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There is increasing evidence suggesting that Epstein-Barr virus infection is a causative

factor of multiple sclerosis (MS). Epstein-Barr virus (EBV) is a human herpesvirus, Human

Gammaherpesvirus 4. EBV infection shows two peaks: firstly, during early childhood

and, secondly during the teenage years. Approximately, 90–95% of adults have been

infected with EBV and for many this will have been a subclinical event. EBV infection can

be associated with significant morbidity and mortality; for example, primary infection in

older children or adults is the leading cause of infectious mononucleosis (IM). A disrupted

immune response either iatrogenically induced or through genetic defects can result

in lymphoproliferative disease. Finally, EBV is oncogenic and is associated with several

malignancies. For these reasons, vaccination to prevent the damaging aspects of EBV

infection is an attractive intervention. No EBV vaccines have been licensed and the

prophylactic vaccine furthest along in clinical trials contains the major virus glycoprotein

gp350. In a phase 2 study, the vaccine reduced the rate of IM by 78% but did not prevent

EBV infection. An EBV vaccine to prevent IM in adolescence or young adulthood is

the most likely population-based vaccine strategy to be tested and adopted. National

registry studies will need to be done to track the incidence of MS in EBV-vaccinated

and unvaccinated people to see an effect of the vaccine on MS. Assessment of vaccine

efficacy with MS being a delayed consequence of EBV infection with the average age of

onset being approximately 30 years of age represents multiple challenges.
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INTRODUCTION

Epstein-Barr virus (EBV) is a human herpesvirus, Human Gammaherpesvirus 4 (1) first isolated
during the early 1960s (2). Human herpesviruses have a common structure comprising double-
stranded DNA contained within an icosahedral nucleocapsid which is surrounded by a tegument
and a host cell-derived outer membrane containing virus glycoproteins. The EBV genome is
approximately 170 kilobases long and expresses over 80 different proteins (3–5). These include
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TABLE 1 | EBV proteins and associated antibodies commonly used as infection

markers and in investigations of associations with multiple sclerosisa.

EBV protein Function Corresponding antibody

Virus Capsid

(VCA)

A lytic phase protein which

is a complex comprising

major, minor and smallest

capsid proteins. Structural

proteins which encapsidate

the virus genome (11).

VCA IgM is a marker of

acute infection. Initial

detection of VCA IgG

corresponds also with acute

infection; however, following

seroconversion VCA IgG

usually remains detectable

for life (10–14).

Early Antigen

(EA)

Protein complexes

produced early in the lytic

cycle. Two forms identified

based on characteristic

immunofluorescence

patterns. Early antigen

diffuse (EA-D) and Early

antigen restricted (EA-R).

Essential for viral DNA

polymerase activity.

EA IgG responses vary with

different populations limiting

its utility as a general marker

of acute infection. High

levels of EA-R IgG are

associated with Burkitt

lymphoma and high levels of

EA-D IgG with

nasopharyngeal carcinoma.

Seropositivity in general

populations is approximately

20–30% (10, 14).

Nuclear Antigen 1

(EBNA1)

A DNA binding protein,

expressed in virus infected

cells, that is produced

during latency. It is essential

for the persistence and

replication of the viral

genome (5, 7, 9, 11).

EBNA1 IgG is present in

convalescent or past

infection; however, a few

individuals fail to produce

this antibody following

infection. Higher levels

compared to controls are

associated with multiple

sclerosis (10–14).

Nuclear Antigen 2

(EBNA2)

Forms complex with

DNA-binding cellular

transcription factors.

Activates viral and cellular

promoters as heterodimer.

Promotes cell proliferation

(5, 7, 9, 11).

