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Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH)

are features of cerebral small vessel disease which can be seen in brain

magnetic resonance imaging (MRI). Given the associations and proposed

mechanistic link between PVS and WMH, they are hypothesized to also have

topological proximity. However, this and the influence of their spatial proximity

on WMH progression are unknown. We analyzed longitudinal MRI data from

29 out of 32 participants (mean age at baseline = 71.9 years) in a longitudinal

study of cognitive aging, from threewaves of data collection at 3-year intervals,

alongside semi-automatic segmentation masks for PVS and WMH, to assess

relationships. The majority of deep WMH clusters were found adjacent to or

enclosing PVS (waves−1: 77%; 2: 76%; 3: 69%), especially in frontal, parietal,

and temporal regions. Of the WMH clusters in the deep white matter that

increased between waves, most increased around PVS (waves−1–2: 73%; 2–3:

72%). Formal statistical comparisons of severity of each of these two SVD

markers yielded no associations between deep WMH progression and PVS

proximity. These findingsmay suggest some deepWMH clusters may form and

grow around PVS, possibly reflecting the consequences of impaired interstitial

fluid drainage via PVS. The utility of these relationships as predictors of WMH

progression remains unclear.

KEYWORDS

perivascular spaces, Virchow-Robin Spaces, white matter hyperintensities, aging,

longitudinal, MRI, brain, small vessel disease

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.889884
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.889884&domain=pdf&date_stamp=2022-08-24
mailto:m.valdes-hernan@ed.ac.uk
https://doi.org/10.3389/fneur.2022.889884
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.889884/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Barnes et al. 10.3389/fneur.2022.889884

Introduction

Enlarged perivascular spaces (PVS) and white matter

hyperintensities (WMH) are two of the most common

neuroradiological signatures of cerebral small vessel disease

(cSVD) (1) in older age, a condition resulting from pathological

processes affecting the small arteries, veins, and capillaries

in the brain (2). cSVD is identified by the coexistence of

microhaemorrhages, WMH, and/or lacunes/lacunar infarcts,

usually accompanied by enlarged PVS, in brain magnetic

resonance imaging (MRI) scans. PVS are fluid-filled spaces that

surround small penetrating blood vessels (1), which provide

a route for the clearance of brain waste products (3). When

enlarged, they become visible in brain MRI with the appearance

of small linear or round structures depending on how they

are positioned (i.e., parallel or perpendicular) with respect to

the imaging plane. The cause of PVS enlargement is not fully

understood but is thought to be related to impaired fluid

drainage (4), as a consequence of several pathological processes

that affect the cerebral microvasculature, including blood–

brain barrier dysfunction, vessel stiffening, and reduced vessel

pulsatility (5, 6). MRI-visible PVS, although seen also in scans

of healthy adults without cSVD, have been associated with age,

vascular risk factors, especially hypertension (7, 8), and WMH

(1). WMH, on the contrary, are considered neuropathological

features and appear in a wide spectrum of disorders. They have

traditionally been associated with de-/dysmyelination processes

and axonal degeneration (9), but advances in MRI have revealed

that their presence may also reflect changes in interstitial fluid

flow and increased water content in the white matter, especially

in the earlier stages of cSVD (10). Like PVS, our understanding

of WMH pathogenesis is poor, but they are strongly associated

with vascular risk factors (11, 12), other imaging features of

cSVD (13), cognitive decline, gait disturbance, and an increased

risk of stroke and dementia (14).

Although PVS and WMH are commonly seen together in

brain MRI scans of cognitively normal older individuals, they

are clinically silent, and only a few studies have analyzed their

relationship with conflicting results. Thus far, these studies

have based their analyses on PVS and WMH severity, as

determined by visual rating scores, for which subjectivity may

have contributed to the conflicting findings. For instance,

two cross-sectional studies found an association between the

severity of enlarged PVS with WMH in two different clinical

groups: lacunar stroke patients (15) and community-dwelling

septuagenarian individuals (16); yet a recent meta-analysis

including these studies and six others found no statistically

significant associations between the two imaging markers (8).

Computational methods have been developed to quantify

a PVS burden from MRI scans, helping to overcome the

subjectivity associated with these scoring systems [e.g., (17–

22), for mentioning just a few]. A recent study found stronger

positive associations between computationally derived PVS

metrics and WMH severity than visual scores (23). These cross-

sectional associations suggest that widening of PVSmight reflect

small vessel endothelial dysfunction and impaired interstitial

fluid drainage that contributes to a greater WMH burden

and accumulating brain damage in aging and cSVD (23).

Longitudinal associations between these PVSmetrics andWMH

have not been studied. However, a high burden of PVS in the

basal ganglia (determined by visual rating) has been associated

with WMH progression after adjusting for age, sex at birth, and

vascular risk factors (24).

