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While significant efforts have been made in developing pre-clinical treatments for the

neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children

with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a

better understanding of pathophysiology, but little is known about the mechanisms by

which loss of lysosomal proteins causes such devastating neurodegeneration. Research

into glial cells including astrocytes, microglia, and oligodendrocytes have revealed

many of their critical functions in brain homeostasis and potential contributions to

neurodegenerative diseases. Genetically modified mouse models have served as a

useful platform to define the disease progression in the central nervous system across

NCL subtypes, revealing a wide range of glial responses to disease. The emerging

evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs,

and would suggest that directly targeting glia in addition to neurons could lead to better

therapeutic outcomes. This review summarizes the most up-to-date understanding of

glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some

of the associated challenges that require further research.
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INTRODUCTION

Lysosomal storage disorders (LSDs) are a group of more than 70 monogenetic diseases
characterized by defects in lysosomal metabolism and subsequent accumulation of substrates.
Most LSDs present with a broad phenotypic spectrum in multiple organs. This is consistent
with the fact that nearly all lysosomal enzymes are ubiquitously expressed and their
deficiency will therefore affect many tissue types (1). The neuronal ceroid lipofuscinoses
(NCLs or Batten disease) are a group of fatal neurodegenerative LSDs affecting children
and young adults. In contrast to other non-neuronopathic LSDs, the NCLs primarily affect
the central nervous system (CNS), usually including the retina. The NCLs are remarkably
heterogeneous diseases, with studies in both humans and animal models showing that each
of 13 subtypes is caused by mutations in different individual genes and have different
ages of onset, clinical symptoms, and rate of disease progression (2, 3) (Table 1). As
comprehensively reviewed elsewhere (2, 3), a mutation (or mutations) in a different NCL
gene causes each form of NCL. Some of these mutations are in soluble lysosomal enzymes
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(e.g., CLN1, CLN2, CLN10, CLN13), others are in
transmembrane proteins within the lysosome (e.g., CLN3,
CLN7) or elsewhere in the cell (e.g., CLN6, CLN8), or a range
of proteins that vary widely in their nature and location (e.g.,
CLN4, CLN5, CLN11, CLN12, CLN14).

Research into treatments for most LSDs has primarily focused
on the replacement of the missing gene product responsible
for each disease. Enzyme replacement therapy (ERT) for several
soluble enzyme-deficient forms of NCL including CLN1 and
CLN2 diseases has been studied (11, 34–38), which led to the
recent FDA approval of cerliponase alfa for CLN2 disease (39).
However, ERT is only disease-modifying, and several longer-term
challenges regarding whether efficacy will be maintained, the
delivery systems used and potential immune responses remain
(36, 37, 40). Furthermore, ERT is not an option for those
subtypes of NCL caused by defects in transmembrane proteins
such as CLN3 disease, which is the most common form of NCL
(2). Viral vector-mediated gene therapy has been intensively
explored as an alternative therapeutic strategy for the NCLs. This
approach theoretically has the advantage that a single one-time
administration of viral vector should restore deficient lysosomal
proteins to transduced cells (41, 42). Preclinical studies of gene
therapy in animal models of CLN1, CLN2, CLN3, CLN6, CLN7,
and CLN10 diseases have shown promising results (4, 23, 34, 43–
47). However, clinical studies in children with CLN2 disease
treated with gene therapy showed considerably less efficacy (48,
49), highlighting the difficulty of translating advances from mice
directly into human patients (50). Indeed, none of the therapies
that are currently available or being tested clinically are curative.
Therefore, devising optimal therapeutic strategies for the NCLs
will certainly require a better understanding of pathophysiology
in each form of NCL.

Neuropathology in the NCLs was initially characterized
in human autopsy studies, revealing marked neuron
loss accompanied by intra-lysosomal accumulation of
autofluorescent storage material (AFSM), whose major protein
component is subunit C of mitochondrial ATP synthase
(SCMAS), in addition to astrogliosis, and microglial activation
(51, 52). With the limited availability of genetically validated
human autopsy samples, many longitudinal studies in animal
models have been performed, in order to understand the staging
of neuropathological processes from the earliest events to
the end-stage of disease. Interestingly, AFSM accumulation,
astrogliosis, microglial activation and neuron loss in animal
models of NCL are remarkably selective in their early stages,
becoming more widespread with disease progression (53).
This suggests that despite the ubiquitous expression of these
proteins, such selective vulnerability may be due to them
playing physiological roles of greater importance in some cell
populations than others.

