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Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is

recognized as the second leading cause of dementia after Alzheimer’s disease (AD). The

underlying pathological mechanism of VCID include crebromicrovascular dysfunction,

blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and

microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are

currently available for preventing or delaying its progression. Recently, pathophysiological

microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and

therapeutic targets. Studies have revealed that miRNAs can regulate the function of

the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system,

and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes

recent findings on VCID and miRNAs, focusing on their correlation and contribution to

the development of VCID pathology.

Keywords: apoptosis, blood-brain barrier, miRNAs, neuroinflammation, neurodifferentiation, oxidative stress,

vascular cognitive impairment, dementia

INTRODUCTION

Vascular cognitive impairment and dementia (VCID) is a term that ranges from mild cognitive
impairment (MCI) to vascular dementia (VaD) and encompasses a continuum of cognitive
disorders with cerebrovascular pathology (1). With an increase in the human lifespan, the number
of individuals over the age of 60 in 2,050 is projected to be 2 billion (2), which will increase
the demand for research on neurodegenerative diseases, especially those associated with aging.
Age-related cerebrovascular factors are becoming recognized as a hallmark of VCID; thus, the
number of patients affected by VCID is expected to exponentially increase in the upcoming decades
(3) and be responsible for approximately 30% of the aging population living with dementia in Asia
and developing countries (4).

VCID and dementia is a subtype of dementia affected by multiple factors, such as
low educational attainment, female sex, stroke, and lifestyle (5). Current theories of the
pathologies of VCID include cerebromicrovascular dysfunction, blood–brain barrier (BBB)
disruption, neuroinflammation, capillary rarefaction, and microhemorrhages (3). However, none
of the available pharmacological or preventative treatments decrease the development and
progression of VCID. Improving our understanding of microRNAs (miRNAs) has provided strong
epidemiological and experimental evidence that miRNAs are crucial for neuronal differentiation,
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survival, and activity (6). By inhibiting messenger RNA (mRNA)
translation or promoting its degradation, miRNAs can regulate
the expression levels of proteins and ultimately affect disease
progression (7, 8). In the central nervous system (CNS),
miRNAs can modulate the tight junctions of the BBB, affect the
proliferation and differentiation of neuronal cells, and participate
in the occurrence and development of neuroinflammation and
oxidative stress (OS), resulting in neurodegenerative diseases and
cognitive impairment and indicating that miRNAs have a more
extensive influence on various brain diseases.

Biomarkers found in the CNS are typically present at
relatively low concentrations in the BBB. ThemiRNAs are mainly
transported within liposomes, high-density lipoproteins (HDLs),
exosomes, and proteins that can protect them from degradation
(9). Therefore, miRNAs are relatively stable compared to
other biomarkers, and it is easy to monitor changes in their
expression. Compared with Alzheimer’s disease (AD), VCID is
preventable and curable, suggesting that advanced diagnoses
and reliable risk assessments will provide patients with more
promising clinical outcomes. This review provides an up-to-date
assessment of the role of miRNAs in VCID, from the series of
depression of the BBB, apoptosis and OS, neuroinflammation,
and neurodifferentiation (Figure 1).

DEVELOPMENT AND FUNCTION OF
miRNAs

miRNAs are small non-coding RNAs of approximately 18–21
nucleotides that regulate gene expression by targeting mRNAs
via cleavage and translational repression (10). The biogenesis of
miRNAs starts with pri-miRNAs, which are transcribed by RNA
polymerase II and converted into mature miRNA by RNase III
enzymes such as Drosha and Dicer (11). Mature miRNAs leave
the nucleus and are then combined with the Argonaute protein
(AGO) or targeted mRNAs. It is understood that miRNAs can
participate in and regulate molecular expression by interacting

with 3
′

untranslated regions (3
′

-UTRs) to post-transcriptionally
affect the expression of target mRNA (11). Complete or partial

function of miRNAs is also based on 3
′

-UTRs of target mRNAs
(12). Several studies have shown that miRNAs may serve as novel
therapeutic agents. While a single miRNA could target hundreds
of mRNAs and influence the expression of genes involved in a
functional interacting pathway (13), synergetic miRNAs share
a common transcriptional regulatory mechanism on the levels
of sequence, secondary structure, and transcriptional regulation
(12). Depending on the construction of these miRNA–mRNA
functional synergetic networks (MFSNs), the central role of these
synergetic miRNAs can be analyzed in complex diseases (3).
To further apply miRNAs in disease diagnosis and therapy,
considerable research has been conducted to characterize their
pathophysiological function.