There is a growing interest in topological relationships

between PVS and WMH. Understanding how PVS and WMH

are spatially related to one another in the brain may reveal

important insights into their underlying mechanisms and

formation. It has been observed that WMH appear to form

around PVS in stroke patients (25), typically in the parietal

and posterior and lateral temporal regions. A recent study

(26) explored the topological associations between WMH and

PVS in randomly selected WMH clusters identified in a cross-

sectional sample of 136 adults without previous history of

stroke, brain trauma, or any neurological or systemic disease and

reported that most of the randomly selected deepWMH clusters

analyzed were spatially connected to PVS. But longitudinal

data are required to directly characterize the within-person

temporal dynamics of the processes related to the evolution

of WMH and PVS and their possible synergy. The findings

from Huang et al. (26), if confirmed in a longitudinal and

more heterogeneous sample in terms of vascular disease, would

provide further evidence to support a mechanistic link between

both cSVD features and reveal whether PVS could predictWMH

progression. Being able to identify patients with WMH that

are more likely to progress may help to prevent development

of associated neurological symptoms and conditions through

earlier clinical intervention (27). We hypothesize that in

cognitively normal older adults, (1) more deep WMH clusters

would probably be spatially close to PVS (than not close) and

increase in size around them and (2) those WMH clusters close

to PVS, with time, will increase in size more than the WMH

clusters that are distant from PVS.

Materials and methods

Subjects and clinical data

We utilized brain MRI, clinical, and demographic data

from a randomly selected sample of participants of the

Lothian Birth Cohort 1936 Study (https://en.wikipedia.org/wiki/

Lothian_birth-cohort_studies), a longitudinal study of cognitive

aging comprising community-dwelling individuals from in and

around Edinburgh born in 1936. All participants provided

written consent to take part in the study under protocols

approved by Lothian (REC 07/MRE00/58) and Scottish
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Multicentre (MREC/01/0/56) Research Ethics Committees. The

methods used forMRI acquisition and clinical data in this cohort

have been reported previously (28–30). Participants had their

first brain MRI scan at the second wave of testing at a mean

age of 72.6 years and subsequent MRI examinations spaced at

3-year intervals (30). For this study, we randomly (i.e., using

a random number generator function in MATLAB R2019b)

selected a sample of 32 participants with brain MRI available

for the first three consecutive scanning waves (i.e., a total of 96

individual MRI scans) with high-quality image data. Vascular

risk factors, which included presence or absence of hypertension,

hypercholesterolaemia, diabetes mellitus, stroke, and history of

cardiovascular disease, were self-reported at each wave (30).

Image acquisition

All brain images were acquired at the Western General

Hospital of Edinburgh in a GE Signa Horizon HDx 1.5-T

clinical scanner (General Electric, Milwaukee, WI) following the

research acquisition protocol described in Wardlaw et al. (29)

and ensuring full-brain coverage. In brief, the 3D T1-weighted

sequence (160 slices) had an acquisition matrix of 192× 192 and

a voxel size of 1× 1× 1.3 mm3. The axial T2-weighted fast spin

echo sequence (TR/TE= 11,320/102ms, 80 slices) was acquired

with a 256 × 256 matrix and a voxel size of 1 × 1 × 2 mm3.

The axial fluid-attenuated inversion recovery (FLAIR) fast spin

echo sequence (TR/TE/TI = 9,000/140/2,200ms, 40 slices) was

acquired with a 256 × 192 matrix and a voxel size of 1 × 1 × 4

mm3. The axial T2∗-weighted gradient echo sequence (TR/TE=

940/15ms, 80 slices) was also acquired with a 256× 192 matrix,

but with a voxel size of 1 × 1 × 2 mm3. None of the sequences

had an inter-slice gap.

Image processing

Each study participant’s image data were processed and

checked individually. For each participant, all image sequences

from all waves were co-registered to the T2-weighted image

acquired in the first scanning wave using rigid-body registration

(linear, six degrees of freedom) through FSL-FLIRT (31).

We used existent binary masks of WMH from the three

waves and PVS in the centrum semiovale from the first

imaging wave generated as previously published (23, 32, 33)

(Supplementary Figure 1). In brief, for the first scanning wave

(i.e., referred hereby as wave 1) WMH masks were generated

using a multispectral method that combines T2∗-weighted

and FLAIR images mapped in the red–green color space and

quantised to facilitate a robust thresholding using minimum

variance quantisation (32). For the other two waves, WMH

binary masks were generated from a statistical analysis of the

FLAIR-normalized intensities, seeking full compatibility with

the semi-automatic approach applied in the first wave, and a

higher level of automation: while in the multispectral approach

the Gaussians that describe the intensity distribution of the

tissue classes in the FLAIR image were adjusted by the observer

aided by a combination with another T2-weighted-based image,

in the other this adjustment was performed automatically.

In brief, hyperintense voxels on FLAIR were identified by

thresholding intensity values equal to 1.69∗standard deviation

above the mean, using an adjusted implementation from

Zhan et al. (34). The resulting hyperintense areas unlikely

to reflect pathology (i.e., artifacts and cortex) were removed

automatically using a lesion distribution template generated

from the segmentation results of the first wave. Further

refinement was achieved by applying Gaussian smoothing,

followed by the removal of voxels with intensity values below

0.1 and z-scores below 0.95. All WMHmasks were checked and

manually edited to ensure the segmentation was as accurate as

possible. Bland–Altman analyses yielded a mean WMH volume

difference (SD) of 0.38 (1.29) ml and an intra-class correlation

coefficient of 0.938, in 15 randomly selected individual datasets

that were segmented with both implementation approaches.