A significant finding made in multiple mouse models across
subtypes of NCL is the profound loss of thalamic neurons, which
typically precedes neuron loss in the corresponding region of
the cortex to which these thalamic neurons relay (5, 14, 16, 17,
20, 28, 30, 54). Strikingly, these studies in mouse models also
revealed that localized astrocytic andmicroglial activation, which
both occur early in disease progression, accurately predict where

subsequent selective neuron loss occurs in mouse models of a
majority of NCL subtypes. Such findings cast doubt on traditional
perspectives of the NCLs as predominantly “neuronal” diseases,
and lead to the hypothesis that abnormalities in glial cells may
contribute to the neurodegeneration associated with the NCLs.

In the “neuron-centric” past of neuroscience, glial cells
were often relegated to being considered as undefined passive
structural elements, and in the diseased state glial activation was
often considered a secondary response to neuron dysfunction
or damage. Over recent decades, this traditional neuron-centric
conception of the CNS has been challenged by a large body
of research aiming to provide a better understanding of glial
function, revealing that glial cells including astrocytes, microglia,
and oligodendrocytes have more active roles in both neuronal
homeostasis and neurodegeneration (55–57). Notably, recent
technological advancements have enabled us to study the
heterogeneity of each glial cell type, and have revealed their
bimodal or multimodal roles in neurodegenerative diseases (58,
59). This review aims to summarize the recent progress in our
understanding of glial pathologies and their contribution to NCL
pathogenesis and examines where NCL research currently stands
in the field of glial biology. This review focusses primarily upon
CLN1, CLN2 and CLN3 diseases as the three most common
forms of NCL, in which a consideration of glial dysfunction
or the contribution to pathogenesis has been undertaken or is
underway. However, where available, the extent of astrogliosis
and microglial activation or oligodendrocyte pathology is listed
inmousemodels of other forms of NCL in (Table 1). As discussed
below, these immunohistochemically detectable changes may be
due to dysfunction of glial cell types (which is largely unexplored
in most NCLs), or reflect their response to ongoing neuronal
dysfunction or loss.

GLIAL DYSFUNCTION IN THE NCLs

Astrocytes
Neuroimmune responses mediated by both astrocytes and
microglia have crucial roles in all CNS insults including brain
injury, infection, and neurodegenerative diseases (60, 61). In
response to these insults, astrocytes and microglia become
“activated” or “reactive” by altering their morphology, protein
expression, and secretion profile. The fact that astrocytes and
microglia typically both become activated in concert has made
it difficult to distinguish the relative contributions of astrocytes
to neurodegeneration, and whether these are distinct from those
of microglia. Nonetheless, understanding their distinct patterns
of activation in disease states is very important.

Upregulation of intermediate filaments, most notably glial
fibrillary acidic protein (GFAP), is a classic marker for astrogliosis
in mammalian models, and the expression level of GFAP or
immunohistochemical detection of this marker has proved a
useful tool to assess the extent of astrogliosis (62). As summarized
in Table 1, GFAP-positive astrogliosis has been documented in
all characterized mouse models of NCL. Although astrogliosis
is observed in multiple CNS regions toward the end stage of
disease, typical astrogliosis in the NCLs is characterized by
its regional specificity and timing; astrogliosis especially occurs
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TABLE 1 | Summary of glial changes in mouse models of neuronal ceroids lipofuscinoses.

Subtype Gene Mouse

model

Astrocyte activation Microglial activation Oligodendrocytic pathology References

CLN1 CLN1/PPT1 Ppt1−/− GFAP+ astrogliosis within spinal

cords at 2 months, M1, S1BF,

VPM/VPL, LGNd, MGN, CM,

and Rt at 3 months, and

hippocampus at 7 months.

CD68+ activation within spinal

cords at 1 months, F4/80+

activation within M1, S1BF, V1,

VPM/VPL, LGNd, and MGN at 5

months and hippocampus at 7

months

Decreased white matter volume

in spinal cords at 2–3 months;

increased immunoreactivity in

Olig2, NG2, and MBP within

spinal cords at 1–2 months

(4), (5) (6), (7)

Ppt11ex4 GFAP+ astrogliosis within cortex

at 3 months

F80+ activation within thalamus

at 3 months

N/A (8)

Ppt1R151X GFAP+ astrogliosis within cortex CD68+ activation within cortex N/A (9)

Cln1R151X GFAP+ astrogliosis within cortex,

thalamus, and hippocampus

CD68+ activation within cortex,

thalamus, and hippocampus

N/A (10)

CLN2 CLN2/ TPP1 Tpp1−/− GFAP+ astrogliosis within M1 at

2 months and striatum and

hippocampus at 3 months

Increase in Iba1 immunoreactivity

whithin striatum at 3 months

N/A (11), (12)

