300, penalty: l2, solver: newton-cg

Recall scores as evaluation criteria. Results reported for the different number of input features. “All”: no feature selection, “20”: best 20 features, “10”: best 10 features. Re-sampling at

k-fold (k = 5) cross-validation with five repetitions.
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task proportion, the dependence scatter plot showed three clusters
corresponding to different ranges of the feature values. Although
the model interprets that patients with high memory task
proportion values have more chances of being classified as an
improvement case; mid values seemed to push the patient toward
a no improvement outcome, even more than small values for the
same feature.

4.4.2. Individual Interpretation
TheAImodel’s predictions need to be presented to clinicians with
enough information to contextualize and justify their outcomes.
At an individual level, a report of feature importance allows
clinicians to compare the rationale of the model and their own
medical criteria, especially when they do not align together (53).
The individual interpretation analysis was focused on specific
patients and their particular conditions to observe the model’s
behavior at an individual level. For this analysis, four cases were
selected to present the model’s inner decision workings: two
patients reporting the highest global improvement scores and two
reporting the lowest scores.

The individual analysis was made using waterfall plots
generated using the SHAP method; such plots are presented in
Figures 8, 9. The plots show how each feature affects positively
(red row) or negatively (blue row) the final decision of the trained
model in each individual case. The plot should be read from
the bottom to the top as it starts with the initially expected
outcome (E[f (x)]) on the x-axis, which changes according to
the effect of different features until reaching the final outcome
(f (x)). SHAP reports the model’s outcome in log-odds units
(before the logistic link function). So, positive outcomes in
the x-axis should be interpreted as probabilities above 0.5
of a patient having a positive cognitive improvement (class
“1”).

The two patients with the highest global improvement scores
were picked out and they were identified using their entry indexes
in the dataset. These two patients, identified as Patient_123 and
Patient_133, were correctly classified by the XGBClassifier_All
model as having a positive cognitive improvement (class “1”).
The positive outcomes for Patient_123 and Patient_133 from
the SHAP analysis (0.341 and 1.061, respectively) are presented
in Figure 8. Although Patient_123 was classified as a cognitive
improvement case (positive outcome of 0.341), the waterfall
plot shows that two features negatively affected the model’s
outcome (time since injury and orientation task proportion)
pushing the model toward a no improvement prediction (class
“0”).

Figure 8 shows that the time since injury had a different
impact on both patients. This can be explained by observing the
values corresponding to that feature. Patient_133 reported a time
since injury value of –0.556 (39 days in the original record) and
an effect of +0.14; meanwhile, Patient_123 reported a value of
1.55 (138 days in the original record) with an effect of –0.23. This
analysis indicates that the model will lower the patient’s chances
of cognitive improvement if the time since injury is too high.
Regarding the orientation task proportion effect, it is rather odd
to observe a positive effect on the outcome of Patient_133 (+0.02)

TABLE 7 | Evaluation of the pre-selected algorithms with hyper-parameters

tuning.

Algorithm F1 Recall Precision AUC

ExtraTreesClassifier_All 0.637 (0.09) 0.714 (0.06) 0.640 (0.15) 0.536 (0.05)

ExtraTreesClassifier_20 0.593 (0.08) 0.711 (0.06) 0.510 (0.08) 0.500 (0.00)

ExtraTreesClassifier_10 0.593 (0.08) 0.711 (0.06) 0.510 (0.08) 0.500 (0.00)

RandomForestClassifier_All 0.612 (0.08) 0.713 (0.06) 0.610 (0.13) 0.512 (0.03)

RandomForestClassifier_20 0.597 (0.08) 0.713 (0.06) 0.515 (0.09) 0.502 (0.01)

RandomForestClassifier_10 0.593 (0.08) 0.714 (0.06) 0.508 (0.08) 0.500 (0.01)

KNeighborsClassifier_All 0.606 (0.07) 0.714 (0.06) 0.596 (0.13) 0.508 (0.02)

KNeighborsClassifier_20 0.624 (0.08) 0.708 (0.06) 0.654 (0.12) 0.522 (0.04)