The ability of miRNAs to target multiple genes within
the signaling pathway makes them a promising target for
modulation, and powerful regulators of cellular activities, such
as cell differentiation, development, and apoptosis (14); synaptic
homeostasis and plasticity processes (15); and angiogenesis

in endothelial cells (ECs) (16) in CNS. In CNS, functional
neurons are specialized and persistently renew the information
required for constant neuronal adaptation to environmental
clues (17), and the value of miRNAs has been recognized,
especially for neural cells. As non-protein-coding molecules,
miRNAs could modulate the function of tight junction proteins,
ECs, astrocytes, and pericytes of BBB (18, 19), which help
maintain the microenvironment of neural cells. To protect
neural cells from apoptosis and OS, miRNAs can regulate the
signaling pathway involved in modulating the proliferation or
differentiation of cells (7, 20). Using public databases, such as
the Gene Ontology (GO) annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses, the
principles of miRNA–mRNA interactions in signaling pathways
were further characterized and provide a novel insight into the
mechanisms of disease progression (21).

miRNAs AND VCID

miRNAs and BBB Dysfunction
As the most important protector of neurons in the brain, BBB
exists between the blood microcirculation system and the brain
parenchyma (19) to restrict the invasion of toxic substances,
immune cells, and pathogens, playing an irreplaceable role in
maintaining CNS homeostasis and proper function (22). Tight
junctions constructed by ECs form the basic BBB structure, along
with the basement membrane (BM), astrocytes, and pericytes,
that contribute to the support and regulatory function of the
BBB (23). However, the structural and functional integrity
of the BBB is easily degraded by neuroinflammation, age-
related degeneration, and other risk factors, which contribute
to the onset and progression of cerebrovascular changes and
neurodegenerative pathologies (24, 25).

Scientists have made great efforts to understand the molecular
structure and pathological changes in the BBB, and have found
that, compared with other cytokines, exosomes enriched with
proteins and miRNAs can be easily released into the extracellular
space, with functions ranging from blood coagulation to cell-
to-cell communication (26). Ischemia is one of the most
pathological processes of VCID that results in BBB dysfunction
via inflammation or OS under the regulation of miRNAs
and other factors (27, 28). A recent study showed that
circular RNA DLGAP4 (circDLGAP4), which is an endogenous
sponge of miR-143, via regulating the tight-junction protein
and mesenchymal cell marker to inhibit the endothelial–
mesenchymal transition, circDLGAP4 can significantly attenuate
infarct areas and BBB damage, and is proposed to partially
decrease the incidence of dementia (29). The miR-132 could
target matrix metalloproteinase 9 (MMP-9) and dysregulate its
expression, acting protection role in reducing the degradation of
tight-junction proteins VE-cadherin and β-catenin to maintain
the integrity of BBB (30). In addition, miR-9-5p can also mitigate
BBB damage by activating the Hedgehog pathway and inhibiting
the nuclear factor (NF)-κB/MMP-9 pathway (31). As mentioned
earlier, ECs form the basic structure of the BBB. Of note, miR-126
participates in the maintenance of BBB integrity by regulating
the functional status of ECs and attenuating BBB disruption
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FIGURE 1 | Overview of miRNAs and mechanisms of VCID. From the aspects of blood–brain barrier (BBB) dysfunction, apoptosis and oxidative stress,

neuroinflammation and neurodifferentiation, microRNAs (miRNAs) playing multiple roles in the pathology of vascular cognitive impairment and dementia (VCID),

providing a novel sight and promising targets in the diagnosis and treatment of VCID.