Cln2R207X GFAP+ astrogliosis within cortex

at 3 months

No change in Iba1

immunoreactivity at 3 months

N/A (13)

CLN3 CLN3 Cln31ex1−6 GFAP+ astrogliosis whithin visual

cortex, hippocampus, striatum,

and cerebellum at 5 months and

somatosensory cortex at 7

months

F4/80+ activation within cortex,

hippocampus, striatum, and

cerebellum at 5 months

N/A (14), (15)

Cln31ex7−8 GFAP+ astrogliosis within

cortex, striatum, VPM/VPL, and

cerebellum at 12 months

F4/80+ astivation within cortex,

striatum, VPM/VPL, and

cerebellum at 12 months

N/A (16), (17)

Cln3Q352X GFAP+ astrogliosis within S1BF

and VPM/VPL at 6 months

CD68+ activation within S1BF

and VPM/VPL at 6 months

N/A (18)

CLN4 CLN4/

DNAJC5/CSP

Csp−/− N/A mice die at 2–4 weeks old N/A mice die at 2–4 weeks old N/A mice die at 2–4 weeks old (19)

CLN5 CLN5 Cln5−/− GFAP+ astrogliosis within S1BF,

V1, and VPM/VPL at 1 months

and LGNd at 12 months

F4/80+ activation within S1BF,

V1, VPM/VPL, and LGNd at 12

months

Reduced MBP+ fibers in S1BF

at 1–3 months

(20), (21)

Cln51ex3 Upregulation of GFAP mRNA in

cerebrams at 4.5 months

N/A Downregulation of MBP and

MOG mRNA at 3 months, MAG

and PLP mRNA at 4.5 months

(22)

CLN6 CLN6 Cln6nclf GFAP+ astrogliosis within V1,

LGNd, and SC at 12 weeks,

VPM/VPL and striatum at 21

weeks, and cerebellum at 54

weeks

CD68+ activation within V1,

LGNd, and SC at 12 weeks,

VPL/VPM, hippocampus, and

cerebellum at 54 weeks

N/A (23), (24)

CLN7 CLN7/MFSD8 Mfsd8tm1a/tm1a GFAP+ astrogliosis within

cerebellar white matter at 10

months

CD68+ activation within

cerebellum, spinal cord and

thalamus at 10 months

N/A (25)

Cln7−/− GFAP+ astrogliosis within

cortex, hippocampus, thalamus,

medulla, erebellum, and spinal

cord at 5 months

CD68+ activation within cortex,

hippocampus, thalamus,

medulla, and cerebellum at 7

months

N/A (26), (27)

CLN8 CLN8 Cln8mnd GFAP+ astrogliosis within

VPM/VPL, S1BF, and V1 at 5

months and within LGNd at 8

months

CD68+ activation whithin

VPM/VPL, S1BF, V1, and LGNd

at 5 months

Decreased white matter volume

in corpus callosum and internal

capsule at 1–3 months;

decreased expression level of

MBP and PLP at 1 month;

increased G-ration in corpus

callosum at 1–4 months

(28), (29)

CLN10 CTSD Ctsd−/− Widespread GFAP+ astrogliosis,

particularly prominent whithin

thalamus and cortex laminae

IV-VI at 24 days

CD68+ activation whithin

thalamus and substantia nigra at

24 days

N/A (30)

(Continued)
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TABLE 1 | Continued

Subtype Gene Mouse

model

Astrocyte activation Microglial activation Oligodendrocytic pathology References

CLN11 GRN Grn−/− GFAP+ astrogliosis within

hippocampus, cortex, and

thalamus at 24 months

Increased Iba-1 immunoreactivity

within hippocampus, cortex, and

thalamus at 24 months

N/A (31)

CLN12 ATP13A2 Atp13a2−/− GFAP+ astrogliosis within cortex

at 1 month, cerebellum,

hippocampus, and midbrain at

18 months

N/A N/A (32)

CLN13 CTSF Ctsf−/− GFAP+ astrogliosis in

thalamocortical system at 12

months

F4/80+ microglial activation in

thalamocortical system at 12

months

N/A (33)

CLN14 KCTD7 N/A N/A N/A N/A N/A

CLN15

(proposed)

TBCK N/A N/A N/A N/A N/A

M1, primary motor cortex; S1BF, somatosensory cortex barrel field; V1, primary visual cortex; VPM/VPL, medial and lateral ventral posterior nuclei; LGNd, dorsal lateral geniculate

nucleus; MGN, medical geniculate; MD, mediodorsal nucleus; CM, central medial thalamic nucleus; Rt, reticular nucleus of thalamus; SC, superior colliculus; GFAP, glial fibrillary

associated protein; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; MAG, myelin-associate glycoprotein; PLP, proteolipid protein.