KNeighborsClassifier_10 0.609 (0.09) 0.692 (0.07) 0.591 (0.13) 0.507 (0.04)

XGBClassifier_All 0.617 (0.09) 0.713 (0.07) 0.624 (0.16) 0.517 (0.04)

XGBClassifier_20 0.608 (0.10) 0.716 (0.07) 0.556 (0.15) 0.516 (0.04)

XGBClassifier_10 0.593 (0.08) 0.712 (0.06) 0.510 (0.08) 0.500 (0.00)

LogisticRegression_All 0.607 (0.07) 0.708 (0.06) 0.595 (0.13) 0.507 (0.03)

LogisticRegression_20 0.607 (0.07) 0.709 (0.06) 0.595 (0.13) 0.507 (0.03)

LogisticRegression_10 0.604 (0.08) 0.712 (0.06) 0.567 (0.13) 0.507 (0.02)

Recall scores as evaluation criteria. Results reported for the different number of input

features. “All”: no feature selection, “20”: best 20 features, “10”: best 10 features. Re-

sampling at k-fold (k = 5) cross-validation with 5 repetitions The bold values indicated to

highlight the recall columns.

considering that the original record shows a feature value of “0.”
Based on this observation, it appears that the model lowered
the chances of patients with specific amounts of orientation task
executions. Finally, features like Cubes, TMT-A, and admission
compliance positively affected both cases.

Two other patients reporting the lowest global improvement
scores were selected for the individual analysis of the model.
From this pair of patients, only one of them was correctly
classified as a no improvement case (class “0”). For Patient_27,
the SHAP analysis reported a positive outcome of 0.118, and it
was erroneously considered an improvement case. Meanwhile,
Patient_33 reported a negative outcome of –0.182, and it was
correctly classified as a no improvement case. Despite the
erroneous classification of Patient_27, it is noticed that the
reported outcome (0.118) was very close to reaching a negative
value which would have resulted in the correct classification of
the patient.

For these two cases, the prediction paths are presented in
Figure 9. From the group of features that reported a strong
contribution to the model’s outcome, the cognitive assessment
Cubes WAIS-III was the only one showing a completely inverse
effect for both patients. As for the time since injury, although
the effect was negative for both cases, the difference in the
magnitude of the impact seemed to have been decisive for the
model’s outcome. For this feature, a difference in the start of the
rehabilitation (105 days for Patient_27 and 155 for Patient_33)
resulted in almost 0.12, which is close to the 0.118 reported in
the SHAP analysis. As observed in the previous cases, the model
considers the time since injury as a determinant factor for the
cognitive outcome of a patient.
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FIGURE 6 | Global feature importance plot based on mean SHAP values for sex (A) and age (B) cohorts of patients. Results from the XGBClassifier_All optimized

model.

5. DISCUSSION

This study presented an ML model for cognitive improvement
prediction of patients with ischemic stroke after therapy. To
do so, several classifier algorithms were evaluated using varying
input features from demographic, cognitive, and therapy health
records. The study uses feature importance reports to analyze
predictions from the best-performing model at general and
individual levels. The analysis presented in this study helped to
understand the underlying effect of different variables on the
patients’ cognitive outcomes.Moreover, it was possible to identify
contributing therapeutic variables that resulted in a favorable
outcome. Throughout the development process, the article brings
attention to the role of data scientists and clinicians and the value
of their input at each stage of the development process. In this
section, reflections on each step of the process are presented, and
a discussion is presented on how some of the findings of this
study can be generalized and applied across other healthcare-
related projects.

5.1. On the Data Exploration Process
The development process presented in this study begins with
the data exploration phase. At this phase, the involvement of

clinicians was key to building and discovering new variables,
exploring the relationship among the feature set, identifying
inconsistencies in the dataset, applying appropriate filters, and
establishing strategies to deal with missing data entries.

In this phase, hand-crafted features derived from the therapy
records were built using common aggregation functions like
count, sum, or mean. Yet, other key variables that were not
implicitly represented in these records were revealed only
through the input of clinical experts. The analysis then showed
that these features (e.g., memory task proportion, orientation
task proportion) were strong indicators of the patient’s cognitive
outcome. In this study, we observed how a close interaction
with domain experts leads to discovering important descriptive
features. Although we relied on a specific platform (GNPT) to
collect therapy information and build these descriptive features,
the same approach can be adapted over similar computerized
settings to derive similar features.

