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Ischemic stroke has become a severe disease endangering human life.

However, few studies have analyzed the radiomics features that are of great

clinical significance for the diagnosis, treatment, and prognosis of patients

with ischemic stroke. Due to su�cient cerebral blood flow information

in dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI)

images, this study aims to find the critical features hidden in DSC-PWI

images to characterize hypoperfusion areas (HA) and normal areas (NA). This

study retrospectively analyzed 80 DSC-PWI data of 56 patients with ischemic

stroke from 2013 to 2016. For exploring features in HA and NA,13 feature

sets (Fmethod) were obtained from di�erent feature selection algorithms.

Furthermore, these 13 Fmethod were validated in identifying HA and NA and

distinguishing the proportion of ischemic lesions in brain tissue. In identifying

HA and NA, the composite score (CS) of the 13 Fmethod ranged from 0.624 to

0.925. FLasso in the 13 Fmethod achieved the best performance with mAcc of

0.958, mPre of 0.96, mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. As to

classifying the proportion of the ischemic region, the best CS was 0.786, with

Acc of 0.888 and Pre of 0.863. The classification ability was relatively stable

when the reference threshold (RT) was <0.25. Otherwise, when RT was >0.25,

the performance will gradually decrease as its increases. These results showed

that radiomics features extracted from the Lasso algorithms could accurately

reflect cerebral blood flow changes and classify HA and NA. Besides, In the

event of ischemic stroke, the ability of radiomics features to distinguish the

proportion of ischemic areas needs to be improved. Further research should

be conducted on feature engineering, model optimization, and the universality

of the algorithms in the future.
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Introduction

Ischemic stroke is a significant cause of death worldwide

and has a heavy toll on death and disability (1). Therefore,

the warning symptoms, clinical features, and prognostic

evaluation around stroke have always been the subject of

clinical and scientific research. Research shows that the initiating

presentation of ischemic stroke is the occlusion of a blood vessel

that impairs blood flow to a certain degree, leading to infarction

of brain tissue in the part of the brain supplied by that blood

vessel (2, 3). That means the state of cerebral blood flow has

become a significant factor for the early warning and status

assessment of stroke, and the early detection of abnormal blood

flow is of great significance for timely treatment and excellent

prognosis of patients.

To identify the presence of reduced regional blood flow,

studies and physicians have combined diverse modalities of

images with various analysis methods to detect abnormal states

and identify hypoperfusion areas (HA) that may cause a stroke.

In most imaging modes, perfusion images, such as dynamic

susceptibility contrast perfusion-weighted imaging (DSC-PWI)

and computed tomography perfusion (CTP), play a vital role in

stroke analytics in clinical practice and trials due to their ability

to evaluate cerebral blood flow state. When the contrast agent

arrives at the ill-perfused tissue of the brain, the signal intensity

values barely change since there is no or less propagation of

the contrast agent to the damaged tissue (4). Thus, the time

to the maximum tissue residual function (Tmax) obtained from

DSC-PWI, a highly commonly used parameter, has been used

in clinical trials to identify the HA (5, 6). Generally, the region

recognized from the condition Tmax >6s is defined as HA

(7). In addition, other single-modality images except for DSC-

PWI, or in combination with it, can also provide much medical

information on ischemic stroke. A study (8) shows that the

mismatch between DSC-PWI and diffusion-weighted imaging

(DWI) has been used to estimate the ischemic penumbra and

provides a valuable tool in the clinical treatment of stroke,

which helps guide the selection of the clinical therapeutic

plan. Lu et al. (9) evaluated the volume of the ischemic

penumbra using susceptibility-weighted imaging and mapping

(SWIM) of patients with asymmetrical prominent cortical veins.

Wang et al. (10) discussed the value of susceptibility-weighted

imaging (SWI) in evaluating the ischemic penumbra of patients

with acute cerebral ischemic stroke. Bhattacharjee et al. (11)

verified that the quantitative assessment of the penumbra using

the SWI-DWI mismatch ratio performs equivalently to the

ASL, PWI-DWI mismatch ratio. Furthermore, continuously

developed artificial intelligence models can interpret and

analyze the manifestations of stroke (12–14). Although many

previous studies have been committed to evaluating the HA

from multimodal imaging manners, multidimensional analysis

methods, and advanced artificial intelligence technology, there

are few methods to analyze the image features themselves to

discover the association between the image features and cerebral

blood flow state.

Radiomics is an emerging methodology that quantifies high-

dimensional features from imaging data and has been used

to investigate tumor heterogeneity (15, 16) and for clinical

decision support systems to improve treatment decision-making

and accelerate advancements toward precision medicine in

cancer (14, 17–21). Recently, only a tiny minority of studies

have investigated the role of radiomics in identifying ischemic

stroke lesions (22), evaluating prognostic biomarkers based

on the penumbra (23), and predicting functional outcomes

(24). However, these studies combined medical images with

clinical text information to perform the above tasks but

ignored the features themselves. Currently, few studies have

explored the association between imaging characteristics in the

temporal dimension of DSC-PWI and blood flow status in

ischemic stroke. However, with abundant and distinct blood

flow information in DSC-PWI data, it is possible to extract these

features to explain the blood flow state.

As for classification tasks, machine learning models and

neural networks have been widely used for a long time. However,

each method has its rules and algorithms to perform tasks.

