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Background: Disturbed serum calcium levels are related to the risk of stroke. However,

previous studies exploring the correlation between serum calcium and the clinical

outcome of ischemic stroke (IS) have shown inconsistent results.

Object: The study aimed to investigate the relationship between admission serum

calcium and 30-day mortality in patients with IS.

Methods: A total of 876 IS patients from a Norwegian retrospective cohort were

included for secondary analysis. The exposure variable and the primary outcome were

albumin-corrected serum calcium (ACSC) at baseline and all-cause mortality within 30

days after the first admission, respectively. Multivariable logistic regression analysis was

used to estimate the risk of 30-day mortality according to ACSC levels. Moreover, the

potential presence of a non-linear relationship was evaluated using two-piecewise linear

regression with a smoothing function and threshold level analysis. The stability of the

results was evaluated by unadjusted and adjusted models.

Results: The result of multiple regression analysis showed that ACSC at baseline

was positively associated with the incidence of 30-day mortality after adjusting

for the potential confounders (age, gender, serum glucose, hypertension, atrial

fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive pulmonary

disease, pneumonia, paralysis, and aphasia) (OR = 2.43, 95% CI 1.43–4.12). When

ACSC was translated into a categorical variable, the ORs and 95% CIs in the second

to the fourth quartile vs. the first quartile were 1.23 (0.56, 2.69), 1.16 (0.51, 2.65),

and 2.13 (1.04, 4.38), respectively (P for trend = 0.03). Moreover, the results of two-

piecewise linear regression and curve-fitting revealed a linear relationship between ACSC

and 30-day mortality.

Conclusion: ACSC is positively associated with 30-day mortality in IS patients, and the

relationship between them is linear.

Keywords: serum calcium, albumin-corrected serum calcium, association, ischemic stroke, 30-day mortality,
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INTRODUCTION

Stroke can cause a low quality of life for patients and their
families, as well as a great burden and loss for society due to
high rates of disability and mortality (1). Ischemic stroke (IS),
which is the main subtype of stroke, accounts for about 60–80%
(1) of all stroke cases according to the latest evidence. Given this,
early risk stratification after acute ISmay contribute to improving
clinical decision-making.

Calcium is the most abundant mineral in the human body
(2), widely taking part in various crucial physiological processes
including signal transduction, maintenance of the stability of the
cell membrane, coagulation process, movement of the smooth
muscle or skeletal muscle, and endocrine function (3, 4). Serum
calcium level in a normal physiological situation is strictly
controlled to remain within a narrow range (5). Moreover,
dyscalcemia has been demonstrated to be related to the risk of
cardiovascular and cerebrovascular diseases (6–8).

To date, a limited amount of studies have addressed the
association between serum calcium levels and IS outcomes, with
conflicting results (9–13). In these studies, both low (10) and high
levels (12) of serum calcium have been reported to correlate with
poor outcomes of IS. One study reported a U shape association
between serum calcium levels and in-hospital all-cause mortality
(11). Furthermore, Asian and North American patients were
the main subjects in previous studies, which failed to consider
European populations. However, not only do the incidence rate
and morbidity of stroke vary in different populations (14), in
addition to the calcium metabolism (15).

Serum calcium is susceptible to serum albumin levels (16) and
albumin-corrected serum calcium (ACSC) calculated according
to the classic formula (17) is increasingly used in place of
serum calcium in many clinical studies (10–13). Therefore, this
study was designed to assess the correlation between ACSC
and 30-day mortality in IS patients based on a Norwegian
retrospective cohort.

METHODS

Data Source
Initial data were downloaded from the public database “DRYAD”
(www.datadryad.org). In this database, Tazmini et al. (18)
authorized the use of their data in the DRYAD database. Thus,
this secondary research based on the raw data for a different
research hypothesis was permitted. In addition, the original
corresponding author, Kiarash Tazmini, was listed as a co-author
with their consent for the contribution of their team in data
collection and making their data publicly available.

The original research was a single-center retrospective cohort
study that included 31,966 unique patients (62,991 registered
admission information) who visited the emergency department
of the Diakonhjemmet Hospital in Oslo (Norway) from 2010 to
2015. In this study, a total of 974 visits (admission information)
with a principal diagnosis of IS (ICD-10, I63) were selected

Abbreviations: IS, ischemic stroke; ACSC, albumin-corrected serum calcium;

COPD, chronic obstructive pulmonary disease; CHD, coronary heart disease.

from the raw cohort according to the International Classification
of Diseases 10th revision (ICD-10). The raw data included
information on multiple hospitalizations for the same patient,
but only the first one for each patient was considered in
this study. A total of 886 unique IS patients were identified
according to their first admission information after excluding
the second or subsequent admissions. Subsequently, 10 patients
were excluded for missing ACSC information (n = 5) or wrong
death information (n = 5). Ultimately, 876 IS patients were
included (Figure 1).