by suppressing pro-inflammatory cytokines (32). It has been
certificated that both in vivo and in vitro, miR-98 and miR-
126-3p/-5p could significantly reduce the brain infract volume
and improved behavioral outcomes (27, 32). Moreover, tumor
necrosis factor alpha (TNF-α) modulates cerebral tight junctions
and affects the BBB via the regulation of laudin-5 and tight-
junction protein 1 (ZO-1) through the TNF-α-miR-501-3p–ZO-
1 axis, resulting in working memory deficits and white matter
lesions (33). In addition, it was found that overexpression of
miR-Let7A does not only prevent brain endothelial (bEnd.3) cell
death and inhibit pro-inflammatory responses but also protects

tight-junction proteins from degradation under high-glucose
conditions, indicating that miR-Let7A may be a novel solution
for controlling BBB degradation, especially in patients with
concomitant diabetes mellitus (DM) (34). Furthermore, exact
mechanisms of how miRNAs affect the BBB integrity and ECs
function have also been carried out, and miR-30a and miR-
182 could modulate BBB permeability, tight-junction protein
loss, and ECs apoptosis via ZnT4/zinc signaling pathway and
mTOR/FOXO1 pathway, respectively (35, 36). Further study of
complex physiological processes between miRNAs and BBB, and
how to apply thesemechanisms in clinic treatment are warranted.
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FIGURE 2 | miRNAs and the synapse. MicroRNAs enveloped in exosomes can be released to target acetylcholine (Ach) and synaptic proteins, affecting the

transmission of information at the synapse. miR-124 can modulate synaptic activation via the excitatory amino acid transporter 2 (EAAT2) and dysregulate oxidative

stress autophagy to reduce cerebral ischemia reperfusion injury. Furthermore, miR-132 can modulate the degradation of Ach and dysregulate the proliferation of

neural stem cells. On the other hand, miRNAs can also modulate synaptic neurodifferentiation via Snap 25, FxP2, and many other inflammatory cytokines.

miRNAs and Apoptosis/Oxidative Stress
Abnormal apoptosis is a prerequisite for endothelial and
neuronal cell damage, resulting in the onset and progression of
VCID (37). Additionally, synergistic and additive interactions
between apoptosis and other signaling pathways add to the
symptoms of VCID. Dementia caused by multiple infarcts
implies that if strokes are prevented, so is the VCID that
results from cerebral infarcts (38). Identifying pathways that
predominantly include miRNAs during apoptosis will contribute
to a better understanding of the functional overlap across
diseases. As one of the most abundant miRNAs in brain tissue,
miR-124a can be transported into astrocytes through neuronal
exosomes, significantly increasing the expression of protein
excitatory amino acid transporter 2 (EAAT2, rodent analog

GLT1) and modulating synaptic activation (Figure 2) (39).
However, the exact role of miR-124 has not been systematically
elucidated. In age-related ischemic encephalopathy (IE), miR-124
can improve the effects of cerebral ischemic reperfusion injury
(CIRI) by regulating OS, autophagy, and neuroinflammation but
plays a negative role in synaptic plasticity and axonal growth
via apoptosis (40). A greater understanding of miR-124 will
open new avenues for further intervention in VCID. Increasing
evidence suggests that cognitive decline in the early stages of
neurodegenerative diseases, such as VCID, is a consequence
of changes in synaptic structure and function (15). Based on
analyses using online tools and a luciferase reporter assay, miR-
132 was shown to protect acetylcholine (Ach) from degradation
by most fast enzymes like acetylcholinesterase (ACHE) found
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FIGURE 3 | The relationship between miRNAs and neural stem cells (NSCs). NSCs play a key role in brain homeostasis and repair and show intrinsic pleiotropic

properties. Thus, the intimate connections between NSCs and miRNAs are under study. As shown here, miR-146 and miR-585-3p play an opposite role in the

proliferation and differentiation of NSCs. Moreover, a great number of miRNAs participates in the self-renewal and gene expression of NSCs.