For example, Logistic Regression (LR) (25–27) quantifies the

coefficients of variables to predict a logit transformation of the

probability of the presence of the event. Support VectorMachine

(SVM) (28) learns an optimal hyperplane that separates the

classes as widely as possible. SVM can also perform nonlinear

classification using the “kernel” to map to higher dimensional

feature space (29). Random Forest (RF) is created based on

decision trees (DT). Their methods resemble human reasoning

by representing hypotheses as sequential if-then. The AdaBoost

algorithm (Ada) (30) corrects the misclassifications made by

weak classifiers, and it is less susceptible to overfitting than most

learning algorithms. Gradient Boosting Decision Tree (GBDT)

adapts the boosting algorithm, and it uses the error rate of

the previous iteration weak learner to update the weight of

the training set (31). Besides, the k-nearest neighbor (KNN)

is a non-parametric classification method that forms the k

neighborhood for features (32). The Naive Bayes classifier (NB)

is a simple probabilistic classifier based on Bayes’s theorem under

solid independence between components (33). In addition to

numerous machine learning models, neural networks, such

as Multilayer Perceptrons (MLP) and Convolutional Neural

Networks (CNN) (34–36), are commonly used to perform

classification tasks. Generally, a single model is usually selected

for task execution in the current classification tasks. However,

as there are more or fewer differences between the algorithms

of different models, the comprehensive evaluation of the results

throughmultiple models will increase credibility. Thus, if we can

verify the performance of the image features of DSC-PWI data

in identifying ischemic stroke through models with different
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TABLE 1 Summary of patient information and the scanning parameters of DSC-PWI images.

Information of patients Scanning parameters of DSC-PWI images

Numbers of patients 56 TE/TR 32 ms/1,590 ms

Datasets (sets) 80 Matrix 256× 256

Number of female patients (%) 15 (26.79%) FOV 230× 230 mm2

Age (Mean± Std) 71± 11 Thickness 5 mm

HA in Left (%) 26 (32.5%) Number of measurements 50

HA in right (%) 28 (35%) Spacing between slices 6.5 mm

HA in both (%) 26 (32.5%) Pixel bandwidth 1,347 Hz/pixel

Volume of HA (Mean± Std, ml) 95.58± 75.23 Number of slices 20

NHISS (Mean± Std) 9.225± 7.135

preferences, it will undoubtedly improve the validation accuracy

and enhance the persuasiveness.

The purpose of this papermainly consists of two aspects. The

first is to discover the image features hidden in DSC-PWI data

that can accurately distinguish normal tissues from abnormal

tissues. The second is to explore the changes in the classification

task when the proportion of abnormal tissues is different.

Materials and methods

Detailed materials and methods are introduced in the

following. The procedures in this study include making HA

and normal area (NA), computing radiomics features, selecting

excellent features, and evaluating radiomics feature sets.

Materials

This retrospective study was approved by the Institutional

Review Boards of Shanghai Fourth People’s Hospital Affiliated

with Tongji University School of Medicine and exempted from

informed consent. The datasets in our study were collected

by the neurology department of Shanghai Fourth People’s

Hospital Affiliated to Tongji University School of Medicine,

China, from 2013 to 2016. In total, 80 DSC-PWI images of

56 patients with ischemic stroke were retrospectively reviewed

and included. All patients were imaged within 24 h of symptom

onset, and 22 patients were screened at least twice during pre

and post treatment. Of all the patients, 26 patients presented

with ischemic lesions in the left hemisphere, 28 in the right, and

26 in both. At least two experienced clinicians determined these

diagnoses. The DSC-PWI image for each patient was scanned

on a 1.5T MR scanner (Siemens, Germany), and Table 1 shows

the details.

Methods

Figure 1 shows the flowchart of the proposed method in

this study, including preprocessing datasets and making ROIs,

computing radiomics features, selecting outstanding features,

and evaluating radiomics feature sets. The following is a detailed

description of the process.

Preprocessing DSC-PWI images and making
regions of interest (ROIs)

Preprocessing the datasets is intended to reduce noise

and position deviation impacts. Firstly, we corrected DSC-

PWI datasets for potential patient motion by registering

all the volumes in the time series with the multiplicative

intrinsic component optimization algorithm (37, 38). Then, we

performed a data smoothing filtering to decrease the noise

interference while preserving signal accuracy. In detail, the triple

moving average filter was selected to smooth the data voxel-

by-voxel with a 1 × 3 filtering kernel. In the DSC-PWI data,

the intensity of each pixel in the time dimension forms a time-

intensity sequence I(t) with noise generated from the equipment

and other factors, while the smoothed I(t) decreased this trouble.

In addition, the necessary condition for comparative analysis

of HA and NA is to detect both locations accurately. In this

study, we used a fully automated Rapid Processing of Perfusion

and Diffusion (RAPID) software (iSchemaView, CA, USA) (39)

to segment the HA in the brain, and the segment condition was

Tmax > 6 s. In contrast with HA, we determined the healthy area

in the symmetrical region of HA as NA. Therefore, 80 ROIs for

HA and NA were generated from the DSC-PWI datasets.

Calculating radiomics features

Radiomics refers to the high-throughput extraction and

analysis of many advanced and quantitative imaging features

from medical images such as computed tomography (CT),

positron emission computed tomography (PET), or magnetic
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FIGURE 1

The flowchart of the proposed method in this study. (A) Shows the process of preprocessing images and making ROIs of HA and NA, wherein

the red area is HA and the green is NA. (B–D) Show the process of computing radiomics features, outstanding feature selection, and evaluating

the performance of feature sets.

resonance imaging (MRI). This study innovatively applied

the Radiomics technology to DSC-PWI images to obtain the

image features on the time dimension in each NA and HA.