The original research was approved by the Norwegian
Regional Committee for Medical and Health Research Ethics
South East as a quality study, which did not require ethical
approval (19). Informed consent was also not necessary because
all the data were anonymously processed (19). Thus, separate
ethical approval was not required for this secondary analysis.
Finally, this study complied with the Helsinki Declaration.

All the laboratory indicators were taken from the
first laboratory results after admission. Serum calcium
(mmol/L), serum-albumin (g/L), serum-sodium (mmol/L),
serum-potassium (mmol/L), serum-glucose (mmol/L), serum-
phosphate (mmol/L), and serum-magnesium (mmol/L) were
recorded in the original data.

The ACSC levels in the previous study were calculated
according to a standard formula and the epidemiological data
of the northern European population (20). And the calculation
formula is as follows: ACSC = measured serum-calcium level
+ 0.020 × (41.3–serum-albumin) where 41.3 g/L is the albumin
median (19). The unit of ACSC and serum calciumwas converted
to mg/dl.

Co-morbidities
Secondary diagnostic information was used to identify co-
morbidities including diabetes (ICD-10: E10-E14), hypertension
(ICD-10: I10), hyperlipemia (ICD-8: E78), atrial fibrillation/atrial
flutter (ICD-10: I48), heart failure (ICD-10: I50), renal
insufficiency (ICD-10: N18), chronic obstructive pulmonary
disease (ICD-10: J42–44), coronary heart disease (ICD-10: I25),
chronic obstructive pulmonary disease (ICD-10: J42–44), cancer
(ICD-10: C0-C9, Z51.0-3), malnutrition (ICD-10: E40-E46),
and pneumonia (ICD-10: J98, J69, J11-18). Moreover, common
complications associated with strokes such as paralysis (ICD-10:
G80-G83), epilepsy (ICD-10: G40), cognitive disorder (ICD-10:
F06), and aphasia (ICD-10: F80, R47) were also considered.
All the above-mentioned co-morbidities were processed into
categorical variables to facilitate the statistical analysis.

Outcome
The primary outcome was all-cause mortality within 30 days after
the first admission.

Missing Data
The missing data of covariates of all 876 patients, in the final
analysis, are shown in Table 1. Serum-phosphate and serum-
magnesiumwere missing a large portion of information and were
thus converted into categorical variables to address the lower
statistical power and potential bias caused by excluding missing
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FIGURE 1 | Flowchart of screening the study population.

data. Dummy variables were used to identify the missing values
of the covariate (21).

Multiple imputations based on five replications and a chained
equation approach in the R MI procedure were used to deal
withmissing data (22). Moreover, a comparison between primary
data and interpolation data was performed for the sensitivity
analysis. The result is shown in Supplementary Figure 2 and
Supplementary Table 1.

Statistical Analysis
Statistical analysis was performed using EmpowerStats
(www.empowerstats.com, X&Y Solutions, Inc., Boston, MA) and
the statistical software package R (http://www.R-project.org, The
R Foundation).

Mean ± standard or median (interquartile range) were used
to describe continuous variables and categorical variables were
expressed as percentages. One-way ANOVA test for continuous
variables with normal distribution, Kruskal–Wallis H-test for
continuous variables with skewed distribution, and chi-square
tests (or Fisher’s exact test) for categorical variables were used to
analyze differences between or among groups.

Multiple logistic regression analysis was used to assess the
specific relationships between the exposure (ACSC) and outcome
(30-day mortality); odds ratio (OR) and 95% confidence interval
(CI) were used to evaluate the risk.

Fourmodels were built to control for the effect of confounding
factors: (1) crude model, i.e., unadjusted. (2) Model I, which was
adjusted for age and gender. (3) Model II, which was adjusted

for age, gender, serum glucose, atrial fibrillation/atrial flutter,
renal insufficiency, heart failure, chronic obstructive pulmonary
disease, cancer, pneumonia, paralysis, and aphasia. Covariates
were included as potential confounders in the final models
if they changed the estimates of admission albumin-corrected
serum calcium on 30-day mortality by more than 10% or were
significantly associated with 30-day mortality (23); gender as a
basic variable was also included in the fully adjusted model.
(4) Model III, which was additionally adjusted for serum-
phosphate tertiles, serum-magnesium tertiles, cognitive disorder,
and epilepsy based on Model II (In Model III, the potential
influence of missing variables and clinical significance of the
other two neurological complications were considered).