Voxel-wise reliability analyses comparing the WMH masks

manually edited after applying both approaches show only

scattered differences in the periventricular boundaries and

Dice similarity coefficient of 0.6 (SD = 0.128), similar to the

published inter-observer differences using the same method

(35). No clusters (i.e., of three or more voxels) of differences

were identified.

Segmentation masks for PVS in the deep normal-appearing

white matter (i.e., excluding the internal and external capsules

that are part of the region clinically defined as basal ganglia

for the purposes of PVS identification) were generated using

a computational method described previously (23, 36), on T2-

weighted images. Succinctly, images were resampled from 256

× 256 × 80 to 256 × 256 × 160, using spline interpolation, to

perform the PVS segmentation in images with 1-mm3 isotropic

voxels. According to Wardlaw et al. (1) and Valdés Hernández

et al. (37), PVS were identified as tubular structures with lengths

between 3 and 50mm. Tubular structures in the “isotropic”

T2-weighted images were enhanced using the Frangi filter in

its 3D version, optimized for this purpose with the parameters

described by Ballerini et al. (36), which, according to Ballerini

et al. (23), enhances structures with widths above 0.5 and

below 2.5 voxels. The output from the filter was thresholded,

binarised, and quantified in the region of interest. We used

3D connected component analysis to computationally identify

and assess the PVS. Segmentation masks for PVS inside WMH

were generated using the same method (i.e., thresholding the

output of the 3D Frangi filter) but in a fused image obtained

by subtracting the FLAIR image from the T2-weighted image

after both being corrected for bias-field inhomogeneities using

FSL-FAST (38) and their intensities being normalized. This is

to discern whether the low-intensity voxels within the WMH
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FIGURE 1

Examples of deep WMH in the baseline scan that would be classified as “close” and “not close” to baseline PVS when determining

cross-sectional topological relationships (segmentation masks for WMH in cyan and PVS in yellow, overlaid on FLAIR MRI).

in FLAIR correspond to the PVS-like hyperintense structures

identified using the T2-weighted image. Combining sequences

to increase distinction of PVS-like structures is a well-established

procedure (17, 21). The images were individually checked

for noise and other artifacts that would affect accuracy of

PVS segmentation. To avoid errors in misclassifying small

lacunes resembling PVS as PVS, neuroradiological reports

were checked.

Visual assessments

Adjacency/closeness (or not) of PVS with WMH clusters

[minimum size 3mm diameter according to Wardlaw et al. (1)]

was recorded while/by visually inspecting all slices where PVS

were segmented. Initially, the inspection was done in axial slices,

and they were double-checked in all radiological orientations

throughout the sample in all waves. All visual assessments,

performed withMRIcron v1.0.20190902 (https://www.nitrc.org/

projects/mricron/), were blinded to visual rating scores for

PVS and WMH and participants’ clinical and demographic

information. These were repeated by the same observer to

ensure a perfect intra-observer agreement [mean differences

in PVS count ± 95% confidence interval are equal to −0.207

± 1.637, intra-class correlation coefficient (ICC) 0.99917 for

wave 1 and −0.034 ± 1.361, ICC = 0.99961 for wave 2, see

Bland–Altman plot in Supplementary Figure 2]. Deep WMH

clusters were defined as regions or voxel clusters of WMH

not contiguous with the WMH located in the periventricular

lining. Periventricular WMH caps surrounding the horns of

the lateral ventricles were counted as deep WMH clusters if

they extend more than 13mm from the ventricular surface

into the deep white matter (39). Cross-sectional topological

relationships were assessed on the first scanning wave. Each

deep WMH cluster was recorded and classified as either “close”

or “not close” to a perivascular spaces (PVS) in the first

scan in co-registered T2-weighted and FLAIR images after

superimposing the PVS and WMH binary masks in different

contrasting colors (Figure 1). Deep WMH were defined as

“close” to a PVS if their segmentation was overlapping or

contiguous with a PVS and “not close” if it was not overlapping

or contiguous. Adjacent slices were carefully inspected to ensure
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FIGURE 2

Examples of deep WMH for each of the di�erent categories used to determine longitudinal topological relationships (segmentation masks for

WMH in cyan, change in WMH in violet, and PVS in yellow, overlaid on FLAIR MRI).

not to miss or double-count any PVS. Each deep WMH cluster

was also labeled, and the region of the brain it was found in

was recorded—either frontal, parietal, temporal, or occipital,

determined by examining lobar segmentations from a digital

anatomical atlas (40).