In detail, the DSC-PWI datasets are the four-dimensional

(4D) images composed of N three-dimensional (3D) images

with the size of S×H×W. Wherein N is the total number

of the 3D images in the time dimension, and S, H, and W

represent the slice numbers, height, and width of the 3D image,

respectively. By decomposing the 4D data into N (50 in this

study) single 3D images, the radiomics features for each 3D

image can be computed separately. Then, a total of 65,800

radiomics features (50 3D images ×1316 features) can be

calculated from each DSC-PWI data. These radiomics features

were divided into nine groups: (1) Shape-based (Shape, 14

features × 50 = 700 features), (2) First Order Statistics (First-

order, 18 features × 50 = 900 features), (3) Gray Level Co-

occurrence Matrix (GLCM, 24 features × 50 = 1,200 features),

(4) Gray Level Run Length Matrix (GLRLM, 16 features × 50

= 800 features), (5) Gray Level Size Zone Matrix (GLSZM,

16 features × 50 = 800 features), (6) Neighboring Gray Tone

Difference Matrix (NGTDM, 5 features×50 = 250 features),

(7) Gray Level Dependence Matrix (GLDM, 14 features × 50
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= 700 features), (8) Log-sigma (Log-sigma, 465 features× 50

= 23250 features), (9) Wavelet-based (Wavelet, 744 features ×

50 = 37,200 features). Feature calculations were automatically

performed using the PyRadiomics package implemented in

Python (40, 41). In this study, the definition of each radiomics

feature was combined with the name of the radiomics feature

itself and the time value of the 3D image connected by the

underline, wherein n is the time value corresponding to the

3D image, n ∈ [0,49]. Each 3D image in DSC-PWI data can

be defined as S(n), where n is the time value of the 3D image

and ranges from 0 to 49. For example, “log-sigma-1-0-mm-

3D_firstorder_Skewness_17” represents the radiomics feature

“log-sigma-1-0-mm-3D_firstorder_Skewness” of S(3), which is

the fourth 3D image in DSC-PWI data, and the feature belongs

to the Log-sigma group. In this study, the p-value of each

radiomics feature was obtained from the T-test operation, and

their statistics (mean, std, minimum, median, and maximum)

can be calculated by the Origin 2021 software.

Selecting outstanding radiomics features

Selecting significant features

T-test analysis was performed to reduce the feature

dimensionality while retaining significant features to the

greatest extent. By the T-test analysis, the significant features

between NA and HA can be extracted. Before the T-test

analysis, a normalization operation was performed according

to Equation (1). Finally, 19857 significant features with p-

values lower than 0.05 remained to complete subsequent feature

selection processing.

F∗i = (Fi − Fi)/ (Fimax − Fimin) (1)

Wherein Fi is the ith feature in all the 65,800 radiomics

features, the variables Fi, Fimax, and Fimin are the mean,

maximum, and minimum of Fi, respectively.

Selecting multiple feature sets from diverse methods

One purpose of feature selection was to find the most

compelling feature representing the target variable; the other

was to compress feature space. This study used multiple

feature selection methods based on diversity principles to

select outstanding features from the 19,857 significant features.

The feature selection methods contained four types: the

methods based on theoretical Information [FI, including

Conditional Mutual Information Maximization (CMIM),

Joint Mutual Information (JMI), Mutual Information Feature

Selection (MIFS), Mutual Information Maximization (MIM),

and Minimal Redundancy Maximum Relevance (MRMR)],

based on similarity features [SIF, including Fisher-score

(Fisher), Lap-score (Lap), and (ReliefF)], based on the

statistical features [STF, including F-score (FS), T-score

(TS)], and based on sparse learning and steaming [SSL,

including multi-cluster feature selection (MCFS), Alpha-

investing (Alpha), the least absolute shrinkage and selection

operator (Lasso)]. The above methods were introduced in

reference (42–47), described in Table 2, and implemented

in Python 3.6.

During the implementation of each method, except that

Lasso selects features with coefficients more prominent than

0.02 to control the number of features within the set max

feature-length 20, the others obtained the features whose score

exceeded 0.9 and the total number was <20. To distinguish

between features obtained from the 13 method, the features

extracted from them were regarded as feature set Fmethod,

wherein the “method” represents the name of the technique

(CMIM, JMI, MIFS, MIM, MRMR, Fisher, Lap, ReliefF,

MCFS, Alpha, Lasso, FS, TS). Besides, the features obtained

from techniques in the same type were regarded as Ftype,

the “type” was the category to which the method belongs,

type∈{FI, SIF, STF, SSL}, and all the selected features were

named Fall.

Performance evaluation of the selected
features

This study evaluated the feature sets in two aspects,

including the performance of identifying HA from

NA on multiple models and the classification ability

to determine the proportion of stroke regions in the

brain hemispheres.

Evaluating the performance of classifying HA from NA

We applied ten commonly used supervised machine

learning models to identify HA and NA by learning each

feature set Fmethod. The machine learning models included

support vector machines (SVM), decision tree (DT), Adaboost

classifier (Ada), neural network (NN), random forest (RF),

k nearest neighbors (KNN), logistic regression (LR), linear

discriminant analysis (DA), gradient boosting classifier (GBDT),

and GaussianNB (NB) (seen in Table 3). By training the

ten models with the 13 Fmethod, 130 (13 × 10) classifiers

were created. These classifiers were defined by combining the

learning machine model and the feature selection method.

For example, the CSVM_MIM represents the classifier fitted

by SVM and feature sets FMIM , while CSVM_SIF means

the classifier generated from SVM and all the feature

sets FSIF .

The precision (Pre), accuracy(Acc), the area under the curve

score (Auc), F1-score (F1), and Recall are the five commonly

used indexes to evaluate classifiers (48). Generally, the higher

the index value is, the more predictive the model is. Therefore,

we applied these indexes to calculate each feature set’s composite

score (CS) to evaluate the ability of the feature set to classify HA

from NA. We designed CS as the result of the coefficient times

the mean score of the five indexes on the ten learning models.

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.889090
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Guo et al. 10.3389/fneur.2022.889090

TABLE 2 Descriptions of the 13 feature selection methods used in this study.