EBNA2 IgG has a limited

role in EBV diagnosis as it

appears earlier than EBNA1

IgG and is present in healthy

controls. High levels are

reported to be strongly

associated with an

increased risk of

development of multiple

sclerosis (10, 11, 13).

aNumbers in parentheses list relevant references.

several viral glycoproteins present on the surface of the virus,
including gp350, gH, gL, and gp42 which are important for
the attachment and fusion of the virus to the cell and are
the targets of prophylactic vaccines (6). EBV is adapted to
maintain a long-term existence with the human host as a
result of highly effective virus mechanisms capable of evading
the human immune response (7, 8). Latency (9) is established
following the virus expression of several proteins including the
EBV nuclear antigens (EBNAs 1, 2, 3, LP) and latent membrane
proteins (LMPs). Antibodies to some of these latent proteins (10),
especially EBNA1 have been implicated in the pathogenesis ofMS
(Table 1).

EBV infection typically occurs during early childhood and
in the great majority of young children it is asymptomatic
or subclinical; however, in older children and adults EBV
infection is a major cause of infectious mononucleosis (12,

13). The most frequent signs and symptoms of infectious
mononucleosis (IM) in young adults are sore throat (95–
98%), cervical lymphadenopathy (80–88%), and fatigue (70–
78%) of variable duration (median 15 days). The reported
rates of presentation of IM following primary EBV infection in
young adults are variable e.g. 25–74% (12, 13). Other frequent
symptoms of IM include fever, headache, loss of appetite,
myalgia and upper respiratory tract symptoms and rarer clinical
findings include abdominal pain, hepatomegaly, splenomegaly,
nausea, and vomiting (12, 13). In cases when the immune
system is compromised, severe EBV-mediated disease may occur
such as post-transplant lymphoproliferative disorders following
immunosuppression (15). Chronic active EBV infection is a
rare lymphoproliferative disease associated with high morbidity
and mortality in which an ineffective T-cell response enables
the clonal proliferation of infected cells in patients without
an apparent immune defect (14). Defective immune responses
due to inherited genetic conditions may also result in failure
to contain EBV replication such as occurs with X-linked
lymphoproliferative syndrome (16). EBV is an oncogenic virus,
and it is associated with the development of several lymphomas
and carcinomas (17). Finally, EBV infection is associated with the
development of several autoimmune diseases (11).

EBV is frequently shed in oral fluid (18) and transfer
of the virus via sharing saliva is the main route of virus
transmission. EBV can also be transmitted via sexual activity
and transplantation (12, 19). Epithelial cells and B-lymphocytes
are the primary sites of infection (20). Latency is established in
memory B cells and the expression of latent proteins are key for
immune avoidance and persistence of the virus within the host
(7, 9, 21).

In England and Wales, EBV seroprevalence studies
show two peaks of infection in children less than 5
years old (seroprevalence of 35% in 1–4 year-olds) and
in young adults (seroprevalence of 72% in 15–19 year-
olds) (22). Significant disparities exist with the age of
acquisition of infection with a trend toward older children
experiencing infection in certain population groups and
geographical regions (23). EBV infection occurs worldwide
with 90–95% of adults having serological evidence of EBV
infection (24).

MULTIPLE SCLEROSIS

MS is the most common chronic inflammatory demyelinating
disease of the central nervous system (CNS), affecting at least 2.5
million people worldwide. It is one of the most frequent causes of
disability in young adults (25).

The etiology of MS remains unknown, however, EBV may be
causally related (26).The pathogenesis of MS is thought to be
mediated by the immune system. Evidence for immune-mediated
mechanisms (27) comes from the pathology of disease (28),
the contribution of genes of the immune response to disease
susceptibility (29), experimental observations in relevant animal
models (30), and from the efficacy of immunotherapies in those
affected by MS (31).
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TABLE 2 | Epstein-Barr virus prophylactic vaccine clinical trials: past and presenta.

Vaccine Manufacturer Clinical trial/publication Outcome

Recombinant gp350 GlaxoSmithKline Biologicals,

Rixensart, Belgium

Phase 1 and phase 2

studies to evaluate safety and immunogenicity

of a recombinant gp350 EBV vaccine in healthy

adults

(58)

Phase 1 (59 subjects evaluated). One severe

adverse event. Phase 1 and 2 studies (79

subjects evaluated). One severe adverse event.