To identify topological relationships longitudinally, the total

number of deep WMH clusters was counted again. This time,

each was classified according to how their morphology changed

relative to baseline PVS between consecutive waves (e.g., waves

1 and 2 and waves 2 and 3) in each participant. A further

mask that represented the change in WMH between waves was

also overlaid in the FLAIR image to facilitate this assessment

(Figure 2). These relationships were defined as follows: “increase

around”—deep WMH cluster increased so that more voxels

of the WMH mask became contiguous with a PVS; “increase

close”—deep WMH cluster previously considered “close” to a

PVS, increased in size, but no more of it became contiguous

with a PVS (i.e., the adjacency between both—PVS andWMH—

masks observed was owed to the same number of voxels

as in the previous wave); “increase not close”—deep WMH

cluster increased but it was still not contiguous with a PVS;

and “no increase”—no visible change in the deep WMH

cluster (Figure 2). To avoid WMH cluster change in size being

influenced by differences in WMH segmentation algorithms,

this was only considered if the change was perceived as nearly

having doubled (or halved) or more the original cluster size.

Again, all deep WMH clusters counted were recorded according

to the lobar brain region.

Statistical analysis

A statistical analysis was performed in R (version 3.6.2).

First, the counted data per overall individual brain scan were

summarized to show the median count and distribution within

the sample, per category. Cross-sectional and longitudinal

topological relationships were analyzed by calculating

percentages per category, both overall and per brain region. To

allow a longitudinal analysis of the cross-sectional relationships,

a change in count of deep WMH clusters “close” and “not close”

to baseline PVS between waves was simplified into a binary

variable where “1” indicates an increase in the number of deep

WMH clusters and “0” indicates otherwise (i.e., no change or

a decrease). A binary logistic regression with random effects

was used to model the association between the change in the

number of deep WMH clusters and their location relative

to a PVS. Random effects accounted for variation between

participants and for correlation within participants, i.e., an

individual could contribute more than one row of data to

the analysis. Data per overall brain were used, and separate

models were performed for waves 1–2 and waves 2–3. In

addition to unadjusted models, we evaluated models that

corrected for sex at birth and vascular risk factors, including

hypertension, hypercholesterolaemia, diabetes mellitus, and

history of cardiovascular disease, with a maximum of three

predictors per model. We estimated our sample size guided by

the only study that visually assessed the topological relationships

between WMH and PVS (26), which randomly selected 600
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deep WMH clusters from a cross-sectional sample for analysis.

In our sample, at baseline (i.e., only in wave 1), the total number

of deep WMH clusters counted surpasses 600. Resources

available for this study allowed us to process data from 29

individuals. Nevertheless, given the exploratory nature of this

study, the complexity, and nature of the assessments, to ensure

reproducibility, comparability, trustworthiness, and objectivity

in the analyses, this estimate was considered appropriate (41).

We consider the primary value of this study to be an indication

of feasibility. Moreover, although the LBC 1936 Study, which

provided data for the current analysis, enrolls 728 individuals

in its first MRI scanning wave, it is inappropriate to use own

data for a sample size calculation for an analysis with the same

data (41).

To further evaluate whether the spatial relationship between

deep WMH clusters and PVS could have been (or not)

influenced by the PVS burden, we analyzed the R2 value of

the univariate linear regression models that had the number

of PVS close to WMH clusters as independent variables and

the WMH volume at each wave as a dependent variable,

and we further compared these with the R2 values of the

models that have, instead, the PVS volume and the average

PVS size as dependent variables. As R2 measures the strength

of the relationship between the set of independent variables

and the dependent variable, if the spatial relationship between

PVS and WMH is determined by the PVS burden we would

expect higher R2 values (i.e., less variance around the fitted

line) in the models that relate the PVS burden (i.e., total

volume, mean PVS size) to the WMH volume. In addition,

we calculated the density of PVS “close” and PVS “not close”

to WMH at the three scanning waves and conducted a

paired t-test (two-tailed) at each wave comparing the densities

of PVS “close” and PVS “not close”. If our hypothesis on

the existence of a spatial relationship between deep WMH

clusters and PVS is true, the PVS density (i.e., number

per ml) close to deep WMH clusters will be greater than

(and significantly different from) the PVS density not close

to WMH.

Results

Sample characteristics

Data from three participants were excluded due to

inaccuracies in their PVS segmentations mainly due to the

presence of motion artifacts in the T2-weighted images. One

participant was not included in the models performed between

waves 1 and 2 as no deep WMH clusters were counted in either

of these waves. The mean age of the sample at baseline was

71.87 years (SD = 0.38). The follow-up MRI scans from waves

2 and 3 were obtained three and six years later, respectively (i.e.,

TABLE 1 Baseline participant characteristics, n = 29 (CVD =

cardiovascular disease).

Male/Female

Gender 17/12 (58.62%/41.38%)

Deep/Periventricular

WMH Fazekas scores (median [QR1 QR3]) 1 [1 1]/1[1 2]

Diabetes 1 (3.45%)

Hypertension 14 (48.28%)

Hypercholesterolaemia 9 (31.03%)

Stroke 0 (0.00%)

History of CVD 9 (31.03%)

at a mean age ∼75 and 78 years). Table 1 shows the baseline

characteristics of the sample including sex at birth, vascular risk

factors, and Fazekas visual rating scores of WMH.