Type Method Description Equation

FI MIM Evaluating features by the

correlation between features

and classes measured by the

mutual information

MIM(fi) = I(fi;C)

MIFS/MRMR Evaluating features by the

correlation between features

and classes, and redundancy

among features

MIFS(fi) = I(fi;C)− β
∑

sj∈S

I(fi; fS)

MRMR(fi) = I(fi;C)−
1
S

∑

sj∈S

I(fi; fS)

JMI/CMIM Evaluating features by the

correlation between features

and classes, and redundancy

among features measured by

the conditional mutual

information

JMI(fi) = I(fi;C)−
1
|S|

∑

sj∈S

[I(fi;C)− I(fi;C|fS)]

CMIM(fi) = min
fs∈S

I(fi;C|fs)

SIF Fisher/Lap Comparing features with their

ratios of the variance between

classes and the variance

within classes

Fisher(k) =
R
(k)
B

R
(k)
w

LS(fi) =

∑

ab

(fra−frb)
2Wij

Var(fr )

ReliefF Comparing features with the

correlation between features

and classes computed from

the ability of features to

distinguish between close

samples

ReliefF(fi ,R1,R2) =
|R1(A)−R2(A)|
max(A)−min(A)

STF FS obtaining feature score with

the ability to distinguish

positive class and negative

class computed by the average

of both classes

FS(i) =
(f i

(+)
−f i)

2
+(f i

(−)
−f i)

2

1
n+−1

n+
∑

k=1

(fk,i
(+)−f i

(+)
)
2
+ 1

n−−1

n−
∑

k=1

(fk,i
(−)−f i

(−)
)
2

TS Computing feature score with

the average and variance of

features

TS(i) =
(f i

(+)
−f i

(−)
)

1
n+−1

n+
∑

k=1

(fk,i
(+)−f i

(+)
)
2
+ 1

n−−1

n−
∑

k=1

(fk,i
(−)−f i

(−)
)
2

SSL MCFS Combing cluster with feature

coefficients of combinatorial

classes to compute feature

score

MCFS(i) = max
k
|fk,i|

Alpha Evaluating features by

dynamically adjusting the

threshold on the error

reduction to obtain selection

results

E(Ni)/E(Mi) < α1/(1− α1)

Lasso Using L1 regularization to

make the weight of some

learned features 0, to achieve

the purpose of sparse and

feature selection

Lasso(
∧

β ) =

arg min







n
∑

i=1

(

yi − β0 −
p
∑

j=1

βjx
∗
ij

)2

+ λ
p
∑

j=0

∣

∣βj

∣

∣






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TABLE 3 Descriptions of 10 models in this study.

No. Model Definition in python 3.6

1 SVM sklearn.svm.SVC(kernel=‘rbf ’,probability=True)

2 DT sklearn.tree. DecisionTreeClassifier()

3 Ada sklearn.ensemble.AdaBoostClassifier()

4 NN sklearn.neural_network. MLPClassifier (hidden_layer_sizeS= (400, 100), alpha=0.01, max_iter=10000)

5 RF sklearn.ensemble.RandomForestClassifier(n_estimatorS = 200)

6 KNN sklearn.neighbors. sklearn.neighbors()

7 LR sklearn.linear_model.logisticRegressionCV(max_iter=100000, solver=“liblinear”)

8 DA sklearn.discriminant_analysis.()

9 GBDT sklearn.ensemble.GradientBoostingClassifier()

10 NB sklearn.naive_bayes. GaussianNB()

The coefficient was the average score of the five indexes on the

models of all features obtained by methods in the same category

[seen in Equation (2)].

CS(Fmethod) = Htype
1

KM

∑

k,m

index(k, model(m, Fmethod)) (2)

Htype =
1

KM

∑

k,m

index(k, model(m, Ftype)) (3)

Wherein K and M are the total numbers of indexes and

learning models, respectively, K = 5, M = 10, and k∈{Pre, Acc,

Auc, F1, Recall}, m∈{SVM, DT, Ada, NN, RF, KNN, LR, DA,

GBDT, NB}; index (k, model(m, Fmethod)) represents the kth

index of themthmodel fitted by Fmethod; Htype is the coefficient

of the Fmethod, and type is the category to which the method

belongs, type∈{FI, SIF, STF, SSL}.

We used the 13 Fmethod to perform tenfold cross-validation

on the ten learning models for computing the Pre, Acc,

Auc, F1, and Recall. During the tenfold cross-validation, the

StratifiedKFold function imported from sklearn package was

used to ensure the same proportion of NA and HA samples in

the training and test sets. Besides, the CSmeasured according to

Equations (2)–(3) were subsequently used to determine the top

six feature sets Ftop6.

Verifying the ability to identify the degree of stroke in

the brain tissue

Since the feature sets are obtained entirely on pure

ischemic and normal tissue, the appearance of these

features is worth studying when the tissue is impure,

in the case of the region containing both normal and

abnormal tissue. Therefore, this study further explored

the relationship between the proportion of abnormal

tissue in the brain and the representation of radiomics

feature sets.

To expand the datasets, we split the brain into left and right

sides and merged the data from both sides for an adequate

analysis. Then, 160 samples can be generated from 80 images.

First, for the process of verifying, we segmented the brain into

left and right by split function in python 3.6. Secondly, the

features in Ftop6of the middle S slices in the two sides of brain

tissue were computed by Radiomics technology; S was 3, 4,

and 5 in this study. Specifically, we extracted the Ftop6from the

middle three, four, and five layers from DSC-PWI data. And

then, the labels, representing whether the volume proportion

of the ischemic region in these S slices of brain tissue was

beyond the set reference threshold (RT), were made according

to the results of the Rapid software. The label was 1 when the

volume proportion of the ischemic region in the S slices was

more than RT and 0 in the opposite situation. In this study, the

RT was a sliding variable that came from the set starting at 0,

ending at 0.39, and spaced at 0.01, RT∈{0, 001, 0.02, . . . , 039}.