early and is pronounced in thalamocortical pathways where
considerable subsequent neuron loss occurs (reviewed in 26,
see individual references in Table 1). This is in contrast to
many other neuropathic LSDs such as mucopolysaccharidosis
(MPS), in which astrogliosis tends to be more generalized across
the CNS throughout disease progression (63, 64). Interestingly,
the extent of GFAP reactivity and morphological alteration in
astrocytes varies across the NCLs. For example, hypertrophy
of astrocyte cell bodies and processes and GFAP upregulation
in Cln3−/− mice appears to be more subtle or perhaps
attenuated compared to astrocytes observed in Ppt1−/− mice
(14), implying that CLN1 and CLN3 diseases differ in the
extent to which astrocytes are intrinsically dysfunctional and/or
respond to extracellular stimuli. These differences in astrogliosis
in CLN1 and CLN3 diseases are also recapitulated by in vitro
experiments using primary astrocytes derived from the relevant
mouse models; Ppt1−/− astrocytes exhibit a more activated
morphology and higher expression levels of GFAP, and enhanced
secretion of cytokine and chemokine compared with the wild-
type astrocytes (65). In contrast, Cln3−/− astrocytes showed
attenuated changes in morphology and GFAP expression in
response to pharmacological stimulation with reduced secretion
of a range of neuroprotective factors, mitogens, cytokines, and
chemokines (66). It will therefore be important to further
investigate the nature of astrocytic dysfunction using similar
tissue culture methods for other forms of NCL such as
CLN2 disease.

Recently, it has been demonstrated that GFAP
depalmitoylation is regulated by PPT1, and blocking
palmitoylation by the unique palmitoylated residue in
GFAP attenuates both astrogliosis and the concurrent
neurodegenerative pathology in CLN1 mice (67). This is the
first evidence suggesting that loss of NCL proteins in astrocytes
directly impacts an intrinsic astrocyte response rather than
“reactive astrogliosis” occurring solely in response to ongoing
neuronal damage. However, these findings appear somewhat
contradictory to previous evidence showing that prevention of

GFAP upregulation by knocking out both GFAP and Vimentin
in Ppt1−/− mice (Gfap−/−; Vimentin−/−; Ppt1−/−) exacerbates
disease pathology, which had been interpreted as evidence for
a protective role of GFAP upregulation in CLN1 disease (68).
Not only do such findings imply multi-dimensional roles of
astrogliosis, which will be discussed shortly, but also potentially
different pathological impacts depending on NCL subtype,
affected brain regions and staging of disease progression.

Recent efforts have focused on gene expression profiling of
activated astrocytes both in vitro and in vivo to decipher their
functional properties in the context of neurodegeneration. The
paradigm of neurotoxic “A1” astrocytes and neuroprotective
“A2” astrocytes is now a generally recognized concept (62, 69).
Astrocytes resembling “A1” or neurotoxic status have been
reported in more common neurodegenerative diseases
such as Alzheimer’s disease (AD) (70), amyotrophic lateral
sclerosis (ALS) (71), and Parkinson’s disease (72). Similarly,
the pronounced typical A1-specific molecular signature
has been recently reported in the forebrains of Ppt1−/−

mice (73), suggesting a neurotoxic function of astrocytes
in CLN1 disease. However, caution is needed in using the
current A1/A2 classifications to interpret pathological roles
of astrocytes, because such a binary A1/A2 paradigm may be
an oversimplification of potentially more wide-ranging and
heterogeneous states of astrogliosis (74). Indeed, the recent
RNA sequencing data of Tpp1−/− mice have shown changes
in the expression of a restricted subset of A1- or A2-specific
genes, which does not match the typical A1/A2 classification
(75). A lack of clear A1/A2 signature has also been reported in
other diseases including Huntington disease (76), highlighting
that astrocyte heterogeneity may convolute A1/A2 boundaries.
Nevertheless, there is a potential that these widely accepted
A1/A2 markers can still be useful for both investigating
the pathological contribution of astrogliosis, comparing
astrocyte phenotypes in the NCLs to other neurodegenerative
conditions and assessing the efficacy of therapeutic approaches
for NCLs.
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Astrocytes also exert pathological influences on neuronal
health through multiple non-inflammatory functions such as
neurotransmitter recycling, ion buffering, and the release of
growth factors (77, 78). In addition, the role of phagocytosis by
astrocytes in synaptic connectivity is now in the spotlight but
has been relatively understudied in neurodegenerative diseases
(79). Considering their close relationship with lysosomal calcium
signaling and lysosomal exocytosis, it is plausibly speculated
that the loss of NCL proteins could affect many of these non-
inflammatory functions of astrocytes. Impaired calcium signaling
in primary astrocytes derived from Ppt1−/− and Cln3−/− mice
has been documented (65, 66). Therefore, it will be important to
decipher the molecular bases of possibly more diverse forms of
astrocytic dysfunction in the NCLs rather than solely focusing
on astrogliosis to better understand the pathological role of
astrocytes in NCL pathogenesis.