Cross-sectional topological relationships

Figure 3 illustrates the variations in the cross-sectional

topologies observed. For deep WMH clusters classed as “close”

to a PVS, most bordered a PVS with a small area of overlap

(Figure 3A). Within deep WMH clusters that were classed as

“not close” to a PVS, there was considerable variability in the

distance separating them (Figure 3D). Many of these different

topologies existed simultaneously in the same participant

(Figure 4).

The median count of deep WMH clusters “close” to baseline

PVS (i.e., PVS identified at the first scanning wave) was

greater than the median count of those “not close” at all time

points (Figure 5). The counts were not normally distributed

in this sample, with several participants having zero or very

low counts of deep WMH clusters (see individual data in

Supplementary files). A higher percentage of WMH clusters in

wave 1 were found close to PVS (Table 2). In the rest of the

waves, this pattern was also observed (wave 1: 77% “close,” 23%

“not close”; wave 2: 76% “close,” 24% “not close”; wave 3: n =

69% “close,” 31% “not close”; Figure 6, Table 2). Despite far fewer

deep WMH clusters being counted in the parietal and temporal

regions than in the frontal region (Table 2), the percentages of

these that were found “close” to baseline PVS (i.e., PVS identified

at the first wave) were higher than those found “not close” in

these regions (Figure 7; e.g., wave 1—frontal: 75% “close,” 25%

“not close”; parietal: 81% “close,” 19% “not close”; temporal: 86%

“close,” 14% “not close”). The occipital region was not included

in Figure 7 as only one deep WMH cluster was counted in

wave 1.
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FIGURE 3

Examples of the di�erent topological types observed within the “close” vs. “not close” classification used for describing cross-sectional

topological relationships. (A–C) show variations within deep WMH classed as “close,” while (D) shows variations within those classed as “not

close” (segmentation masks for WMH in cyan and PVS in yellow, overlaid on FLAIR MRI).

Associations between progression of
deep WMH clusters and proximity to PVS
at wave 1

Between waves 1 and 2, the number of deep WMH clusters

changed in 28 participants. There was a median increase of 2

in deep WMH clusters spatially close to baseline PVS (i.e., PVS

detected at wave 1) and 1 in those not close. Between waves

2 and 3, the number of deep WMH clusters changed in all 29

participants. The median change in number spatially close to

a PVS increased in 10, while the median change for those “not

close” increased in 6. Logistic regression models with random

effects found no significant associations between progression

(defined by an increase in number) of deep WMH clusters and

proximity of these clusters to PVS (i.e., either “close” or “not

close”) at wave 1. Table 3 shows the odds ratios, 95% confidence

intervals, and p-values for all models performed.

Longitudinal topological relationships

Figure 8 shows the counts of changes in deepWMH clusters’

morphology in relation to baseline PVS. The percentages of the

different changes between waves 1 and 2 and waves 2 and 3 are

displayed in Figure 9 and Table 4. A greater percentage of deep

WMH clusters increased in size (waves 1–2: 70% increased and

30% did not increase; waves 2–3: 77% increased and 23% did not

increase). Of those that increased, the most frequent change was

an increase in size around the location of the already existent

(i.e., “baseline”) PVS (waves 1–2: 73% “increased around,” 10%

“increased close,” 17% “increased not close”; waves 2–3: 72%

“increased around,” 10% “increased close,” 18% “increased not

close”). When lobar regions were analyzed separately, these

trends were also observed (Figure 10, Table 4). The occipital

region was not included in Figure 10 because, as previously

referred, only one WMH cluster was identified in this region at

wave 1.

Although far fewer deep WMH clusters were counted in the

parietal and temporal regions compared with the frontal region,

we more frequently observed larger WMH clusters forming

around multiple PVS in the parietal and posterior temporal

regions (Figure 11). Deep WMH clusters in the frontal region

were typically smaller in volume with a small area of continuity

with a PVS.

Influence of the PVS burden and WMH
cluster size in the spatial relationships
found

The PVS volume and mean size did not seem

to have influenced the spatial relationships found.
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FIGURE 4

Illustration of several di�erent topological types (circled) existing in the same participant (segmentation masks for WMH in cyan and PVS in

yellow, overlaid on FLAIR MRI).

As shown in the Supplementary data spreadsheet

“PVSandWMHburden_analysis.xlsx,” the R2 value for the

linear regression between number of CSO PVS “close” to WMH

and WMH volume for the scanning wave 1 was 0.484, for wave

2 it was 0.421, and for wave 3 it was 0.542. On the contrary, the

R2 value for the linear regression between CSO PVS volume

and WMH volume for wave 1 was 0.0539, and between mean

CSO PVS size and WMH volume, it was 0.049, thus indicating

that approximately half of the variation in WMH volume at

each wave can be rather explained by the number of PVS “close”

to WMH instead of by the PVS burden. Similar results were

obtained while evaluating the univariate association between

the number of PVS considered “close” or “around” WMH that

increased from waves 1 to 2 (R2 = 0.581) and from waves 2

to 3 (R2 = 0.512), and the WMH volume at waves 2 and 3,

respectively. Paired t-test analysis of the density of PVS “close”

vs. “not close” showed significant differences between both

variables at all waves [wave 1: mean (SD) PVS “close” = 0.114

(0.103) ml−1, mean (SD) PVS “not close” = 0.0349 (0.0406)

ml−1, p = 1.259 × 10−6; wave 2: mean (SD) PVS “close”

= 0.140 (0.117) ml−1, mean (SD) PVS “not close” = 0.0450

(0.0560) ml−1, p = 2.443 × 10−7; wave 3: mean (SD) PVS

“close” = 0.216 (0.163) ml−1, mean (SD) PVS “not close” =

0.100 (0.113) ml−1, p= 1.133× 10−8).