Therefore, Ftop6in each S were configured with 40 label groups,

and each one in these 120 (40×3) combinations was regarded as

FRT_S. Then, for each FRT_S, the best feature selection method

concluded above was used to extract matched features with

labels from the corresponding Ftop6, and the extracted results

were defined as F’RT_S. Finally, tenfold cross-validation was

performed on the ten models introduced in section 2.2.4 (A)

with the F’RT_S. As RT gradually increases from 0 to 0.39,

the proportion of ischemic area in the middle S slices will

grow. Therefore, the test in this step could verify the ability

to recognize the presence of stroke in differentiated degrees of

ischemia. In this section, we also got the five indexes to evaluate

the performance of F’RT_S on each model.

Results

Results are provided in three parts, including extracted

significant radiomics features, selected outstanding features, and
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the performance of the selected feature sets. The details are

shown in the following.

Extracted significant radiomics features

Of all the 65,800 features computed by radiomics

technology, in 19857 (30.2%) significant features were

extracted with the T-test operation. Figures 2A,B show the

p-value distribution of each radiomics feature group, and

Table 4 illustrates their statistics. Features in the Shape of the

nine radiomics groups were insignificant. However, the Wavelet

and Log-sigma had the most salient features of 11,612 and

5,551, and their p-values ranged from 0.0092 ± 0.013 (mean ±

std) and 0.01 ± 0.0138, respectively. The NGTDM group had

minor significant features of 139, with p-values of 0.0090 ±

0.0107. The significant features in GLCM, First-order, GLRLM,

GLSZM, GLRLM, and GLDM were from 419 to 619, with

p-values of nearly 0.006 ± 0.011. Combining Figures 2A,B,

it can be seen that among all feature groups, the p-values of

significant features in the eight radiomics feature groups can

reach 0.05 at most. In addition, with the increasing number of

significant features, the distribution range of them will decrease.

That is, the distribution of the p-values excluding outliers will

become more concentrated.

Selected outstanding features

With the 13 feature selection methods, 128 outstanding

features were selected and renamed by combining the letter F

and serial number (see Appendix A in Supplementary material).

As an analysis result, the 128 features included 70 Wavelet

features, 2 GLDM features, 16 GLCM features, 12 First-order

features, and 28 Log-sigma features (seen in Figures 2C,D).

In addition, we computed four attributes between the label

and each feature, including the coefficient of determination (R

squared) based on the Pearson coefficient, p-value, Gain, and

Gain ratio. The following were details described according to

every single method.

In the methods based on FI (seen in Table 5), 64 excellent

features with p-values = 0.009 ± 0.014, R squared = 0.090

± 0.067, Gain = 0.077 ± 0.05 and Gain ratio=0.112 ±

0.072 were chosen, wherein CMIM, MM, JMI selected 20

features, respectively; MRMR and MIFS selected 18 features,

respectively. Besides, the features in the five feature sets were

highly repeatable.

The methods in SIF selected 18 features (seen in Table 5).

The attributes of them were R squared = 0.4 ± 0.232, p-values

= 0.004 ± 0.012, Gain =0.293 ± 0.171, and Gain ratio=0.423

± 0.247, respectively. Of these 18 features, only four came from

the FFisher , while FLap and FReliefF contributed 6 and 16 features.

The features in these sets had the lower p-values and the higher

R squared, Gain, and Gain ratios.

In the methods based on STF (seen in Table 5), 11 features

were obtained. These 11 features all belong to the FTS, and FFS

included only 6 of them. In addition, the R squared, Gain and

Gain ratio ranged from 0.582 ± 0.018, 0.43 ± 0.064, and 0.621

± 0.093, respectively. And the p-values of them were <0.0001.

Besides, FFS and FTS got similar results on the four attributes,

among which the index value of FFS was slightly higher than that

of FTS.

In the methods based on SSL (seen in Table 5), there were

47 selected features. The features in the three feature sets were

scattered and independent. FMCFS screened out 20 features

independent of FLasso and FAlpha, while FLasso and FAlpha shared

a few members in common. The 47 features configured with R

squared= 0.179± 0.148, p-values= 0.006± 0.011, Gain= 0.13

± 0.101, and Gain ratio=0.188± 0.146.

Performance of feature sets

In this study, we evaluated the 13 feature sets in two aspects.

One was to identify HA and NA, and the other was to determine

the proportion of ischemic lesions in brain tissue.

The performance of identifying HA and NA

Based on the tenfold cross-validation results on the ten

models, we calculated the five indexes of the five Ftype and

128 selected features Fall on the ten models and then got their

Htype. Figure 3 shows their performance in detail. According to

the mean of five indexes (mAcc, mAuc, mPre, mF1, mRecall),

SSL got the best score of mAcc = 0.952, mPre = 0.964,

mAuc = 0.980, mF1 = 0.953 and mRecall= 0.948, while

FI got the lowest score of mAcc = 0.82, mPre = 0.817,

mAuc = 0.888, mF1 = 0.831 and mRecall = 0.874. Besides,

SIF and STF got similar scores, and SIF was slightly better

than STF. The results also showed that the performances

of Fall were lower than that of FSSL, but generally better

than other feature sets, which means that although the total

features achieved good performance, it was still slightly inferior

to the combination of the best feature sets. In addition,

the coefficients Htype of Ftype were computed according to

Equation (3). As a result, FSSL obtained the highest coefficient

of 0.959, and the coefficient values of Fall, FSIF , FSTF , and

FFI decreased successively, which were 0.944, 0.932, 0.931,

and 0.846.