Recombinant gp350

and ASO4 adjuvant

system

GlaxoSmithKline Biologicals,

Rixensart, Belgium

Recombinant gp350 vaccine for infectious

mononucleosis: a phase 2, randomized,

double-blind, placebo-controlled trial to

evaluate the safety, immunogenicity, and

efficacy of an EBV vaccine in healthy young

adults.

(59)

A total of 178 EBV seronegative subjects were

evaluated. No subject discontinued medication

for reasons of safety or reactogenicity. In an

intention to treat analysis, IM cases were

distributed as follows: 9 cases (1 probable and

8 definite) were found in the placebo group and

2 cases (both definite) were found in the

vaccine group (p = 0.03; α = 0.05, by 1-sided

Fisher’s exact test).

CD8+ T-cell synthetic

peptide HLA

B*0801-restricted

epitope and tetanus

toxoid vaccine

Queensland Institute of

Medical Research, Australia

Phase 1 trial of a CD8+ T-cell peptide

epitope-based vaccine for infectious

mononucleosis.

(60)

A total of 14 subjects were evaluated. No

serious adverse events were reported. Trial too

small to estimate vaccine efficacy. Vaccine

immunogenic in most individuals.

mRNA-1189 Moderna TX, Inc. A phase 1, randomized, observer-blind,

placebo-controlled, dose-ranging study of an

EBV candidate vaccine, mRNA-1189, in 18- to

30-year-old healthy adults.

Trial ongoing. Estimated completion date June

2023. NCT05164094

Main outcome is to evaluate the safety and

reactogenicity of mRNA-1189 in 18- to

30-year-old healthy adults. Secondary outcome

is to evaluate vaccine immunogenicity.

EBV gp350-Ferritin

nanoparticle vaccine

adjuvanted with Matrix

M1

National Institute of Allergy

and Infectious Diseases,

USA

A phase 1 study of the safety and

immunogenicity of an EBV gp350-Ferritin

nanoparticle vaccine in healthy adults with or

without EBV infection.

Trial ongoing. Estimated completion date July

2025. NCT04645147

Main outcome is to evaluate the safety and

reactogenicity of gp350-Ferritin nanoparticle

vaccine in 18- to 29-year-old healthy adults.

aNumbers in parentheses list relevant references.

MS lesions are characterized by loss of CNS myelin, axonal
damage, activated microglia, and inflammatory infiltrates of
peripheral immune cells including T and B lymphocytes and
plasma cells (32), as well as gliosis inmore advanced disease. Both
white matter and gray matter myelin are affected in the brain and
spinal cord. The pathology ofMS in its different stages is reviewed
in detail elsewhere (33).

Over 200 gene polymorphisms contribute to MS susceptibility
(34). The strongest association is with genes of the immune
response, primarily certain class I and II alleles of the human
leucocyte antigen / major histocompatibility complex (29).
Alleles of the HLA-DRB1 locus confer a higher risk of MS
and interact with environmental factors known to influence
susceptibility such as smoking and solvent exposure, EBV
infection (35), childhood and adolescent obesity (36) and low
vitamin D levels (37). Other non-HLA genes of the immune
response have a more modest effect (34).

Environmental factors, both infectious and non-infectious,
influence the risk of developing MS by interacting with the
genetic variation that predisposes to autoimmune responses (38,
39). The incidence and prevalence of MS vary geographically,
with the prevalence increasing with geographic latitude. A
number of studies have found an inverse relationship between

sun exposure, ultraviolet radiation exposure, or serum vitamin
D levels, and the prevalence of MS (40). Smoking increases the
risk of developing MS and may also be a risk factor for disease
progression (41).