To classify the WMH clusters into “big” or “small” while

avoiding inter-/intra-observer bias, we looked at the deep

Fazekas scores (provided as part of the Supplementary data)

given by the neuroradiologist. As defined in Fazekas et al. (49),

the deep WMH scores are equal to 1 if small punctate and very

few, 2 if bigger and in higher number, and 3 if large and confluent

with the periventricular WMH. From the whole sample, only

one subject (subject no. 16) has deep Fazekas scores equal to 3

and two subjects (subject nos. 7 and 11) have deep Fazekas scores

equal to 2. Therefore, it is unlikely that the spatial relationship
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FIGURE 5

Distribution of counts of deep WMH in waves 1, 2, and 3, found close and not close to baseline (i.e., wave 1) PVS. The points plotted on each

boxplot represent a di�erent participant in the sample, and the numbers inside the boxplots correspond to the median count.

TABLE 2 Total number of deep WMH counted across the sample in

waves 1, 2, and 3 that were found “close” and “not close” to baseline

PVS, per lobar region and overall.

Close (%) Not close (%) Total (%)

Wave 1

Frontal 343 (54.88) 114 (18.24) 457 (73.12)

Parietal 109 (17.44) 26 (4.16) 135 (21.60)

Temporal 25 (4.00) 4 (0.64) 29 (4.64)

Occipital 1 (0.16) 0 (0.00) 1 (0.16)

Overall 479 (76.64) 146 (23.36) 625 (100.00)

Wave 2

Frontal 401 (51.87) 125 (16.17) 526 (68.05)

Parietal 146 (18.89) 42 (5.43) 188 (24.32)

Temporal 34 (4.40) 14 (1.81) 48 (6.21)

Occipital 3 (0.39) 5 (0.65) 8 (1.03)

Overall 585 (75.68) 188 (24.32) 773 (100.00)

Wave 3

Frontal 633 (48.14) 264 (20.08) 897 (68.21)

Parietal 206 (15.66) 74 (5.63) 280 (21.29)

Temporal 60 (4.56) 42 (0.03) 102 (7.76)

Occipital 10 (0.76) 22 (1.67) 32 (2.43)

Overall 909 (69.12) 406 (30.87) 1,315 (100.00)

between WMH and PVS would have been driven by the size of

the WMH clusters.

Discussion

This pilot study in a sample of participants from a

community-dwelling Scottish cohort is the first longitudinal

study to date that evaluated the topological spatial relationship

between PVS and deep WMH clusters. By carefully analyzing

data across six years acquired in three equally spaced time

points, our study provides further insights into this novel area of

research by corroborating the hypothesis that some deep WMH

may increase in size and form around PVS, previously inferred

from cross-sectional data. Our results, therefore, suggest that in

normal aging, WMH formation may be linked to impaired brain

clearance mechanisms in addition to the vascular origin referred

to in the current literature (42). From our observations, it is

possible to infer that worsening interstitial fluid drainage over

time can cause further accumulation of fluid in the white matter

immediately adjacent to where drainage via PVS was previously

impaired. This is consistent with the proposed mediating role

of free water in the brain in the association seen between
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FIGURE 6

Percentages of deep WMH in waves 1, 2, and 3 that were found “close” and “not close” to baseline (i.e., wave 1) PVS.

PVS and deep WMH clusters by a previous cross-sectional

study (26).

Moreover, our results indicate that the spatial relationships

found are not likely to be artificially driven by the PVS volume

and mean size or by the size of WMH clusters. Clinical

reviews have previously proposed that WMHmay preferentially

form around PVS (5, 42). Another review that examined the

pathological evidence for the failure of the brain clearance

mechanisms as a significant cause of the overall pathology found

particularly in the aging brain, stated that enlarged PVS reflect

impaired interstitial fluid drainage and lead to the development

of WMH (43). Our study for the first time provides evidence

to support this claim, by analyzing the spatial proximity,

distribution, and evolution of WMH in relation to PVS in

brain scans from an age-homogeneous cohort representative of

normal aging across 6 years within the eight decade of life.