A two-piecewise linear regression model and curve fitting
were used to examine the potential linear relationship and
threshold effect.

Sensitivity Analysis
ACSC quartiles were also used to test the stability of multiple
regression results, and the linear tests were performed by
assigningmedians to each ACSC quartile as a continuous variable
in the models (24).

An E-value was used to explore the potential of unmeasured
confounding between ACSC and 30-day mortality. The E-value
was defined as the required magnitude for an unmeasured
confounder to overturn the observed association between ACSC
and 30-day mortality (25).
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TABLE 1 | Baseline characteristics of the patients according to quartiles of ACSC level.

ACSC (mg/dl) Quantile1 Quantile 2 Quantile 3 Quantile 4 P-value

N = 876 209 223 206 238

Age (years) 75.09 ± 13.53 76.91 ± 12.61 76.77 ± 11.83 79.91 ± 10.61 0.002

Gender (male), n (%) 119 (56.94%) 108 (48.43%) 95 (46.12%) 75 (31.51%) <0.001

Serum-sodium (mmol/L, mean ± SD) (1 missing) 139.19 ± 3.99 139.66 ± 3.23 139.59 ± 3.01 139.26 ± 3.89 0.6

Serum-glucose (mmol/L, mean ± SD) 6.82 ± 2.33 6.77 ± 2.09 6.85 ± 2.12 7.19 ± 2.32 0.01

Serum-potassium (mmol/L) (3 missing) 4.11 ± 0.44 4.14 ± 0.43 4.12 ± 0.40 4.17 ± 0.45 0.4

Serum-phosphate (mmol/L) tertiles, n (%) 0.1

Tertile 1 (≤0.97) 25 (11.96%) 18 (8.07%) 28 (13.59%) 28 (11.76%)

Tertile 2 (0.98–1.12) 20 (9.57%) 24 (10.76%) 26 (12.62%) 24 (10.08%)

Tertile 3 (≥1.13) 22 (10.53%) 20 (8.97%) 29 (14.08%) 40 (16.81%)

Not recorded 142 (67.94%) 161 (72.20%) 123 (59.71%) 146 (61.34%)

Serum-magnesium (mmol/L) tertiles, n (%) 0.02

Tertile 1 (≤0.78) 23 (11.00%) 11 (4.93%) 29 (14.08%) 39 (16.39%)

Tertile 1 (0.79–0.84) 22 (10.53%) 28 (12.56%) 25 (12.14%) 23 (9.66%)

Tertile 1 (≥0.85) 28 (13.40%) 24 (10.76%) 29 (14.08%) 32 (13.45%)

Not recorded 136 (65.07%) 160 (71.75%) 123 (59.71%) 144 (60.50%)

Diabetes, n (%) 15 (7.18%) 19 (8.52%) 21 (10.19%) 20 (8.40%) 0.7

Hyperlipemia, n (%) 3 (1.44%) 4 (1.79%) 12 (5.83%) 15 (6.30%) 0.008

Hypertension, n (%) 52 (24.88%) 56 (25.11%) 61 (29.61%) 71 (29.83%) 0.5

Atrial fibrillation/atrial flutter, n (%) 56 (26.79%) 57 (25.56%) 50 (24.27%) 67 (28.15%) 0.8