Microglia
Microglia, the CNS tissue resident macrophage population,
also become “activated” or “reactive” by changing their
gene expression, morphology, motility, migration, metabolism,
secretome, phagocytosis, proliferation, and death in response
to CNS pathology (61). Microglial-astrocyte crosstalk via the
release of diverse signaling molecules is particularly thought to
mediate neurodegeneration (80), with recent studies suggesting
that neurotoxic A1 astrocytes are triggered by fragmented
mitochondria released from microglia to propagate and trigger
neuronal death (81, 82).

Classically, immunoreactivity of several molecular markers
including CD68, MHC antigen class II, F4/80, and Iba1 have
been widely used to define the activated state of microglia
(83, 84). Longitudinal studies using several of these markers
have confirmed that where examined microglial activation is
invariably present in the CNS of NCL mouse models, and
anatomical distribution and onset of microglial activation largely
overlap those of astrogliosis (Table 1). Although comprehensive
profiling of multiple microglial markers is still underway, data
so far suggest that the nature of microglial activation appears
to be different in each NCL. This subtype-dependent nature of
microglial activation is buttressed by in vitro primary culture
experiments in CLN1 and CLN3 disease; Ppt1−/− microglia
are morphologically more activated with increased secretion
of IL-1β (65), whereas Cln3−/− microglia exhibit attenuated
morphological responses to pharmacological stimulation with
reduced secretion of several chemokines (66). Notably, when
Ppt1−/− astrocytes and microglia were co-cultured, they
appeared to cross-prime one another to exacerbate neuron loss
(65), implicating the involvement of astrocyte-microglia crosstalk
in CLN1 disease pathophysiology.

Recent research has been delineating the complex and
heterogeneous state of activated microglia, a topic that is still
under debate. The classification of pro-inflammatory “M1”
microglia vs. anti-inflammatory “M2” microglia using the
expression of particular cell surface markers and cytokines had
been long recognized (57, 84), despite the validity of such
a classification still being under scrutiny. M1 polarization of
microglia with upregulation of CD16/32 and CD86 has been

reported in Ppt1−/− and Cln3−/− mice, and knocking out of
the inflammation-related cell adhesion molecule sialoadhesin
in those mice attenuated numbers of M1-polarized microglia,
levels of pro-inflammatory cytokines, and altered disease
phenotype (85). However, given criticism that the M1/M2
dichotomy provides an oversimplified perspective (86, 87), a
new pathological classification that incorporates the concept
of disease-associated microglia (DAM) has recently been put
forth (58, 88). DAM are molecularly characterized by the
expression of typical microglial genes such as Iba1, Cst3, and
Hexb, coincident with downregulation of homeostatic microglial
genes including P2ry12, P2ry13, Cx3cr1, CD33, and Tmem119
(89). DAM further display upregulation of genes involved in
lysosomal, phagocytic, and lipid metabolism pathways such as
Apoe, Ctsd, Lpl, Tyrobp, and Trem2, which perhaps makes
the DAM classification particularly pertinent to LSDs. RNA
sequencing data has revealed the existence of both TREM2-
independent and TREM2-dependent DAM in Tpp1−/− mice,
suggesting the pro-inflammatory and neurotoxic role of activated
microglia in CLN2 disease (75, 90). However, the pathological
role of DAM still remains debatable; several recent studies
have shown neuroprotective effects of TREM2-dependent DAM
in mouse models of AD and GRN haploinsufficiency-causing
frontotemporal lobar degeneration (GRN-FTLD) (91, 92),
suggesting the pathological contribution of DAM may well be
disease-dependent. Interestingly, complete deficiency of Grn−/−

is known to cause CLN11 disease (31), suggesting a similar
phenotype may exist in some forms of NCL. Therefore, caution
should be exercised in overinterpreting data for the expression of,
or staining for, DAMmarkers and it will be wise not to solely rely
on such findings when interpreting pathological roles of activated
microglia in NCL pathogenesis in future studies.