Among infectious factors, viral infections have been reported
to be associated with MS, particularly when they occur in
adolescence. Evidence for the role of EBV infection in the
development of MS is compelling to the extent that it is now
considered a putative causative agent (see below).

Understanding the factors that set off MS can potentially
enable prevention. Lifestyle and environmental factors can be
subject to possible interventions, in particular in individuals at
risk for developing MS, such as relatives of people with MS.
EBV infection is an MS trigger (26) and preventing it could
prevent MS.

Epidemiology of EBV in Relation to MS
A link between EBV infection and MS was first suspected over
40 years ago based on the similarity between the epidemiology
of MS and infectious mononucleosis (IM), which is a common
manifestation of primary EBV infection occurring during
adolescence or later in life (42). Further support for this
hypothesis came from the observation that individuals with a
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history of IM are 2–3-fold more likely to develop MS than
individuals with asymptomatic EBV infection (43–45). This
association could be explained by confounding by hygiene – a
proposition known as the “hygiene hypothesis”: IM is a marker
of a high level of hygiene during childhood, which predisposes
to MS by priming the immune system toward pro-inflammatory
responses (46). Such a hypothesis could be tested by determining
the MS risk in young adults who are EBV negative. Since EBV
negativity is a reliable marker of a hygienic upbringing, if high
levels of hygiene were causally related to MS, these individuals
should have an increased MS risk. Paradoxically, the results
of several cross-sectional studies have suggested that not only
do individuals with high levels of hygiene have a greater risk
of MS, but, as long as they remain EBV negative, they have
a markedly lower risk than EBV infected individuals (44, 47).
Similar results were obtained in pediatric MS (48, 49). These
findings, together with evidence from several longitudinal studies
that circulating IgG antibody titres to EBNA1 give a robust
prediction of future MS risk (50–54), suggest that EBV plays
a direct causal role in MS. Alternative explanations, however,
remain possible. On one hand, the low risk ofMS in EBV negative
individuals has been inferred from case-control studies that
included individuals recruited several years after MS diagnosis
– by design, these studies could not exclude the possibility that
EBV infection occurred soon after MS. On the other, it has
been argued that higher anti-EBNA1 titres could result from
an immune dysregulation preceding the onset of neurological
symptoms of MS.

Only recently have these alternative explanations been refuted
and compelling evidence has been provided that EBV causes
MS. This demonstration relied on the longitudinal investigation
of a cohort comprising over 10 million young adults (26). At
the time of recruitment, about 5% of these individuals were
EBV seronegative, thus providing a unique setting to investigate
the temporal relation between EBV infection and MS risk.
The results were striking – MS risk remained close to zero in
EBV negative individuals but increased 32-fold after infection
with EBV. In contrast, no increase in MS risk was found
after infection with cytomegalovirus, which, like EBV, is mostly
transmitted by saliva. Further, serum levels of neurofilament light
chain (NfL), a sensitive, albeit not disease-specific, biomarker of
neuroaxonal degeneration, were used to examine the temporal
relation between EBV infection and the beginning of the putative
pathological process leading to MS. Serum NfL levels increased
up to 6 years before the clinical onset of MS and can thus
be used as a marker of the time of potential disease initiation
(26). Serum NfL levels in individuals who went on to develop
MS were similar to those of individuals who remained healthy
before and around the time of EBV seroconversion but increased
after EBV seroconversion. This finding demonstrates that EBV
infection precedes the earliest sign of the probable pathological
process leading toMS. In the same investigation, the concern that
non-specific immune dysregulation could explain the association
between EBV, and MS was further examined by conducting
a comprehensive agnostic search of the anti-virome antibody
response using VirScan, a phage-based immunoprecipitation
and sequencing technology (55). This search, conducted using

pre- and post-onset serum samples from 30MS cases and
30 closely matched controls, revealed that only EBV-derived
peptides elicited stronger responses in MS cases than controls.