Heart failure, n (%) 4 (1.91%) 7 (3.14%) 7 (3.40%) 8 (3.36%) 0.8

Renal insufficiency, n (%) 6 (2.87%) 11 (4.93%) 10 (4.85%) 13 (5.46%) 0.6

COPD, n (%) 1 (0.48%) 6 (2.69%) 4 (1.94%) 1 (0.42%) 0.1

CHD, n (%) 11 (5.26%) 11 (4.93%) 14 (6.80%) 9 (3.78%) 0.6

Cancer, n (%) 3 (1.44%) 4 (1.79%) 3 (1.46%) 7 (2.94%) 0.6

Malnutrition, n (%) 6 (2.87%) 3 (1.35%) 1 (0.49%) 9 (3.78%) 0.08

Dehydration, n (%) 9 (4.31%) 9 (4.04%) 7 (3.40%) 9 (3.78%) 1.0

Pneumonia, n (%) 6 (2.87%) 12 (5.38%) 9 (4.37%) 13 (5.46%) 0.5

Paralysis, n (%) 15 (7.18%) 24 (10.76%) 16 (7.77%) 31 (13.03%) 0.1

Epilepsy, n (%) 4 (1.91%) 0 (0.00%) 2 (0.97%) 2 (0.84%) 0.2

Cognitive disorder, n (%) 3 (1.44%) 8 (3.59%) 4 (1.94%) 13 (5.46%) 0.07

Aphasia, n (%) 18 (8.61%) 17 (7.62%) 9 (4.37%) 19 (7.98%) 0.3

30-day mortality 13 (6.22%) 20 (8.97%) 16 (7.77%) 36 (15.13%) 0.008

All data in the ACSC subgroups are expressed as mean ± SD or number (%). ACSC: quantile 1: ≤9.26 mg/dl; quantile 2: 9.30–9.50 mg/dl; quantile 3: 9.54–9.74 mg/dl, and quantile

4: ≥9.78 mg/dl. ACSC, albumin-corrected serum calcium; COPD, chronic obstructive pulmonary disease; CHD, coronary heart disease.

RESULTS

Baseline Characteristics of Participants
The average age of participants was 77.26 ± 12.26 (34–100)
years and 54.68% were female. The baseline characteristics
and co-morbidities of participants are listed in Table 1 by
ACSC quartiles. Age, gender, serum-glucose, serum-magnesium
(tertiles), hyperlipemia, and 30-day mortality of the ACSC
quartile groups were statistically different (all p < 0.05).

Univariate Analysis Related to 30-Day
Mortality
The outcome of 30-day mortality was chosen as a dependent
variable, and univariate analysis was used to investigate which
independent variable was related to 30-day mortality. The results
indicated that age (OR = 1.08, 95% CI 1.05–1.11), ACSC

(OR = 2.38, 95% CI 1.50–3.78), serum-glucose (OR = 1.11, 95%
CI 1.03–1.21), hypertension (yes vs. no: OR = 0.54, 95% CI
0.30–0.97), heart failure (yes vs. no: OR = 6.46, 95% CI 2.83–
14.74), renal insufficiency (yes vs. no: OR = 3.91, 95% CI 1.87–
8.14), pneumonia (yes vs. no: OR = 7.41, 95% CI 3.76–14.61)
and aphasia (yes vs. no: OR = 2.39, 95% CI 1.22–4.68) were all
associated with 30-day mortality (Table 2).

Multivariate Logistic Regression Analysis
of ACSC and 30-Day Mortality
ACSC was chosen as the independent variable and 30-day
mortality as the dependent variable in the multiple regression
equation. Other variables were used as covariates to adjust the
model to prove the stability of the results, and four models were
built. No covariates were adjusted in the crude model and the
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TABLE 2 | Univariate analysis related to 30-day mortality.

Variables Statistics OR (95% CI) p-value

Age (year) 77.26 ±

12.26

1.08 (1.05,

1.11)

<0.0001

Gender

Male 397 (45.32%) Reference

Female 479 (54.68%) 1.34 (0.85,

2.12)

0.2

ACSC (mg/dL) 9.56 ± 0.43 2.38 (1.50,

3.78)

0.0002

Serum-sodium

(mmol/L)

139.42 ±

3.56

1.05 (0.98,

1.12)

0.2

Serum-glucose

(mmol/L)

6.91 ± 2.22 1.11 (1.03,

1.21)

0.01

Serum-potassium

(mmol/L)

4.13 ± 0.43 1.40 (0.84,

2.32)

0.2

Serum-phosphate (mmol/L) tertiles, n (%)

Tertile 1 (≤0.97) 99 (11.30%) Reference

Tertile 2

(0.98–1.12)

94 (10.73%) 1.60 (0.65,

3.95)

0.3

Tertile 3 (≥1.13) 111 (12.67%) 1.44 (0.60,

3.50)

0.4

Not recorded 572 (65.30%) 0.94 (0.44,

1.97)

0.9

Serum-magnesium (mmol/L) tertiles, n (%)

Tertile 1 (≤0.78) 102 (11.64%) Reference

Tertile 2

(0.79–0.84)

98 (11.19%) 1.05 (0.41,

2.63)

0.9

Tertile 3 (≥0.85) 113 (12.90%) 1.63 (0.71,

3.74)

0.3

Not recorded 563 (64.27%) 0.86 (0.42,

1.76)

0.7

Diabetes, n (%)

No 801 (91.44%) Reference

Yes 75 (8.56%) 0.79 (0.33,

1.89)

0.6

Hyperlipemia, n (%)