in the body, and that miR-132 could also exert favorable effects
on CNS neurons via brain-derived neurotrophic factors (BDNF)
(41). In contrast, another report showed that miR-132 negatively
regulates neural stem cell (NSC) proliferation by affecting the
cell cycle and apoptosis through the Notch-Hes1 pathway,
Bax, Bcl-2, and glycosyl transferase-like domain containing−1
(GTDC-1), which could induce neural cell apoptosis and tau
phosphorylation (Figure 2) (20, 42). Due to the complexity of
miRNAs, the key miRNA in these types of pathways and the
construction of a shared-miRNA network is imperative. Previous
studies have investigated the implications of α-synuclein (α-
Syn), especially in inducing mitochondrial fragmentation, OS,
and autophagy, which could promote neuronal cell death
after stroke. It has been reported that treatment with miR-7
mimics greatly reduces the post-ischemic induction of α-Syn,
significantly decreases the lesion volume, and improves motor
and cognitive functional recovery (43). In addition, miR-153 and
miR-34a have confirmed roles in protecting neural cells from
death and apoptosis by upregulating peroxiredoxin 5 (PRX5)
and MAPK/ERK signaling pathways, respectively, reducing the
cell cycle and leading to a reduction in cell proliferation
(44, 45), which could ultimately mitigate the pathology of
dementia. Moreover, compared with themiR-150mimic negative
group, miR-150 overexpression significantly aggravated cell
apoptosis by inhibiting the expression of homeobox (HOX) A1,

which aggravates hippocampal neuronal apoptosis and cognitive
impairment (46).

In addition to apoptosis, OS is also considered as one of
the significant events in the pathological cascade of dementia,
causing mitochondrial dysfunction and protein misfolding (47).
Many studies in this field have shown that there is a mutual
correlation between OS and miRNAs, and OS affects the
expression of miRNAs, which have a counteracting effect on
genes involved in OS (6). In the CNS, ECs play an irreplaceable
role in protecting the cerebrovascular system from conditions,
such as OS erosion, inflammation, and diabetes; however, OS
has been predicted to predispose neurons to death in both
direct and indirect ways (6, 48). Attenuating OS responsiveness
could specifically limit the risk factors of cerebrovascular disease
and improve endothelial homeostasis in vascular depression and
VCID (49). The miR-107c and miR-29a could target glutamate
transporter-1 (GLT-1) to modulate excitotoxicity in the CNS;
miR-107c could target GLT-1 directly to evaluate the glutamate
accumulation and neuronal excitotoxicity, whereas miR-29a
mainly acts on p53 upregulated modulator of apoptosis (PUMA),
which could attenuate OS and protect neurons from dementia
caused by ischemic injury (50). The miR-128 is enriched in
the CNS and easily detected in circulating lymphocytes and
can inhibit neuronal damage caused by oxygen and glucose
deprivation/reoxygenation (OGD/R) via the PTEN and ERK
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pathways (51). The correlation between miR-124 level and lesion
size on CT indicated that miR-124 could be released from
damaged brain tissue in patients who died within 3 months
after suffering from a stroke (52). In contrast, by binding
to the regulatory factor X1 (RFX1) mRNA, miR-124 could
increase the expression of RFX1, resulting in the suppression
of apolipoprotein E (APOE) and cellular amyloid beta (Aβ) in
microglia, which could undermine the cognitive behavior of
dementia (53). Another area of research in this field tracked
the expression level of miRNAs in 45 patients with MCI
and AD; notably, miR-146a and miR-181a were significantly
upregulated in patients with MCI who later converted to
AD, which was related to Aβ and APOE ε4 allele presence
(54). This indicates that miRNAs can also be an indicator of
disease progression, providing an insight in disease prediction.
Furthermore, according to the measurement of OS-related
proteins, superoxide dismutase and Na+, K+, and ATP, Chen
et al. found that miR-98 could bind to the enhancer of split
(Hes) related with the YRPW motif protein 2 (HEY2) to inhibit
the production of Aβ and improve OS and mitochondrial
dysfunction, providing a novel basis for targeted therapy for
dementia (55).