The biological plausibility (56), temporal sequence, and
particularly the strength of the EBV-MS association, which
virtually exclude confounding by any known or hypothetical risk
factor, support the conclusion that EBV is the leading cause of
MS (57).

Current Status of EBV Vaccines
Two types of EBV vaccines are under development; a
prophylactic vaccine to prevent infection or disease, and
a therapeutic vaccine to treat persons with EBV-associated
cancers (Table 2). The prophylactic vaccine furthest along in
clinical trials contains the major viral glycoprotein gp350
(58), which is important for virus attachment to B cells, in
alum/monophosphoryl lipid A adjuvant. In a phase 2 study
the vaccine reduced the rate of infectious mononucleosis by
78% but did not prevent EBV infection (59). A phase 1 study
of an EBV peptide, derived from EBNA3A, in tetanus toxoid
and oil and water emulsion, showed a trend in reduction of
infectious mononucleosis (60). More recently, several other
vaccines have been tested in small animal models and some
in non-human primates. These vaccines contain gp350 or
other viral glycoproteins including gH/gL and/or gB, which are
required for fusion of the virus to B cells and epithelial cells,
and gp42, which is essential for the virus to fuse to B cells.
Vaccine formats have included display of gp350 or gH/gL/gp42
on ferritin nanoparticles in Sigma Adjuvant System (61, 62),
trimeric recombinant gB and gH/gL in alum and CpG (63),
Newcastle disease virus-like particles with gp350, gH/gL/gp42
or gB in alum/monophosphoryl lipid A (64), and EBV virus-
like particles deleted for certain EBV latent and lytic genes
(65). Vaccination of small animals with each of these vaccines
induced EBV neutralizing antibodies to B cells and/or epithelial
cells, and antibodies elicited by some of these vaccines inhibited
EBV-mediated glycoprotein fusion to B cells and epithelial
cells. In January 2022, Moderna initiated a clinical trial of
an mRNA vaccine containing EBV gp350, gH/gL, and gp42
[clinicaltrials.gov NCT05164094 (66)]. A clinical trial of a gp350
ferritin nanoparticle vaccine in Matrix-M1 began in 2022 at the
NIH [clinicaltrails.gov NCT04645147 (67)]. While the ultimate
goal of a prophylactic vaccine would be to prevent infection with
the virus, the vaccine might not completely block infection but
instead, reduce EBV associated diseases including malignancies
and autoimmune diseases associated with the virus.

To prevent the development of EBV-associated diseases,
vaccines designed to also harness T cell responses to the viral
proteins could be employed to generate antiviral T cells alongside
the neutralizing antibodies. T cells that target EBV structural
proteins that are delivered into the cells as pre-formed virion
components could eradicate the newly infected cells before they
express growth transforming viral latency proteins; thus, such
vaccines might prevent the establishment of a permanent latent
infection. Indeed, T cells have been identified that recognize
epitopes from structural proteins in newly infected B cells,
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including gp350, gH, gL and gB (68) as well as tegument and
capsid proteins (68, 69).