This study relied on correlation and clustering analyses to
examine the relationship among the dataset features. Similar
to what clinicians reported regarding model explainability (53),
well-designed visualization tools are essential to facilitate the
understanding and interpretation of data exploration findings.
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FIGURE 7 | Dependence scatter plots showing the effect of six input features in the model predictions. SHAP values (y-axis) pushes the outcome toward a class “0”

(no cognitive improvement, negative SHAP values) or a class “1” (cognitive improvement, positive SHAP values). Normalized instances of features with corresponding

histograms depicted in the x-axis. (A) Time since injury, (B) Length of therapy, (C) Non executed proportion, (D) memory gain, (E) memory non executed, and (F)

memory task proportion.

FIGURE 8 | SHAP waterfall plots for explanations of individual predictions. Illustrative cases of two patients with the highest global improvement scores. Positive

feature effects are represented in red and negative effects in blue. The plot should be read from E[f (x)], the expected value of the model output, toward f (x), the model

output. Positive outcomes in the x-axis (in log-odds units) are probabilities above 0.5 of classifying a patient as a cognitive improvement case (class “1”). (A)

Patient_123 and (B) Patient_133.
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FIGURE 9 | SHAP waterfall plots for explanations of individual predictions. Illustrative cases of two patients with the lowest global improvement scores. Positive

feature effects are represented in red and negative effects in blue. Plot should be read from E[f (x)], expected value of the model output, toward f (x), the model output.

Negative outcomes in the x-axis (in log-odds units) are probabilities above 0.5 of classifying a patient as a no cognitive improvement case (class “0”). (A) Patient_27

and (B) Patient_33.

Using good visual reports was key to easing clinicians’
interpretation of the findings. This article employed heatmaps
and cluster scatter plots to expose relationships among the
predictor variables and the target features. Evidence gathered
from this analysis served to arrive at a collaborative decision
on removing correlated variables to reduce the overlap in input
variables (multicollinearity) or keeping them to mitigate data
sparsity by complementing missing information.

Findings at this phase can be used to identify inconsistent
entries and apply proper filters to assure the quality of the
data. As advised in other studies, clinicians are encouraged to
make sure that data from patients is valid and reliable, especially
in a context where healthcare AI is gaining more relevance
(58). Biased outcomes can be avoided if the proper filters are
applied to the dataset before starting the modeling phase. This
aspect is especially relevant when establishing procedures to
treat missing data. This study relied on recommendations from
both clinicians and data scientists to balance the size of the
dataset and its descriptive capacity. Yet, several patients are
still left out of the final training set due to their low number
of cognitive assessments. As commented by neuropsychologists,
there are several reasons why a patient completes few cognitive
assessments at admission. In this study, the admission compliance
feature tried to capture this information and use it to predict
the patient’s outcome. However, there could be patients with a

particular condition for which neuropsychologists recommend a
specific set of cognitive assessments. Capturing all clinical cases is
a challenging task and requires a combined effort from clinicians
and data scientists.

Similar to previous studies (53, 58), this article confirms the
necessity of having a higher level of involvement from clinicians
in the development process of ML tools. More specifically,
stakeholders involved in the data collection process should be
aware of the data quality requirements in the context of ML; thus,
assuring less biased models due to data inconsistency.

5.2. On the Modeling Process
Following the data exploration, the modeling phase receives a
curated dataset to train an ML model targeting an outcome
variable from the dataset. Several methods, commonly applied
in ML development projects, were used along with this phase.
Data standardization and one-hot encoding for data pre-
processing, ANOVA f-tests for feature selection, cross-validation
for performance and accuracy estimation, and a grid-search for
parameter optimization. The adoption of structured processes
and validated methods guarantees an efficient development
process and more reliable models (59, 60).