miRNAs and Neuroinflammation
Dynamic changes in miRNAs regulate the expression of
genes involved in cognitive processes such as learning and
executive abilities. Although the pathophysiology of VCID
remains largely unknown, considerable efforts have been focused
on neuroinflammation. Neuroinflammation is a hallmark of
many neurological disorders, and pro-inflammatory or anti-
inflammatory miRNAs within CNS signaling pathways can
greatly aggravate or mitigate the pathological consequences
of neurodegenerative diseases (56, 57). It has been reported
that anti-inflammatory miRNAs (miR-21, miR-124, and miR-
146a) and pro-inflammatory miRNAs (miR-27b, miR-155, and
miR-326) regulate neuroinflammation by down or upregulating
endogenous levels of immune receptors such as toll-like receptors
(TLRs) or misfolded proteins that accumulate in the extracellular
space (58). Related experiments conducted in BV-2 microglial
cells and mice showed that miR-146 could suppress the release
of pro-inflammatory factors [TNF-α, interleukin (IL)-1β, and
IL-6] and the expression of mRNA in targeted cells; the
upregulation of miR-146 could not only suppress the NF-κB
pathway and microglial activation in the hippocampus but
also promote hippocampus-dependent learning and memory
capability (59). In addition to miR-146, mouse model and
bioinformatics studies confirmed that miR-181b-5p can repress
the expression of pro-inflammatory mediators such as TNF-
α, IL-1β, and monocyte chemoattractant protein (MCP)-1.
Injection of an miR-181b-5p mimic into the hippocampus of
mice significantly improved cognition (60). Moreover, middle
cerebral artery occlusion (MCAO)-induced behavioral disability
and microglial activation in the brain were greatly improved
and inhibited by miRNA-210-LNA (miR-210 inhibitor) post-
treatment, providing new insight into the molecular basis of a
novel therapeutic strategy (61). As the cholesterol metabolite,
27-hydroxycholesterol (27-OHC), induces discrete or directional

inflammatory factors in microvascular endothelial cells (human
microvascular endothelial cells, HMVECs) and increases the
expression of miR-933 and inflammatory cytokines, which are
elevated in plasma from dementia patients, more than that, via
facilitates permeability and directional secretion from ECs into
the brain, miR-933 may act as a paracrine inhibitor of neuronal
BDNF, which provides a useful neuroprotective properties (62).
These results show how miRNA functions in neuroinflammation
and VCID progression, providing a novel insight on possible
VCID interventions.

Before VCID occurs, a sustained pro-inflammatory
environment brought about by NF-κB leads to chronic
reactive astrogliosis, undermining the white matter (WM) (63).
By interacting with NF erythroid 2-related factor 2 (Nrf2),
NF-κB can fine-tune the cellular oxidative and inflammatory
balance and participate in multiple pathologies in VCID, such as
restoration of endothelial function and neurovascular coupling,
reduction of amyloidopathy, and protection of WM integrity
(64). To further implement miRNAs in disease mechanisms,
counter intervention between miRNAs and NF-κB is ongoing.
With advances in understanding that acupuncture can alleviate
cognitive degeneration in VCID, in rats treated with acupuncture,
TLR-4 was greatly dysregulated, accompanied by a decrease in
miR-93 and MyD88/NF-κB signaling pathway activation (65).
Furthermore, miR-301b accelerated cognitive impairment in
mice with depression-like behavior; overexpression of miR-
301b activated the NF-κB signaling pathway and aggravated
inflammation in hippocampus, which accompanied the release
of TNF-α, IL-1β, and many other cytokines (66).

miRNAs and Neurodifferentiation
Vascular cognitive impairment and dementia typically refers
to patients with both stroke and cognitive impairment. Recent
studies have highlighted the roles of cerebrovascular injury,
white matter tract integrity, microinfarcts, and secondary
neurodegeneration in the development of VCID. The miRNAs
modulate multiple biological functions, such as cell fate
determination and differentiation. It has been found that
the onset of cognitive impairment is accompanied by the
senescence, loss, and neurogenesis decline of hippocampal neural
stem cells (H-NSCs). Interestingly, embryonic stem cell-derived
small extracellular vesicles (ESC-sEVs) can alleviate senescence
and recover the compromised proliferation and differentiation
capacity of H-NSCs via miR-17-5p, miR-18a-5p, miR-21-5p,
and miR-29a-3p, which can inhibit the mammalian target of
rapamycin complex 1 (mTORC1) activation (67).