The secretion of cytokines and chemokines is of paramount
importance for both astrocytes and microglia to exert pro- and
anti-inflammatory effects on the process of neurodegeneration
(93). The progressive elevation of multiple cytokines and
chemokines has been confirmed by whole transcriptomics and/or
proteomics in the forebrains and cerebella of Tpp1−/− mice
(75, 90) and forebrains and spinal cords of Ppt1−/− mice (68,
94, 95). Such evidence for the region- and subtype-specific nature
of neuroinflammatory changes in CLN1 and CLN2 diseases
correlates with the previously shown region- and subtype-specific
immunoreactivity of astrogliosis and microglial activation
markers. Pharmacological modulation of neuroinflammation is
an emerging therapeutic strategy for neurodegenerative diseases
(96). Until now, only a few anti-inflammatory drugs have
been preclinically tested for NCLs: fingolimod, teriflunomide,
and MW151 in Ppt1−/− mice (97, 98) and ibuprofen and
mycophenolate motefil in Cln3−/− deficient mice (99, 100) and
provide only partial phenotypic rescue. While modulation of
neuroinflammation may provide additional therapeutic benefit,
especially when used in combination with other therapies such
as ERT or gene therapy, these preclinical results suggest that
alteration of central pro-inflammatory cascades in NCL mice
might be a non-specific downstream consequence.

Other non-immune-related properties of microglia also have
a significant impact on neuronal health. Microglial-mediated
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phagocytosis is critical in maintaining CNS homeostasis by
pruning synapses or phagocytizing dysfunctional, dying or
the debris of deceased neurons and other cell types (57,
101). It has been shown that impaired microglial phagocytic
function promotes the development of several neurological
diseases such as Rett syndrome (102) and tuberous sclerosis
complex (103). Since phagocytosis requires focal exocytosis of
lysosomes (104), it is plausible to speculate that lysosomal
dysfunction due to NCL protein deficiency could also impair
phagocytosis in these cells. While there have been several
pieces of evidence from RNA sequencing or proteomics analysis
suggesting altered phagocytosis in the brains of Ppt1−/−

and Tpp1−/− mice (75, 94), microglial-specific alteration of
phagocytosis is yet to be elucidated. A better understanding of
the nature of such dysfunctional phagocytosis by microglia and
its contribution to NCL pathogenesis may therefore inform us of
new therapeutic targets.

Oligodendrocytes and Schwann Cells
Demyelination is another pathological change widely seen in
multiple neurodegenerative diseases. Consistent with recent
evidence suggesting the regulatory roles of lysosomal exocytosis
in myelination, abnormal myelination is commonly seen in
many LSDs including Niemann-Pick disease, Gaucher disease,
metachromatic leukodystrophy, multiple sulfatase deficiency,
and Krabbe disease (105–107). In contrast, pathological evidence
of either dysmyelination or demyelination in the NCLs has been
investigated only in mouse models of CLN1, CLN5, and CLN8
diseases with limited depth of characterization (Table 1). A key
question is whether overt demyelination occurs at all in these
disorders, or whether any changes in myelin composition occur
secondary to loss of axons, as a result of neuron loss. Certainly,
changes in white matter volume are evident in both animal
models and human autopsy specimens (6, 21, 29), but its basis
is poorly understood. Of course, any consideration of myelin
must necessarily include Schwann cells in the peripheral nervous
system (PNS), which serve a similar, but not identical role to
oligodendrocytes in the CNS. However, the pathological impact
of the NCLs upon the PNS is largely underappreciated, but is
currently of renewed interest.

CONTRIBUTION OF GLIA TO NCL
PATHOGENESIS

A key question that remains to be answered is whether or not
the loss of NCL proteins from glial cells confers any direct cell-
autonomous effects on these glial cells themselves and/or non-
cell-autonomous effects on other cell types including neurons
in either a harmful or protective manner. In in vitro studies
using primary astrocytes, neuron-glial co-culture experiments
showed that both Ppt1−/− and Cln3−/− glia are detrimental
to the survival of both wild-type and mutant neurons (65,
66). Such data raise the possibility that mutant astrocytes
and microglia may actively trigger the neurodegenerative
changes seen in CLN1 and CLN3 diseases. Such in vitro
models are a crucial component in unraveling cell-type-specific

contributions to disease pathogenesis and lend themselves to
high throughput screening to detect novel phenotypes and
assess potential therapeutic interventions (108–110). Using
this approach has highlighted disease-modifying pathways in
a number of neurodegenerative diseases that may provide
valuable therapeutic targets. Furthermore, the advent of induced
pluripotent stem cell (iPSC)models allows the close physiological
representation of disease-affected cells on a species-specific
genetic background. iPSC models have only been used to a
limited extent in the NCLs to date and have so far not been used
to generate glial cells despite the availability of well-established
differentiation protocols (111–113). For the NCLs, it will be vital
to further investigate glial phenotypes in vitro and to validate
those findings by generating cell-type-specific mutant mice to
explore these issues in vivo.