Previously published data on topological relationships

observed a marked difference between the percentages of WMH

clusters spatially connected and not connected to PVS (26)

when compared with those of our study. However, this may

be due to several differences in study design. The age of the

sample utilized by Huang et al. (26) was younger, with an

inter-quartile range of 56–65 years, compared with that of our

sample, where participants were aged ∼72, 75, and 78 years

when relationships were analyzed. As both PVS and WMH

are independently correlated with increasing age (44, 45), this

may have influenced the differences seen. In terms of vascular

disease, our sample is also more heterogeneous as it includes

individuals with cardiovascular disease and total Fazekas scores

ranging from 1 to 5. Also, different from our study, Huang et al.

analyzed a random sample of deep WMH clusters rather than

all present. While this was more feasible in a larger sample and

allowed better appreciation of relationships in 3D, it may have

introduced within-subject sampling error.

Although our longitudinal analysis revealed an increase in

size of the WMH clusters close to or overlapping with the PVS

identified at the first wave of scanning, our statistical analysis

suggests that the number of deepWMHclusters spatially close to

PVS was no more likely to increase than those spatially not close

and that the location of deepWMH clusters in relation to PVS at

the first scan was not a predictor for WMH progression in this

sample. There are several possible reasons why no statistically

significant associations were found. The baseline scan, obtained

at a mean age close to 72 years, already showed most of

the WMH clusters being located close to PVS, and most of

these clusters experienced a growth over the periods evaluated.

Therefore, it is reasonable that they would appear around or

close to PVS at follow-up scans without necessarily meaning
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FIGURE 7

Percentages of deep WMH in waves 1, 2, and 3 that were found close and not close to baseline PVS in the frontal, parietal, and temporal regions.

TABLE 3 Association between proximity of deep WMH to PVS and

deep WMH progression by binary logistic regression with random

e�ects.

OR

(95% CI; p-value)

Unadjusted Adjusted for sex and

VRF

Wave 1–2

Not close 1.00 1.00

Close 1.93 (0.58–6.83; p= 0.28) 2.44 (0.68–8.82; p= 0.17)

Wave 2–3

Not close 1.00 1.00

Close 4.05 (0.09–176.00; p= 0.47) 2.00 (0.16–25.10; p= 0.59)

OR, odds ratio; 95% CI, 95% confidence interval; VRF, vascular risk factors.

that the proximity to a PVS was related to their enlargement.

The homogeneity of the sample in terms of age compensated

the likelihood of biasedness of the adjusted statistical models, as

age was not a factor needed to account for. Nevertheless, given

the small size of the sample, the number of outcome events

per predictor variable was slightly less than the recommended

10 (46). A Binary logistic regression with random effects was

chosen because the alternatives were deemed beyond the scope

of this study due to the complexity and number of assessments,

which such a small sample size would be unlikely to support.

A larger study would use more sophisticated analysis methods,

such as Poisson’s regression, to fully exploit the count nature of

the data (47). Defining deep WMH clusters’ progression as an

increase in their number for statistical analyses was a further

limitation as it did not take into account change in volume

of individual clusters and the possibility of multiple clusters

coalescing into one over time, which was observed in some cases.

For such a detailed analysis to be performed computationally, it

would have required access to a large “ground-truth” databank

currently non-existent. Also, the analysis of the odds of deep

WMH clusters close to PVS increasing in number to those not

close to PVS is complex as it is unclear what deepWMH clusters

not close to PVS represent. Although their appearance is unlikely

to be related to the consequences of impaired interstitial fluid

drainage, they may be just as likely to increase in number for

different reasons.

Another limitation of our study is the relatively low spatial

resolution of the images for the assessment of these types

of structures (i.e., 1 × 1 × 2 mm3 at 1.5 tesla), which,

despite resampling, may have introduced an error in counting
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FIGURE 8

Distribution of counts of deep WMH that increased around, close and not close to baseline PVS, and did not increase between waves 1 and 2 and

waves 2 and 3. The points plotted on each boxplot represent a di�erent participant in the sample, and the numbers represent the median count.

the PVS that occur parallel to the axial plane. Relying on

segmentation to define the relationships seen, despite improving

the reliability and reproducibility in the assessments, meant that

accuracy of the data collected was dependent on the accuracy

of segmentation, particularly for PVS for which manual edit

of each of these small features individually is impractical and

highly prone to individual observer’s considerations, especially

for cases with a high burden of them. Inaccuracies in the

segmentation of baseline PVS in this cohort as a whole have

been recognized (23), but the sample analyzed was double-

checked visually to ensure quality in the analyses. The reliance

in the segmentation could have also meant that small increase

(or decrease) in the number of voxels (e.g., one or two voxels)

recognized by the algorithm could have been considered an

actual biological change. The filtering method used in the

PVS segmentation is widely recognized for its robustness, and

given the image normalization steps also conducted, an artificial

increase in the number of connected voxels considered PVS is

not highly likely. The change in WMH volume, however, could

have been artificially generated by the algorithms, especially

given the undefined borders of some lesions and the differences

in defining the thresholds by the two methods used to segment

them. To overcome this limitation, the change in the WMH

cluster size was evaluated visually and considered as such only

if this was perceived nearly as two times (or half) or more

the original cluster size. Also, it is not clear whether punctate

WMH that pathology studies recognize as WMH composed

of and characterized by enlarged PVS (48–50) are segmented

as PVS, WMH, or both. This may have also affected how

accurately deep WMH clusters were classified. Lastly, due to

the visual and 3D nature of the assessments, despite the high

intra-observer reliability, one cannot discard the possibility of

potentially mistaken classification ofWMH clusters close to PVS

diagonally across slices, or double counting of the same cluster

in different planes. Once the segmentations are done, distance

from each cluster to PVS masks could have been calculated

computationally, for example, using the Euclidean orManhattan

distances, but anyway they would have needed to be checked

visually, because to avoid considering PVS proximities to more

than oneWMH cluster, arbitrary limits would have needed to be

imposed, complicating the interpretability of the results.