Figure 4 shows the tenfold cross-validation scores of 13

feature sets on the ten models. For the 13 feature sets, the

mAcc, mPre, mAuc, mF1, and mRecall were 0.849, 0.851,

0.893, 00853, and 0.872, respectively. And the CS of them

were from 0.624 to 0.925. In general, the performance of a

single feature set was consistent with the result of the Ftypeto
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FIGURE 2

The information on significant features and 128 outstanding features. (A,B) Show the counts and p-values of significant features in each

radiomics feature group; (C,D) show the time values of the 128 selected features and their counts in each radiomics feature group. The orange

box in (B) indicates the distribution range of 25–75% p-values; The long horizontal line ’—’ above the box indicates 1.5 times the interquartile

range value (1.5 IQR), and the discrete points above the short horizontal line are abnormal points.

which it belongs. Similar to statistics by types of features,

the feature sets in FSSL performed better than those in the

other Ftype, and sets in FFI got a result that left much for

improvement. Specifically, using CS as a reference (seen in

Figure 4F), the best one was FLasso(CS = 0.925) in the FSSL,

and FAlpha got a comparable CS of 0.904. In particular, FLasso

achieved an Auc of 1 on multiple models. In contrast, FMRMR,

FMRMR, and FMIFS in FFI performed relatively poorly. The

other feature sets scored differently, ranging from 0.70 to 0.874.

In general, the top six feature sets Ftop6with the highest CS

were FLasso, FAlpha, FFS, FFisher , FTS, and FReliefF , including

41 features. Besides, the Lasso algorithm became the best

method for subsequent feature selection processing based on

the highest CS.

The ability to identify the proportion of
ischemic stroke

In the 120 FRT_S formed by the Ftop6 of the three S slices

under 40 RT, positive samples (label=1) indicated that ischemic

stroke volume greater than RT differed. Figure 5A shows the

distribution of positive samples in each S with different RT

values. In each case, positive samples decreased gradually as RT

values increased. In general, the ratio of positive samples in 160

patients ranged from 15 to 61.25% in S = 3, 17.5–61.88% in S =

4, and 11.88–63.13% in S = 5. When RT was in the range of 0–

0.04, the proportion between positive and negative samples was

>1:1; when RT was in 0.05–0.1, the proportion was about 2:3;

when RT was in 0.11–0.25, the proportion was nearly 1:3, and

when RT was >0.25, the proportion was <0.3.
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TABLE 4 The statistics of significant Radiomincs features groups.

Feature Group Number of features Mean (p-value) Std (p-value) Minimum (p-value) Median

(p-value)

Maximum

(p-value)

First-order 555 0.0050 0.0105 <0.0001 0.0002 0.0497

GLCM 619 0.0060 0.0114 <0.0001 0.0002 0.0499

GLDM 419 0.0060 0.0104 <0.0001 0.0007 0.0497

GLRLM 436 0.0068 0.0118 <0.0001 0.0009 0.0498

GLSZM 526 0.0066 0.0104 <0.0001 0.0009 0.0496

Log-sigma 5551 0.0100 0.0138 <0.0001 0.0027 0.0500

NGTDM 139 0.0090 0.0107 <0.0001 0.0063 0.0449

Wavelet 11612 0.0092 0.0130 <0.0001 0.0022 0.0500

TABLE 5 The counts of features and four attributes of 13 Fmethod .

Type Method Counts of Features R squared p_value Gain Gain ratio

FI CMIM 20 0.11± 0.657 0.004± 0.011 0.089± 0.048 0.129± 0.069

MIM 20 0.116± 0.074 0.008± 0.015 0.102± 0.065 0.147± 0.093

JMI 20 0.077± 0.073 0.014± 0.016 0.058± 0.036 0.083± 0.051

MRMR 18 0.064± 0.039 0.009± 0.01 0.062± 0.032 0.089± 0.047

MIFS 18 0.078± 0.044 0.006± 0.009 0.066± 0.032 0.095± 0.046

SIF Fisher 4 0.603± 0.004 <0.0001 0.474± 0.009 0.684± 0.013

ReliefF 12 0.538± 0.065 <0.0001 0.389± 0.078 0.561± 0.112

LS 6 0.124± 0.190 0.013± 0.018 0.102± 0.142 0.147± 0.204

STF FS 7 0.592± 0.015 <0.0001 0.464± 0.022 0.670± 0.032

TS 11 0.582± 0.018 <0.0001 0.430± 0.064 0.621± 0.093

SSL Alpha 11 0.199± 0.167 0.006± 0.014 0.145± 0.115 0.209± 0.166

Lasso 16 0.280± 0.146 <0.0001 0.197± 0.106 0.284± 0.152

MCFS 20 0.087± 0.062 0.011± 0.012 0.069± 0.036 0.1± 0.052

Subsequently, with RT from 0 to 0.39 and S from 3 to 5,

we selected outstanding features F
′

RT_S by the Lasso algorithm.

As a result, there were slight differences between the features

in 140 F
′

RT_S. There were 20 features in F
′

RT_3, 18 in F’RT_4,

and 21 in F’RT_5, and most of these features came from FLasso

and FAlpha (seen in Appendix A in Supplementary material).

Figures 5B–D show the detailed features. We got the five indexes

on the ten models by performing the tenfold cross-validation

with the selected F
′

RT_S. As Figures 6–8 show, whatever the S

value was, with the increase of RT, the Acc of the ten models

showed a gradual growth trend; Pre and Auc represented a state

of steady first and then slow decline nearly at RT∈[0.24, 0.3],

while F1 and Recall gradually decreased. Among them, themAcc

ranged from 0.6 to 0.875 in F
′

RT_3, 0.531 to 0.856 in F
′

RT_4, 0.644

to 0.881 in F
′

RT_5; the mAuc ranged from 0.523 to 0.892, 0.533

to 0.893, 0.497 to 0.935; and the mPre ranged 0 to 0.888, from 0

to 0.856, 0 to 0.917; the mF1 ranged from 0 to 0.85, 0 to 0.845,

0 to 0.844, and mRecall from 0 to 0.87, from 0 to 0.896, 0 to

0.874, respectively. Furthermore, the CS of F
′

RT_S stayed stable

and then dropped rapidly. And the CS ranged from 0.759 to

0.341 in F
′

RT_3, from 0.78 to 0.437 in F
′

RT_4, and from 0.786 to

0.28 in F
′

RT_5. According to Figure 9, the drop point was at the

stage when RT was >0.25, and that of S = 3 was later than that

of S= 4 and 5.