Microglial depletion using CSF-1R inhibitors has enabled us
to study the direct effect of microglia on the CNS disease process
in mammalian models (114). With this technique, it has been
shown that microglial depletion in Ppt1−/− mice attenuated
optic nerve pathologies and several behavioral abnormalities
(115). Although such findings might be confounded by the
fact that completely abolishing microglia is likely to negatively
impact CNS homeostasis, such studies still provide a degree
of mechanistic insight into microglial contributions to CLN1
disease progression. Since the effectiveness and safety of some
CSF-1R inhibitors have been proven in humans (114) and as new
andmore specific CSF-1R inhibitors become available, microglial
depletion may be a clinically relevant approach.

The Cre-LoxP system in mice has proved a powerful
tool to investigate the effect of cell-type-specific genetic
mutation on neurodegeneration and applied to a wide range
of diseases including LSDs in vivo. For example, it has been
shown that astrocytic-specific deletion of Sulfatase Modifying
Factor 1 (SUMF1) (Sumf1flox/flox; GFAP-Cre) was sufficient to
induce neuron loss in a mouse model of multiple sulfatase
deficiency (MSD) (116). Also, microglial-specific deletion of
NPC1 (Npc1flox/−; Cx3cr1-Cre) has been shown to enhance
microglial phagocytotic uptake and impaired lipid trafficking,
resulting in impaired myelin turnover in a mouse model of
Niemann-Pick type C (NPC) disease (117), caused by a deficiency
in the NPC1 protein. In contrast, it has also been shown that
astrocytic-specific deletion of NPC1 (Npc1flox/−; GFAP-CreER)
does not cause neurodegeneration, but neuron-specific knockout
(Npc1flox/−; Syn1-Cre) does in the NPC mouse model (118).
Such data suggest that the nature of the glial contribution
to pathogenesis is likely to differ between LSDs. However, no
study has yet investigated the effect of astrocyte-, microglial-, or
oligodendrocyte-specific deletion of NCL genes in vivo has been
reported, indicating that NCL research regarding glial pathology
is admittedly lagging behind other LSDs. Perhaps this is in part
because of the sheer body of work this would entail given the
number of NCL subtypes, as well as the fact that several of the
genes that are deficient in the NCLs are lysosomal enzymes that
are normally secreted and can be taken up by neighboring cells
via a variety of receptor subtypes (42). This process of “cross-
correction” naturally confounds and complicates any attempts
to generate cell-type-specific PPT1 or TPP-1 deficient mice.
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However, recent work in creating chimeric “tethered” versions
of enzymes might indeed enable the creation of conditional
cell-type-specific models (119).

CONCLUSIONS AND FUTURE
DIRECTIONS

Our relatively poor understanding of the pathomechanisms that
operate in the NCLs has certainly hampered the generation
of more effective therapeutic strategies. Until recently, glial
cells across various neurodegenerative diseases have often been
considered as poorly defined passive structural elements. The
underappreciated consideration of glial involvement in the
NCLs is no exception, which is perhaps reflected by the re-
naming of these disorders in the 1960s as “neuronal ceroid
lipofuscinoses” (120) to distinguish them from other childhood
encephalopathies. The rapidly expanding body of research into
normal glial biology and their responses to disease has facilitated
a reassessment that glia are not just passive bystanders of
pathology in the CNS, but instead are active determinants
of neurodegeneration. As summarized in this review, there is
substantial evidence suggesting such glial involvement in NCL
pathophysiology, and changes in glial activation are frequently
used to evaluate therapeutic efficacy in preclinical studies (4,
11, 15, 23, 26, 34, 43–47, 97). Of necessity, this review focusses
primarily upon the three most common forms of NCL, CLN1
disease, CLN2 disease and CLN3 disease, in which the issue
of glial contribution to pathogenesis has been considered.
Nevertheless, as detailed in Table 1, glial activation is present
in all forms of NCL and is consistently present before neuron
loss occurs. As such, we might anticipate that glia may also
be involved in the pathogenesis of these other forms of NCL.
However, given the pronounced difference between even CLN1,
CLN2 and CLN3 disease that are discussed in this review, it
could be expected that the extent and nature of glial involvement
may also vary markedly between types of NCL. Nevertheless,
although the glial contribution to disease progression has been
intensively studied in other neurodegenerative diseases, relatively
little is known about whether glia contribute mechanistically
to the profoundly neurodegenerative phenotype of most forms
of NCL.