Importantly, therapeutic vaccine strategies can also be
employed to treat individuals with EBV-associated diseases by
boosting the existing antiviral T cell responses or even inducing
novel antiviral responses. The advantage to such strategies is
their exquisite tumor-specificity that allows the cancer to be
targeted with minimal risk to normal tissue. In such trials, EBV
proteins expressed in latently infected tumor cells such as EBV
nuclear antigens (EBNAs) or latent membrane proteins (LMPs)
have been used as vaccine targets. The initial therapeutic vaccine
trials in nasopharyngeal carcinoma (NPC) patients employed
autologous monocyte-derived dendritic cells (DCs) loaded with
LMP2 CD8+ T cell epitope peptides. The first trial showed
that 9 out of 18 vaccinated patients exhibited an increase in
circulating LMP2-specific T cells, of whom 2 had partial clinical
responses (70); similarly, the second trial showed increased
circulating LMP2-specific T cells in 7 out of 16 vaccinated
patients but no clinical responses (71). Importantly, these trials
only used a limited number of pre-defined LMP2 CD8+ T
cell epitopes, so to expand the range of T cell specificities an
alternative approach using autologous DCs transduced with an
adenovirus expressing truncated LMP1 and full-length LMP2
was employed. However, patients on this trial had been heavily
pre-treated with cytotoxic chemotherapy and no expansions in
T cell responses were observed, yet out of 12 patients, one
partial clinical response and two instances of stable disease
were achieved (72). Since these DC-based vaccination trials
were initiated, non-cell based therapeutic vaccines have been
developed that employ recombinant viral vectors expressing
EBNA1, LMP1 and/or LMP2 and have undergone clinical trials
in NPC patients. An initial phase 1 trial using an adenoviral
vector expressing LMP2 induced a dose-dependent increase in
the number of LMP2-specific CD3+ CD4+ T cells (73). In phase
1 trials of a modified vaccinia Ankara (MVA) virus expressing the
carboxyl terminus of EBNA1 fused to full-length LMP2 designed
to induce both CD4+ and CD8+ T cell responses respectively, a
two-fold increase in the T cell response to one or both of the EBV
proteins was observed in NPC patients from Hong Kong (74)
and the UK (75). Furthermore, the vaccination boosted a broad
range of CD4+ and CD8+ T cell responses against EBNA1 and
LMP2. Since portions of EBNA1 have been reported to mimic
cellular proteins resulting in cross-reacting antibodies that could
affect the nervous system (76), these portions of EBNA1 might
be deleted from a vaccine to reduce the risk of inducing an
immune response to these cellular proteins. To summarize, while
therapeutic vaccines have had modest clinical activity, relatively
few studies have been performed and many of the patients had
previously received cytotoxic chemotherapy which would likely
impair their response to vaccines.

Potential Benefits of EBV Vaccines in the
Prevention of MS
EBV is not only causally linked to MS, but is considered to
play a potentially causal role in other autoimmune disease such
as systemic lupus erythematosus (SLE) (77) and is associated

with several malignancies including nasopharyngeal carcinoma,
gastric carcinoma, and Burkitt, Hodgkin, and other lymphomas
(78). EBV’s oncogenic potential has resulted in an emphasis
on developing vaccines that induce sterilizing immunity with
the objective of preventing EBV infection (79, 80). However,
it is debatable whether sterilizing immunity is necessary for
preventingMS. EBV-associated infectious mononucleosis (IM) is
a stronger risk factor than asymptomatic EBV infection for MS
(43, 81, 82). High titres of anti-EBNA EBV antibodies at least in
part represent a risk factor different from IM (83). High antibody
titres to EBNA1 are associated with a greater MS risk and may
indicate an inability to control EBV viral loads. This may be
due to the MS-associated HLA DR15 haplotype, which may be
associated with reduced control of EBV. In a humanized mouse
model of EBV infection, theMS-associated HLADR15 haplotype
was associated with higher EBV viral loads (84). Therefore, non-
sterilizing immunity from a vaccine that protects against IM and
reduces immune responses to EBNA1, but not EBV infection,
may be sufficient to reduce the incidence of MS and other
autoimmune diseases.

CONCLUSIONS

An EBV vaccine to prevent IM in adolescence or young
adulthood is the most likely population-based vaccine strategy
to be tested and adopted. Based on the recent experience
with COVID-19 vaccines the general population is likely to
be risk-averse when it comes to the potential uptake of a
new EBV vaccine (85). Therefore, it is likely that an EBV
vaccine will be targeted at 12–13-year-olds, piggybacking on
the HPV vaccine program. Although seroprevalence rates vary,
over 50% of children in the general population will have already
seroconverted by the age of 5 (86). This is arguably why an EBV
vaccine will have to target a younger age group, e.g., 2–3 years
of age before children are exposed to much horizontal transfer of
EBV. For vertical transmission, i.e., mother-to-child transmission
that occurs in lower-income environments, vaccination may
have to occur even earlier. This is relevant for using an EBV
vaccine to prevent some cancers such as Burkitt lymphoma and
nasopharyngeal cancer.