No 842 (96.12%) Reference

Yes 34 (3.88%) - §

Hypertension, n (%)

No 637 (72.72%) Reference

Yes 239 (27.28%) 0.54 (0.30,

0.97)

0.04

Atrial fibrillation/atrial flutter, n (%)

No 646 (73.74%) Reference

Yes 230 (26.26%) 1.52 (0.94,

2.45)

0.08

Heart failure, n (%)

No 850 (97.03%) Reference

Yes 26 (2.97%) 6.46 (2.83,

14.74)

<0.0001

Renal insufficiency, n (%)

No 835 (95.32%) Reference

Yes 40 (4.57%) 3.91 (1.87,

8.14)

0.0003

(Continued)

TABLE 2 | Continued

Variables Statistics OR (95% CI) p-value

Chronic obstructive pulmonary disease (%)

No 864 (98.63%) Reference

Yes 12 (1.37%) 3.18 (0.84,

11.98)

0.09

Coronary heart disease, n (%)

No 831 (94.86%) Reference

Yes 45 (5.14%) 1.17 (0.45,

3.06)

0.7

Cancer, n (%)

No 859 (98.06%) Reference

Yes 17 (1.94%) 2.03 (0.57,

7.21)

0.3

Malnutrition, n (%)

No 857 (97.83%) Reference

Yes 19 (2.17%) 1.10 (0.25,

4.83)

0.9

Dehydration, n (%)

No 842 (96.12%) Reference

Yes 34 (3.88%) 0.90 (0.27,

3.00)

0.9

Pneumonia, n (%)

No 836 (95.66%) Reference

Yes 40 (4.57%) 7.41 (3.76,

14.61)

<0.0001

Paralysis, n (%)

No 790 (90.18%) Reference

Yes 86 (9.82%) 1.78 (0.94,

3.36)

0.08

Epilepsy, n (%)

No 868 (99.09%) Reference

Yes 8 (0.91%) - §

Cognitive disorder, n (%)

No 848 (96.80%) Reference

Yes 28 (3.20%) 0.34 (0.05,

2.51)

0.3

Aphasia, n (%)

No 813 (92.81%) Reference

Yes 63 (7.19%) 2.39 (1.22,

4.68)

0.01

Data are expressed as OR (95% CI) p-value. ACSC, albumin-corrected serum calcium.
§The model failed because of the small sample size.

result showed that ACSC was independently associated with 30-
day mortality (OR = 2.38, 95% CI 1.50–3.78). The result in the
Model I also revealed that ACSC was independently related to
30-day mortality (OR = 2.52, 95% CI 1.52–4.18) after adjusting
for age and gender. Moreover, the result was similar in the Model
II adjusted for covariates such as age, gender, serum glucose,
hypertension, atrial fibrillation/atrial flutter, renal insufficiency,
heart failure, chronic obstructive pulmonary disease, pneumonia,
paralysis, and aphasia (OR = 2.43, 95% CI 1.43–4.12). In Model
III which additionally adjusted for serum-phosphate tertiles,
serum-magnesium tertiles, cognitive disorder, and epilepsy based
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on Model II, the result was also robust (OR = 2.77, 95% CI
1.59–4.84) (Table 3).

Sensitivity Analysis
The results of the linear trend tests of the four models all showed
that higher ACSC quartile groups were significantly related to an
increased risk of 30-daymortality. And the p-values for the trends
in the crude model, Model I, Model II, and Model III were 0.002,
0.01, 0.03, and 0.02, respectively (Table 3).

An E-value was calculated to assess the sensitivity to
unmeasured confounding. The primary findings were stable
unless an unmeasured confounder existed and was highly
positively related to ACSC (OR≥ 4.29) and 30 day-mortality (OR
≥ 4.29).

Curve Fitting and Two-Piecewise Linear
Regression Model of ACSC and 30-Day
Mortality
Curve fitting and two-piecewise linear regression analysis
were used to investigate a potential non-linear association
between ACSC and 30-day mortality. The result of curve fitting
adjusted for age, gender, serum glucose, hypertension, atrial
fibrillation/atrial flutter, renal insufficiency, heart failure, chronic
obstructive pulmonary disease, pneumonia, cognitive disorder,
epilepsy, paralysis, and aphasia showed a curve that continued
to rise (Figure 2), and the results for the other three models
were the same (Supplementary Figure 1). Furthermore, despite
two different effective sizes based on the demarcation point (9.6
mg/dl) of the curve fitting was observed in the two-piecewise
linear regression analysis adjusted according to Model II, the
p-value for the likelihood ratio test was 0.7 (Table 4).