There are several remaining issues that still need addressing
in order to clarify the contribution of glial pathology in
the NCLs. First, all of the many of subcellular alterations
known to be associated with NCLs and other LSDs such
as impaired autophagy, lysosomal trafficking, and alterations
in the mTOR and TFEB signaling pathways have primarily
been studied in neurons or fibroblasts, but not specifically in
glial cells of any variety (27, 104, 121–126). Indeed, there is
considerable potential that studying these pathways in NCL
glia will yield valuable mechanistic information about cell-type-
specific impacts of disease-causingmutations. Second, while NCL
research has predominantly relied on mouse models, recent
evidence has suggested species-dependent differences in the
functional properties of astrocytes, questioning the translational
relevance of information mouse astrocytes (127). As this issue
almost certainly applies to microglia and oligodendrocytes as

well, the implementation of glia differentiated from human
NCL-patient-derived iPSCs is likely to be of considerable
benefit (113). Third, as already discussed, studying the cell-
autonomous effects of soluble enzyme deficiency in vivo is
hampered by “cross-correction,” a phenomenon via which
mannose 6-phosphate receptor-mediated endocytosis facilitates
extracellularly delivered lysosomal enzymes to be taken up by
recipient cells. As a previous example of the way to overcome this
challenge, the chimeric GALC enzyme tethered to the lysosomal
membrane has been engineered in the Krabbe disease mouse
model so the cell-autonomous effect of oligodendrocyte-specific
GALC deficiency could be studied (119). It will be important to
extend such methodology to PPT1 and TPP1 in order to address
the cellular autonomy of CLN1 and CLN2 diseases, respectively.

Modern “omics technologies have greatly contributed to a
better understanding of the complex physiological nature of
glial pathologies in the NCLs and other LSDs (128, 129). RNA
sequencing has been widely used in the field of NCLs now that
its cost is substantially reduced, but there are a number of caveats
concerning the validity of RNA sequencing results. For example,
RNA sequencing of a bulk tissue cannot distinguish molecular
events in different cell types. As such distinct molecular changes
that occur in specific glial cell populations such as microglia and
oligodendrocytes, which comprise a relatively small proportion
of the total cells present in these samples, might be masked. The
application of the single-cell or single-nucleus RNA sequencing
technology can theoretically overcome this issue (101), and is
likely to reveal new insights into the broad range of effects upon
glia in the NCLs. Another issue, which is perhaps unique in
LSD research, is that lysosomal proteins play a crucial role in
post-translational modification and intracellular trafficking (104,
130), which transcriptomics analyses cannot address. Proteomics
analysis instead is more suitable in this case, but again,
proteomic data obtained from bulk tissue cannot distinguish
between different cell types. Most recently, single-cell proteomics
technologies have been invented (131), and it may be predicted
that this approach will be widely used to study glial biology in
near future.

Notably, glia also exist outside the CNS in different forms
depending on the anatomical region. Schwann cells are the
myelinating cells in the peripheral nervous system (PNS) and
are involved in maintaining ionic balance and providing support
to axons (132). There are also non-myelinating Schwann cells
called terminal Schwann cells, residing at the neuromuscular
junction (133). Satellite glial cells are found in peripheral ganglia
and potentially have similar functions to astrocytes in the
CNS (134). There is also a unique population of astrocyte-
like cells called enteric glial cells, involved in the regulation of
the intestinal epithelial barrier and in regulating the function
of neurons within the enteric nervous system (ENS) (135).
Given the accumulated evidence for glial abnormalities across
multiple forms of NCL, it will be important to investigate the
impact of disease upon these “non-CNS glial cells” that are key
components of the PNS and ENS. Thesemay represent important
cellular targets to obtain better therapeutic outcomes in patients
with NCLs.

To conclude, much like the different types of musicians
in a band that need to coordinate together with its singer
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to produce harmonious music, different glial cells provide
coordinated support for neuronal health. As in a band it only
takes one member to perform sub-optimally for the music to
be compromised, and it is very likely that the dysfunction
of any one type (or types) of glia similarly contribute to
neurodegeneration. With recent technical advances, we are now
entering an exciting time for expanding our knowledge of glial
dysfunction and its contribution to the pathogenesis of the
NCLs. This knowledge will almost certainly help us design more
effective and appropriately targeted therapeutic strategies for
these disorders.
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