The fact that only one observer performed the visual

assessments limited the sources of variation in the dataset.

Counting all deep WMH clusters is very time-consuming,

especially in participants with a high WMH burden, so the

methodology used here would not be feasible in large samples.

Nonetheless, it proved a useful way of obtaining data on

topological relationships between deep WMH clusters and PVS,

both cross-sectionally and longitudinally, to test our hypotheses.

Due to the novelty of this research, there are no reliably
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FIGURE 9

Percentages of deep WMH that increased around, close and not close to baseline PVS, and did not increase between waves 1 and 2 and waves 2

and 3.

TABLE 4 Total number and percentages of deep WMH counted across the sample that increased around, close and not close to baseline PVS, and

number of those that did not increase between waves 1 and 2 and waves 2 and 3, per region and overall.

Increase around (%) Increase close (%) Increase not near (%) No increase (%) Total (%)

Wave 1–2

Frontal 227 (36.09) 33 (5.25) 62 (9.86) 139 (22.10) 461 (73.29)

Parietal 74 (11.76) 8 (1.27) 12 (1.91) 44 (6.99) 138 (21.94)

Temporal 17 (2.70) 4 (0.64) 2 (0.32) 6 (0.95) 29 (4.61)

Occipital 1 (0.16) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.16)

Overall 319 (50.71) 45 (7.15) 76 (12.08) 189 (30.05) 629 (100.00)

Wave 2–3

Frontal 283 (36.66) 42 (5.44) 79 (10.23) 124 (16.06) 528 (68.39)

Parietal 110 (14.25) 17 (2.20) 23 (2.98) 40 (5.18) 190 (24.61)

Temporal 29 (3.76) 1 (0.13) 4 (0.52) 12 (1.55) 46 (5.96)

Occipital 3 (0.39) 0 (0.00) 2 (0.26) 3 (0.39) 8 (1.04)

Overall 425 (55.05) 60 (7.77) 108 (13.99) 179 (23.18) 772 (100.00)

annotated data to train any machine learning algorithm to

reliably classify large data fully automatically across the whole

brain. Existent automatic classifiers that demand less or no data

at all have a suboptimal accuracy for being applied in clinical

studies or test clinically relevant hypotheses. Therefore, future

research should continue to use the methodology developed for

this study to generate ground-truth data in a larger sample,

reassess the relationships seen, and re-evaluate the utility of the

presented paradigm to determine its usefulness in predicting

WMH progression. Moreover, future studies should include in

the analyses participants with history of previous strokes to

investigate differences in tendencies over time (if they exist)

between individuals who had a stroke against those who did

not. It will be also useful to validate the results against the

percentage overlap between segmentation masks for PVS and

WMH, which would better take into account differences in

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2022.889884
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Barnes et al. 10.3389/fneur.2022.889884

FIGURE 10

Percentages of deep WMH that increased around, close and not close to baseline PVS, and did not increase in the frontal, parietal, and temporal

regions between waves 1 and 2 and waves 2 and 3.

FIGURE 11

Examples of large deep WMH in the parietal region that were found spatially close to multiple PVS (segmentation masks for WMH in cyan and

PVS in yellow, overlaid on FLAIR MRI).
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volume. As described in Materials and Methods section and

in previous publications from this cohort, WMH binary masks

separately for periventricular and deep regions are not currently

available. Therefore, with the data available at present such

computational analysis would have been misleading.

As our findings support the idea that PVS enlargement

(i.e., for PVS to be visible in MRI) may precede WMH

development, future research on better understanding what

causes PVS enlargement would be important. MRI-visible PVS

in the centrum semiovale are linked to amyloid deposition (51,

52); therefore, ways to prevent this would be clinically beneficial.

Conclusion

In this pilot study, more deep WMH clusters were found

spatially close to a baseline PVS than distant, and more than

half progressed with time, increasing around a baseline PVS.

Although this sample is very small, these findings support a

mechanistic link between these two cSVD features that may

improve our understanding of the mechanisms involved in

cSVD and WMH development to help reduce and prevent

associated symptoms and neurological conditions. Formal

statistical comparisons of severity of these two SVD markers

yielded no associations between deepWMHclusters progression

and the location of these clusters relative to PVS. The sample

size should be increased to confirm these associations. Future

research should also explore more feasible ways of analyzing

these relationships (i.e., automatically) and the causes of PVS

enlargement to continue furthering our understanding of the

mechanisms involved in cSVD.
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