The other three models showed similar results and the p-
values for the likelihood ratio test were all >0.05 (Table 4). Thus,
no threshold effect was observed according to the demarcation
point, indicating that the relationship between ACSC and 30-day
mortality was linear.

DISCUSSION

This study revealed an appreciable positive association between
ACSC and 30-day mortality in IS patients. The relevant results
were also significant after adjustment of the three different
models with potential confounding factors. ACSC was then
translated into a categorical variable (quartile) to analyze the
sensitivity of the results, and the results were stable (OR values
gradually increased significantly, from the second to the fourth
quartile, and the values of p for trend were <0.05 in the
four models). Furthermore, the results of curve fitting and
the two-piecewise linear regression model revealed a stable
linear relationship.

Despite the pivotal role of calcium ions in neuronal damage
after ischemic events having been demonstrated as early as
1998 (26), few studies have focused on the correlation between
baseline serum calcium and the clinical outcome in patients with
IS. In a retrospective cohort study involving 173 IS patients,
Buck et al. (9) explored between admission serum calcium

and infarct volumes on diffusion-weighted imaging and their
results revealed that high serum calcium levels were related
to small cerebral infarct area and good outcomes. The study
of Buck et al. (9) adjusted for serum glucose, blood pressure,
co-morbidities, and stroke subtype in the final model, but
serum albumin which might affect the serum calcium level was
not considered. However, another study based on the Virtual
International Stroke Trials Archive demonstrated that elevated
72–96-h serum calcium levels are related to 3-month functional
outcome, but earlier (<4.5 h) serum calcium is not associated
with the functional outcome (10). The result revealed that serum
calcium levels can reflect a secondary epiphenomenon of stroke.
However, the variation of intra-individual calcium levels, in
reality, is ∼2% (27), and the transportation of extracellular into
neuronal cells would not significantly alter serum calcium levels.
In 2010, an Israeli clinical study including 784 patients revealed
that too high and too low serum calcium levels were both
correlated with long-term mortality in female stroke patients
(11). Moreover, a Korean cohort study that included 1915 IS
patients showed that elevated admission ACSC levels are related
to a short-time functional outcome and long-term mortality in
IS patients (12). Admission serum calcium and ACSC were both
included in the analysis, and the results of ACSC showed a
significantly increased risk of all-cause death with the ACSC level
elevating, but there were no positive results for serum calcium.
Given the physiologic characteristic that more than 50% of
calcium ions are combined with albumin and the difficulty for the
measurement of ionized calcium in clinical practice, ACSCmight
be a better parameter than serum calcium to assess the effect
of calcium. Most recently, a China national stroke cohort study
demonstrated a high risk of long-term mortality of IS patients
in the top quartile group of ACSC levels, with no statistical
difference between patients of different genders (13).

Heterogeneity between the various study populations may
have led to the inconsistency in the findings. Epidemiologic
evidence showed that the incidence and mortality of stroke
differed in various populations (14), in addition to calcium
metabolism in different ethnicity (15). It was noteworthy that
the relationship between serum calcium level and risk of stroke
in Swedish and Korean populations also showed opposite
results (7, 8). This study added evidence of the correlation
between ACSC and clinical outcomes in IS patients from a
different populations. Compared with other countries at a similar
economical level, Nordic countries were with cold climate (28),
short sunshine time (29), and plant-based diet pattern (30)
which may impact the vitamin-D intake and serum calcium
level. However, due to the nature of a retrospective study, the
ethnicity, diet, climate, and environment of the selected sample
group could not be included in the analysis. Prospective, large
sample size studies that included these population characteristics
are required in the future to accurately explore the risk range of
serum calcium for Norwegian IS patients. In addition, due to
the raw data of this study are from a large emergency cohort,
ACSC may have a broad application prospect for IS patients
admitted to emergency departments especially in primary or
smaller Emergency Departments as a brief blood biomarker that
could be quickly obtained at admission. Moreover, the causality
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TABLE 3 | Multivariate regression analysis of ACSC and 30-day mortality.