Once a population-based primary EBV vaccination has been
adopted, national registry studies will need to be done to track the
incidence of MS, other autoimmune disease and EBV-associated
lymphomas and cancers in EBV-vaccinated and unvaccinated
people to see a delayed effect of the vaccine. With MS being a
delayed consequence of EBV infection with the average age of
onset being approximately 30 years of age this study will take a
decade or more to deliver an answer.

In high-prevalence countries where MS has an annual
incidence of 7.5 per 100,000 person-years, for a vaccine to
reduce the incidence by two-thirds, preliminary estimates are
that over 500,000 subjects would be needed (87). A registry of
vaccinated individuals could be used for a matched cohort study,
in which the exposure is EBV vaccination, and the outcome is
MS. A two-sided test of whether the hazard ratio is one with
an overall sample size of 512,138 subjects (of which 256,069 are
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in the control group and 256,069 are in the treatment group)
achieves 80% power at a 0.05 significance level when the hazard
ratio is actually 0.33 (a 67% reduction). The number of events
required to achieve this power is 25.5. It is anticipated that
proportions of subjects having the event during the study is
0.000075 for the control group and 0.00002475 for the vaccine
group (rate 1/3 of the 7.5 per 100,000 incidence). These results
assume that the hazard ratio is constant throughout the study
and that Cox proportional hazards regression is used to analyze
the data.

Targeting EBV-negative older people at high risk of gettingMS
would potentially be quicker. However, making it through the
early lifespan and not being infected may enrich for a selection
bias that reduces the incidence. By being older the lag time to
expected to MS development is shorter. While the duration of
the study might be shortened, the sample size to establish the
reduced incidence would remain essentially at 500,000 and since
80 to 95% of individuals are EBV-positive by age 20, the amount
of screening necessary would involve over 3 million subjects to
obtain the eligible randomized cohort assuming 100% consent to
enroll. One proposal is to recruit first and second-degree relatives
of people who have MS as these people will be more likely to
volunteer for the study. As with the general population study
above, the majority of older relatives >16 years of age would
have already been infected with EBV and those destined to get
MS may already have subclinical disease. However, just as older
and immunosuppressed people benefit from the VZV vaccine in
preventing shingles, EBV-seropositive people may benefit from
the EBV vaccine as well.

Immunological data suggest that people with MS have a
problem controlling EBV and have elevated antibody titres
against EBNA1 (52). They have more EBNA1 reactive CD4+
T-cells (88), which respond to a larger repertoire of epitopes
distributed across the EBNA1 protein (88). In comparison, T-
cells from healthy controls only react to the immunodominant
portion of the protein (89). It has also been shown that the
poor control of EBV in persons with MS is due to cytotoxic
CD8+ T-cells being exhausted and poorly responsive to EBV
(90, 91). This is the rationale for the use of autologous and
HLA-restricted allogeneic CTLs as a treatment for MS (92, 93).

It is, therefore, possible that an EBV vaccine may stimulate
immunity to overcome this T-cell exhaustion and reduce the
chances of someone developing MS by improved control of
EBV. Therefore, there is a strong argument to vaccinate all-
comers. In reality, a study of older EBV seronegative high-risk
individuals is not feasible. Based on vaccinating all-comers with
an assumption that the familial incidence of MS is 300 per
100,000, for 90% power and a 3-fold reduction in the incidence
from 300 to 100 per 100,000 a sample size of about 43,000
is required.

In summary, the more pragmatic approach would be doing a
matched case-control study using a registry of EBV vaccinated
individuals with the outcome being MS and in parallel an all-
comer trial, agnostic of EBV status, in high-risk first- and second-
degree family members using first clinical event compatible with
demyelination as the primary outcome.
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