Discussion

An ischemic stroke is a vascular event characterized by

reducing regional blood flow. Few studies explored the changes

among DSC-PWI images in the time dimension, although the

parameter Tmax obtained from them was commonly used to

discriminate HA and NA. Some studies (49–51) have shown

that the time-intensity curve of HA in the DSC-PWI images

of patients with ischemic stroke has a much smaller brightness

decrease than the curve of NA (seen in Figure 10). Therefore, the

data of DSC-PWI in the time dimension are correlated with the

blood flow state of brain tissues to a certain extent. This study
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FIGURE 3

The performance of each Ftypeand Fallon the ten models. (A–E) Show the five indexes (Acc, Pre, Auc, F1, Recall) of Ftypeand Fall, and (F) show the

coe�cients Htypeof them.

successfully extracted multi-level feature selection processing

and the radiomics features distinguishing HA and NA from

DSC-PWI. Of all the methods, the FLasso reached the best CS of

0.925, and the five indexes were mAcc of 0.958, mPre of 0.96,

mAuc of 0.982, mF1 of 0.959, and mRecall of 0.96. Besides,

we effectively verified the ability of these features to evaluate

the ischemic area ratio in the brain. According to the results,

with the increase of the proportion of ischemic tissue, the mAcc

increased, while Pre stabilized and then decreased. And the best

Pre and Acc can reach 0.888 and 0.863. In general, the radiomics

features of 3D images in the time dimension of DSC-PWI have

an optimistic ability to distinguish normal brain tissue from

abnormal brain tissue and indicate the proportion of ischemic

tissue in brain tissue.

This study used 13 feature selection methods with different

preferences to obtain outstanding features. As a result, there

were 128 excellent features selected from the original 65,800

radiomics features. Their time values are mainly concentrated at

the initial moment (0–3), the stage through which the contrast

agent passes (17–22), and a few features located at the end of

the reaction (time >30) (seen in Figure 2C). The results indicate

that the initial intensity of the tissue, as well as the amount

of intensity change, and the time producing the change, are

essential to distinguish between normal and abnormal tissues.

Besides, the features of Shape, GLRLM, GLSZM, and NGTDM

were missing in the 128 selected features (seen in Figure 2D).

This means that the shape, gray of neighboring voxels, and

length in the number of pixels with the same gray make

little contribution to characterizing the changing of blood flow,

and features in the other groups are significant. Among 13

feature sets, FLasso and FAlpha in FSSL achieved the best CS

of 0.925 and 0.904, while FFI performed worst, and FSIF and

FSTFperformed in the middle (seen in Figure 4). From the four

attributes (p-value, R squared, Gain, and Gain ratio), the p-

value of FFI is more significant than the others. In contrast,

the R squared, Gain, and the Gain ratio are less than the

others, suggesting that the effect of features extracted by FI

may not be ideal. In addition, the feature selection methods

(CMIMI, JMI, MIFS, MIM, and MRMR) in the FI mainly

select features based on the conditions of information entropy,

redundancy, and similarity between radiomics features to obtain

feature sets. Among the 65,800 original radiomics features,
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FIGURE 4

The performance of 13 feature sets on the ten models. (A–E) Show the five index (Acc, Pre, Auc, F1, Recall) results, and (F) shows the

corresponding CS.

there may be a large number of features that meet the above

screening conditions. However, in this study, the number of

selected features of the feature selection method is limited to

10. Although this study ranks features according to their scores,

the selected features may not be complete, resulting in the

unsatisfactory performance of FFI . This can be further improved

and verified in subsequent experiments. Different from FI, other

feature selection methods in SIF, STF, and SSL selected features

through the linear relationship, contributions, and statistical

scores between features and sample categories. When sorting

features with scores, excellent features will be selected first, so it

is reasonable that they got a relatively higher performance than

FI. In detail, For the feature sets in FSIF , the attributes of FLS have

less correlation and information than the others, and they got a

matching result that the CS of FFisher and FReliefF are better than

FLap. FFS and FTS in FSTF got similar attributes and achieved

the closer CS of 0.874 and 0.865. For feature sets in FSSL,

although FLasso and FAlpha obtained a minor R squared, Gain

and Gain ratio than feature sets in FSTFand FSIF , they achieved

the best performance. For the long term, Lasso has been used to

select excellent features and has been validated in the fields of

classification (52–54), prediction (55, 56), and survival analysis

(57, 58). In this study, Lasso got the best feature set FLasso

to prove its competence in screening features. Thus, although

the lower p-value, higher correlation, information gain, and

information gain ratio can achieve a better classification result

to a certain extent, they cannot be used as complex indicators

to evaluate their effectiveness. The 13 Fmethod are a great deal

of diversity, and these selected features are highly significant.

No matter what selection method is used, they can obtain

the characteristics of DSC-PWI from the aspects of intensity

variation, drop time of intensity, initial state, and recovery state.

Furthermore, this study analyzed the classification ability

of radiomics features in different proportions of ischemic

lesions. With the increase of RT, the region of ischemic tissue

increases, and the difference between features whose RT is above

the set threshold and those of the opposite class decreases.

When RT was <0.25, regardless of S = 3, 4, or 5, the Acc

and Pre can reach >0.8. However, when RT was >0.25, the

performance will decrease with the increase of RT. On the

one hand, the decline of these two indexes may be due to

the imbalance in the proportion of positive and negative
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FIGURE 5

The information of samples and F
′

RT_S. (A) Shows the distribution of positive samples with ranging S and RT and the features in F
′

RT_S, and (B–D)

show the selected features under di�erent RT values when S = 3, 4, and 5 respectively, wherein blue indicates that the corresponding features

are selected.

samples when RT reaches 0.25. If sufficient data are available,

in-depth reason analysis can be performed in the future.