Compared to other development phases (data exploration
and model explanation), clinical involvement might not be
especially crucial during the modeling stage. Yet, as mentioned
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in several studies (53, 58, 61), healthcare personnel (e.g.,
clinicians, students, attending physicians) is encouraged to
engage with ML key concepts, and standard methods as AI-
based systems continue to gain relevance in the clinical domain.
Better knowledge of the broad concepts in ML would increase
the clinicians’ trust and, ultimately, their adoption of the
model. In addition, knowing how models function can help
clinicians understand their limitations and, thus, guide their
own expectations. This type of engagement seeks to bridge the
collaboration between clinicians and data scientists, putting both
on common ground.

5.3. On the Explanatory Analysis
Finally, the explanatory stage covered the tasks and techniques
used to deliver the model’s outcomes to clinicians. Model
explainability is a critical field of research as it was understood
that translating raw model predictions to clinical practice was
not suitable since the poor justification of predictions affected the
trust in the model and reduced the chances of it being adopted
in a healthcare setting (53, 54). Clinicians identified feature
importance reports as a desirable tool for rationalizing models’
predictions and using them to compare their decision-making
process (53). This study applied feature importance charts to
explain the model’s inner decision workings. The analysis was
made at a general and an individual level which allowed us to
observe the impact of different features over stratified patient
populations and individual clinical cases.

From this analysis, it was interesting to observe how the
model replicated some of the experts’ reasoning regarding
certain variables. For instance, for the time since injury, the
results confirmed the importance of this feature and how larger
values were determinant in predicting no improvement cases.
Similarly, it was observed that extremely high values for the
non executed proportion feature increased the probabilities of a
patient being classified as a no improvement case. This behavior
aligned with the comments from neuropsychologists in the sense
that poor compliance during therapy was an indicator of a
poor cognitive outcome. These results show that the trained
model is, in fact, following similar decision criteria used by a
clinician. Similarly, other features that have a critical role in
the model’s prediction should be analyzed to find a coherent
behavior with the clinician’s decision-making process. Although
the model’s prediction may not replicate the clinician’s rationale,
it can provide a perspective to support clinical decisions, even
if it does by providing data supporting a counterargument
or perspective.

The feature importance charts generated using the SHAP
method served well to interpret the outcomes from the use
case presented in this study. However, this approach might
not apply to more complex ML methods. Depending on
the context, alternative solutions like the local interpretable
model-agnostic explanations (LIME), which target individual
level explanations (62), and new explanation techniques
for Deep Neural Network (DNN) models (63, 64) can
be utilized.

5.4. On the Cognitive Improvement
Prediction
The model presented in this article targeted the global
improvement variable to predict the cognitive outcome after
therapy. This variable was derived from the improvement
indicators from admission and discharge cognitive assessments.
As in other studies, this variable was adapted to fit a binary
classification problem by establishing an improvement
threshold: class “0,” global improvement <=0; class “1,”
global improvement>0. Although this variable is not a
standardized measure, it can easily be adapted to fit different
stroke rehabilitation settings, where cognitive assessments are
administered. The performance of the models was evaluated
based on the Recall score to prioritize the correct identification
of patients in the class “0.” The study showed the importance of
informed decisions regarding the positive class, which directly
affects the metric used for the learning and optimization of the
model. As for AUC scores, we observed values above 0.5 for the
initial evaluation of algorithms and after optimization. Similar
to the other reported metrics, no significant improvement was
noticed. These results showed that changing the algorithm
or optimizing its parameters did not improve the model’s
performance. One alternative would be to deal with some of the
data limitations, such as the class imbalance reported in Figure 5.
Over-sampling techniques can be applied to observe how the
model’s performance responds. Another possible strategy would
be adding more variables with higher discriminatory capacity
(e.g., comorbidity indicators, additional standardized scales).
This study has paid special attention to the data preparation
phase. The techniques included in this phase are intended to
facilitate the inclusion of new patients’ information. It is expected
that as new patients are included, adjustments can be made, and
performance will improve. Alongside performance, the study
seeks to set the foundation for a robust ML tool at different
phases during the cognitive rehabilitation workflow. Moreover,
future work will explore the application of oversampling
techniques or data imputations to improve the performance of
the model.