Exposure Crude model Mode I Mode II Model III

ACSC (continuous) 2.38 (1.50, 3.78) 2.52 (1.52, 4.18) 2.43 (1.43, 4.12) 2.77 (1.59, 4.84)

ACSC quartiles

Quantile 1 Reference Reference Reference Reference

Quantile 2 1.49 (0.72, 3.07) 1.38 (0.66, 2.90) 1.23 (0.56, 2.69) 1.22 (0.56, 2.69)

Quantile 3 1.27 (0.59, 2.71) 1.25 (0.57, 2.70) 1.16 (0.51, 2.65) 1.17 (0.51, 2.67)

Quantile 4 2.69 (1.38, 5.22) 2.32 (1.17, 4.63) 2.13 (1.04, 4.38) 2.21 (1.07, 4.56)

P for trend 0.002 0.01 0.03 0.02

Data are expressed as OR (95% CI) p-value. ACSC, albumin-corrected serum calcium (mg/dl); ACSC, quantile 1: ≤9.26 mg/dl; quantile 2: 9.30–9.50 mg/dl; Quantile 3: 9.54–9.74

mg/dl, and quantile 4: ≥9.78 mg/dl.

Crude model: not adjusted.

Mode I: adjusted for age and gender.

Mode II: adjusted for age, gender, serum glucose, atrial fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive pulmonary disease, cancer, pneumonia, paralysis,

and aphasia.

Model III: adjusted for age, gender, serum glucose, serum-phosphate tertiles, serum-magnesium tertiles, atrial fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive

pulmonary disease, cancer, pneumonia, paralysis, aphasia, cognitive disorder, and epilepsy.

FIGURE 2 | Multivariate adjusted smooth curve-fitting for association between ACSC and 30-day mortality. Same confounder factors as in model III: age, gender,

serum glucose, serum-phosphate tertiles, serum-magnesium tertiles, atrial fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive pulmonary

disease, cancer, pneumonia, paralysis, aphasia, cognitive disorder, and epilepsy, were adjusted. The red line represents the best-fit line, and the blue lines are 95%

CIs. The potential demarcation point was 9.6 mg/dl according to the smoothing spline plots.

of admission serum calcium level and short-termmortality could
not be determined in this study. If future studies can demonstrate
that admission elevated serum calcium cause increasedmortality,
clinical treatment including intravenous rehydration, enhancing
kidney clearance of calcium (loop diuretics, calcitonin, and
haemodialysis), calcium channel blocker, and limiting calcium

and Vitamin D supplementation, might be beneficial to improve
ischemic stroke patient outcomes.

The results of this study were compatible with the results
of the previous study on the Chinese cohort (13). This study
revealed that higher baseline ACSC levels were associated with
30-day mortality in IS patients. After processing ACSC as a
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TABLE 4 | Two-piecewise linear regression analysis for ACSC and 30-day mortality.

ACSC (mg/dL) Crude model Model I Model II Model III

<9.6 2.97 (0.85, 10.35) 2.21 (0.62, 7.88) 1.90 (0.51, 7.16) 2.03 (0.52, 7.83)

≥9.6 2.18 (1.14, 4.17) 2.63 (1.30, 5.31) 2.62 (1.26, 5.47) 3.17 (1.47, 6.84)

P-value for likelihood ratio test 0.7 0.8 0.7 0.6

Data are expressed as OR (95% CI) p-value, ACSC, albumin-corrected serum calcium (mg/dl).

Crude model: not adjusted.

Model I: adjusted for age and gender.

Model II: adjusted for age, gender, serum glucose, atrial fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive pulmonary disease, cancer, pneumonia, paralysis,

and aphasia.

Model III: adjusted for age, gender, serum glucose, serum-phosphate tertiles, serum-magnesium tertiles, atrial fibrillation/atrial flutter, renal insufficiency, heart failure, chronic obstructive

pulmonary disease, cancer, pneumonia, paralysis, aphasia, cognitive disorder, and epilepsy.

categorical variable (quartiles), our results demonstrated that the
top quartile group of ACSC levels most significantly increased
the 30-day mortality. This result was also in agreement with the
recent study from China (13), whose outcome is 1-year mortality
(top quartile group, HR= 1.56, fully adjusted model). Moreover,
previous studies had also demonstrated potential correlations
between low serum calcium levels and cerebral infarct volume
and short-term functional outcome, and U-shape relationship
between baseline serum calcium and long-term mortality were
shown by Appel et.al. Thus, we used curve fitting and the two-
piecewise linear regression analyses to more accurately explore
the relationship in this study. The results illustrated a linear
relationship without threshold effect between ACSC level and
30-day mortality in IS patients, unlike the non-linear result of a
previous study from the study of Appel et al. (11). In addition
to differences in study populations, the study by Appel et al.
(11) included both ischemic and hemorrhagic stroke patients,
and different mediating mechanisms between serum calcium and
mortality may account for their results, but this possibility needs
to be verified by further studies.