Nevertheless, these results demonstrate that the radiomics

features can effectively distinguish normal tissue from ischemic

tissue, provide support for the differentiation of volume

proportion of ischemic lesions and provide information for

clinical guidance.

In addition, ten models with different principles were used

to verify the performance of selected features. The ten models

included regression models (LR, NB), nonlinear classifiers

(SVM, DT, RF), linear classifiers (KNN, DA), ensemble models

(Ada, GBDT), and neural networks (NN). According to the

classification results of these models, the classification effect

of selected features can be verified comprehensively. Figures 4,

6–8 show little difference in the performance of the same

feature set in different models. Still, there is a significant

difference in the performance of different feature sets in the

same model, and SVM, LR, NN, RF, and DA performed better

than the others. For the classification of HA and NA, SVM

performed best in almost all feature sets, with an mAUC

of 0.929. In particular, the Auc, Pre, Acc, F1, and Recall

of CSVM_Lasso were all >0.987. Using a nonlinear kernel

’RBF’ in SVM, the nonlinear relationship between the selected

radiomics features and the target (stroke tissue or not) can be
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FIGURE 6

The five indexes of F
′

RT_S with S = 3 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

FIGURE 7

The five indexes of F
′

RT_S with S = 4 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

found, thus obtaining accurate classification results. Besides,

DA, RF, NB, LR, and NN also achieved satisfactory results.

Regarding identifying the proportion of ischemic stroke, DA

and SVM also performed better than the other models in

all three situations, RT_2, RT_3, and RT_3. Although the

performance of different models on the same feature set and
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FIGURE 8

The five indexes of F
′

RT_S with S = 5 on the ten models, wherein the dark purple lines represent the mean indexes (mAcc, mPre, mAuc, mF1,

mRecall), and the other colors represent the performance of the ten models.

FIGURE 9

The box plots of the five index under the three situation (S = 3–5). (A–E) The box plots of mACC, mPre, mAuc, mF1, and mRecall in the three

situations, respectively. (F) The relationship between CS and RT at varying S.
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FIGURE 10

The di�erence of HA and NA in the DSC-PWI image. (A) The ROIs of HA and NA in the DSC-PWI image, the HA is shown in red and the NA is

shown in green. (B) The mean time-intensity curve I(t) of HA and NA, the black represents the mean I(t) of HA, and the orange is that of NA.

the same situation had good consistency, SVM was a better

choice in both evaluation tasks, classifying HA and NA and

identifying the proportion of ischemic stroke. Besides, we used

CS computed by the mean indexes (mAcc, mPre, mAuc, mF1,

and mRecall) of the ten models as the benchmark for the

evaluation to reasonably analyze their performance. Depending

on the diversity features, the 13 Fmethod acquired different

CS ranging from 0.624 to 0.925, F
′

RT_3, F
′

RT_4, and F
′

RT_5
got CS in [0.34,0.76], [0.40, 0.78] and [0.28,0.78], respectively.

On the one hand, the strong robustness and applicability of

the Lasso algorithm can be proved by the fact that, although

the features extracted by the algorithm were slightly different

under different RT values, the extracted features generally

achieved stable performance. On the other hand, the selected

radiomics features at different slices have little influence

on the classification results, but the proportion of ischemic

tissue does.

There are some limitations to this study. First, the size

of the datasets is relatively small, and all data come from a

single hospital, which may lead to biased results and a lack

of generalizability. To address the limitation, we segmented

hypoperfusion areas (HA) from DSC-PWI images and defined

normal tissue in the symmetrical areas of HA as NA in making

ROIs. This way, one group of HA and NA can be generated

from one DSC-PWI image. This way, the double samples (160)

can be obtained from 80 DSC-PWI images, and the positive

and negative sample sizes are equal. The expanded balanced

samples can help extract accurate features, and the sample

imbalance can be reduced when classifying NA and HA. Besides,

when evaluating the performance of the selected features in

section Performance evaluation of the selected features, the

tenfold cross-validation was performed to reduce the influence

of sample size. The composite scores (CS) were computed to

obtain reliable results. Second, the feature selection methods,

optimal features, and learning models can be further optimized.

This paper uses various existing learning models to verify the

classification performance. Although the results have shown

some features such as FLasso and FAlpha had achieved excellent

performance, the further optimization of the models, such as

deep learning and transferred learning, can be regarded as one

of the future works. The ischemia area ratio classification needs

to be further improved. The results in this study do not mean

that the models can be used alone for stroke treatment decision-

making. Instead, it should be considered a support tool for stroke

treatment guidance. We will validate our improved method’s

performance with more data before applying it to clinical trials

in future work.

Conclusions

This study used prominent radiomics features extracted

from 3D images in the DSC-PWI time series to explore their

ability to classify HA and NA and recognize the proportion

of ischemic lesions in brain tissue. The 13 Fmethod achieved

the CS ranging from 0.624 to 0.925 in distinguishing HA

from NA. The FLasso in the 13 Fmethod performed best

with mAcc of 0.958, mPre of 0.96, mAuc of 0.982, mF1 of

0.959, and mRecall of 0.96. Besides, the 120 F
′

RT_S reached

the best CS of 0.786 in identifying the proportion of the
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ischemic region, and the best Acc and Pre reached 0.888

and 0.863, respectively. In general, the combination of various

radiomics features accurately reflected the varying degrees of

changes in cerebral blood flow in the initial state, the contrast

agent response stage, and the recovery stage. For classifying

the proportion of ischemic areas, the classification effect is

relatively stable when RT is <0.25. Otherwise, when RT was

>0.25, the accuracy will gradually decrease as its increases.

Further future research should be conducted on excellent

feature extraction, feature combination, model optimization,

and comprehensive verification.
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