Very few studies have explored the use of therapeutic variables
as predictor factors for cognitive outcomes after rehabilitation.
The study presented in (22) included variables representing
the load and type of rehabilitation activities (e.g., number of
sessions, number of executed activities and mean number of
executed activities per session) and used the Disability Ranking
Scale (DRS) as the target variable. That study reflected on the
importance of providing actionable information to therapists and
how this can lead to the design of better intervention programs.
Our study extended the granularity level of therapy variables by
decomposing the therapy information across cognitive domains.
This enables the delivery of detailed information on the specific
cognitive domain impacting the overall cognitive outcome (e.g.,
memory task proportion and orientation task proportion). In
addition, we introduce new variables that have shown promising
results acting as predictor variables (e.g., admission compliance).
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Although performance can be improved, possibly by
including comorbidity or demographic information and using
more sophisticated ML algorithms, the model showed its
capacity to identify patients “at risk” (i.e., patients belonging to
the class “0,” global improvement<=0). This information can be
helpful to alert clinicians of cases where the therapy program
requires adjustment. Using the trained model, outcomes for
different therapy settings can be tested and reported using scatter
charts to identify the configuration that maximizes the patient’s
cognitive improvement.

5.5. Limitations
The sparsity of the data was the main limitation of this study.
As reported, features from the cognitive assessment records had
very different completeness levels, forcing the removal of some
variables to maintain an acceptable number of entries in the
dataset. In terms of descriptive features, the study didn’t consider
some comorbidity indicators and some relevant demographic
information like the level of education. For this study, global
improvement was chosen as the model’s target variable with a
defined threshold used to frame the model output as a binary
classification problem. Both the variable and the threshold
used in this study still need further exploration to support
their clinical significance. The threshold intends to separate
patients with cognitive improvement from those that showed no
improvement or got worse. Therefore, they must be considered
just as referential indicators of a patient’s cognitive status.

This study relied on specific cognitive assessments to act as
cognitive outcome predictors; however, standardized scales for
functional independence (e.g., FIM, BI) or degree of disability
(e.g., mRS) in activities of daily living were not considered.
Cognitive functioning has been reported to be strongly involved
in the execution of activities of daily living. For example, Mori
et al. (65) concluded independence in eating is strongly associated
with cognitive improvement in subacute stroke. Functional
independence has been extensively assessed in rehabilitation
settings after stroke using standardized instruments such as the
FIM or the Barthel index, which have not been considered
in this study. This leaves room for future research, e.g.,
considering individual FIM items and their relationship to
specific cognitive functioning assessments such as the TMT
or RAVLT. Nevertheless, we have included stroke severity
in our study, assessed using the NIHSS, the FIM has been
reported in previous research to be strongly associated with
the NIHSS. For example, according to Roth et al. (66) NIHSS
correlated significantly with motor and cognitive FIM subscores
for admission, discharge, and change measures.

5.6. Future Study and Direction
This study presented a model targeting the cognitive outcome
prediction task. An extended model will be implemented adding
more features to increase the accuracy of the model. Following
a similar development methodology, other target features like
non executed proportion will be considered to explore the level
of therapy compliance of rehabilitation.

6. CONCLUSION

Stroke rehabilitation poses several challenges to clinicians,
especially in building effective therapeutic programs that
maximize patients’ cognitive recovery. ML-based tools can assist
clinicians in this task, but they need to produce actionable
information and well-justified outcomes to increase their chances
of adoption into a clinical setting. This article presented
an ML prediction model that targets cognitive improvement
after therapy for ischemic stroke surviving patients. Besides
demographic and cognitive assessments variables, which are
commonly used in literature, the model included therapeutic
variables as predictor features. A large number of classifier
algorithms were trained, optimized, and evaluated, varying
the number of features received as input. A set of feature
importance visual reports allowed the interpretation of the
inner decision workings of the best-performing model. The
study showed how certain therapeutic variables impacted the
rehabilitation outcome for individual cases and across the entire
study population. Potentially, clinicians can use this type of
evidence to tune a therapeutic setting that maximizes the
cognitive outcome.
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