Although extant studies demonstrated that high serum
calcium levels were significantly associated with the risk of
stroke (7) and clinical outcomes (12, 13), the pathophysiological
mechanisms remain undefined. Previous studies revealed the
key role of serum calcium in the promotion of vascular
calcification, which is a complex process including the promotion
of osteogenic/chondrogenic differentiation, vesicle release, cell
apoptosis, loss of inhibitors, and extracellular matrix degradation
(31, 32), leading to atherosclerosis. Thus, elevated serum calcium
levels may accelerate the process of atherosclerosis, cardio-
cerebrovascular calcification, and plaque rupture which has been
associated with poor clinical outcomes (33–35). In addition,
calcium ion is a crucial intracellular messenger, and plays a
key role in neuronal damage and cell death (26). Furthermore,
mitochondrial damage caused by high calcium concentration
may be another mechanism (36). Moreover, recent research
has shown that calcium ions could affect the cortical spreading
depolarization after ischemic injury by regulating microglia
activity (37). The association between elevated extracellular
serum calcium levels and microglial calcium overload leading to
cortical spreading depolarizations may explain the relationship
between serum calcium levels and poor IS outcome. However, the

inconsistent results of different studies suggested that there were
more complicated mechanisms are needed to explain the effects
of different ranges of serum calcium on all-cause mortality for IS
patients, and the specific mechanisms need to be further studied.

This study has several advantages. First, the results of
univariate analysis, regression coefficient change, and previous
literature were used to select the covariates. Second, curve fitting
and two-piecewise linear regression were used to explore a
potential non-linear relationship, as shown in a previous study.
Third, one crude model and four models adjusted with potential
variables were used to test the stability of the results. Finally,
ACSC was taken as a continuous variable and categorical variable
into the multiple regression equation to avoid the contingency
of the analysis, and the sensitivity analysis and trend test
were used.

However, the following limitations exist. First, owing to the
retrospective nature of this study, the non-inclusion of patients
with missing ACSC information or wrong death information
would lead to selection bias. Thus, the baseline information
between the included group and the excluded group was
compared, and the results showed no significant differences
between the groups (Supplementary Table 2). Second, even
though the ACSC level was calculated according to the standard
formula, since the relationship between serum albumin and
serum calcium could be more complex in the disease state, in
addition to some studies having underlined that this formula
could overestimate calcium levels (38, 39), further studies
are needed to explore the actual relationship among serum
calcium, serum albumin, and 30-day mortality. Though first-
time laboratory results at admission, which are more likely to
reflect the initial state of the patient at the onset, were used,
it would be better to examine the dynamic changes in ACSC
in future studies to understand the potential mechanism of
the associations. Because of the retrospective study design, we
could not confirm the time of blood collection, which will
influence the ACSC level. Thus, further prospective studies
with predesigned identical examination times are required.
Third, the presence of unmeasured confounders could not
be excluded. Since the secondary analysis originated from a
retrospective cohort, variables that were not collected could
not be adjusted. E-value was used to explore the potential for
unmeasured confounding between ACSC and 30-day mortality
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and the result showed that an unmeasured confounder was
unlikely to explain the entirety of the mortality effect. Pre-stroke
medications such as calcium and vitamin D supplements might
affect the level of admission to ACSC, and patients with chronic
comorbidities were more likely to have a medication history. A
stratification analysis was performed on comorbidity and non-
comorbidity subgroups, revealing that the results remained stable
in both subgroups. This means that the results remain stable
even in the non-comorbidity patients who may be less likely
to take medication before stroke (Supplementary Table 3). In
addition, given that the medication treatment in the hospital
would tend to a bias toward the null, it is postulated that
the unmeasured confounding of medication treatment in the
hospital might underestimate the observed effect. Neurological
function (NIHSS score or Norwegian trial Scandinavian Stroke
Scale), IS subtypes, and functional status before stroke are
important information to evaluate the outcome of stroke
patients. Therefore, common complications associated with
neurological function including paralysis, epilepsy, cognitive
disorder, and aphasia were additionally adjusted, and the
results were also robust after adjustment (Model III). Moreover,
some studies have revealed a negative association between
serum calcium at the baseline and admission neurological
function (9, 40). Therefore, adjustment for the neurological
function tends to elevate the estimated effect. Finally, the
participants in this study were represented by the Norwegian
population, and the findings could not necessarily apply to
other populations.

CONCLUSIONS

Admission albumin-corrected serum calcium in ischemic stroke
patients was positively correlated with 30-day mortality, and the
relationship between them was almost linear.
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