Over the past 20 years, stem cell technology has become
an increasingly helpful in the investigation and treatment
of neurodegenerative diseases. NSCs participate in brain
homeostasis and repair and show pleiotropic intrinsic properties,
making them a promising candidate for the treatment of
dementia (Figure 3) (68). Indeed, Notch signaling encodes a
highly conserved cell-surface receptor that affects cell processes
such as cell differentiation, cell apoptosis, and cell proliferation.
In serum-free medium, miR-146 significantly promoted NSC
proliferation by targeting the Notch 1 pathway but reduced the
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differentiation efficiency of glial cells (69). However, miR-485-
3p has the complete opposite effect; miR-485-3p can reduce
proliferation but can promote the differentiation of NSCs by
decreasing TRIP-6 activity (70). Following the criteria and
moderated t-statistics, miR-10a-5p was shown to attenuate
the self-renewal of undifferentiated NSCs; however, similar to
miR-574, miR-30c-5p, miR23-3p, miR130a-3p, and miR-17-5p
miRNA families were predicted to decrease the expression of
several genes associated with the differentiation of neurons,
synapse formation, and neurite outgrowth (71). The miR-214
not only affects the differentiation of NSCs but also plays a key
role that helps maintain the balance between proliferation and
differentiation by binding the 3′-UTR of Qki mRNA, affecting
downstream its signal transmission (72). Additionally, miR-132
is significantly overexpressed in differentiating NSCs and is
accompanied by the activation of the ERK1/2 pathway, and it
promotes glial cell differentiation via Mecp2 expression (20).
During the process of neurodifferentiation, the level of miR-29a
in plasma shows a time-dependent increase similar to that of
Kruppel-like factor 4 (KlF4), which suggests that the regulation
of miR-29a occurs through the KlF4 signaling pathway (73). This
mechanism suggests that KIF4 may be used to promote miR-29a
and provides a novel possibility for the treatment of VCID (73).

A widely accepted theory is that memory deficiency associated
with cognitive impairment results from synaptic dysfunction.
Another focus of research in this field is the investigation
of the correlation between miRNAs and synaptic proteins
(Figure 2). It has been found that miR-134-5p can act on
Forkhead box P2 (Foxp2) mRNA to affect its level of expression;
however, silencing Foxp2 minimizes the effect of miR-134-5p
on synaptic protein loss, which may prevent the development
of cognitive impairment, especially in vocal learning (74). In
addition, by comparing the expression level of miR-30b in
APP transgenic (TG) and wild-type (WT) mice, miR-30b was
significantly upregulated in TG mice, causing synaptic and
cognitive dysfunction (75). Indeed, miR-30b is triggered by pro-
inflammatory cytokines through NF-κB signaling, suggesting a
feedback loop in the process of dementia. More specifically,
real-time reverse transcription polymerase chain reaction (RT-
PCR) revealed that overexpression of miR-210-5p can decrease
the number of synapses in primary hippocampal neurons by
targeting synaptosomal-associated protein, 25 kDa (Snap25) (76).
In experimental trials that used APP/PS1 mice and WT mice,
miR-574 could lower neuritin and synaptic protein expression in
primary hippocampal neurons via targeting Aβ25-35, resulting
aggravation of cognitive dysfunction in APP/PS1 mice compared
with WT mice (77).

THE PERSPECTIVE OF miRNAs IN THE
DIAGNOSIS AND TREATMENT OF VCID

As the second most common cause of cognitive impairment,
patients with VCID will be up to 150 million in 2,050. VCID
has drawn the attention of researchers because it is preventable
and curable; however, some neuroprotective agents have been

reported to attenuate but not cure symptoms. Risk factors of
VCID including protective factors, such as higher education,
occupation and social networks, and others, increase the risk
of dementia (38). According to the National Institute for
Neurological Disorders and Stroke-Association International
pour la Recherché et l’Enseignement en Neurosciences (NINDS-
AIREN), the basic features of VCID include (1) acute impairment
of memory and at least two other cognitive domains, (2)
neuroimaging evidence of cerebrovascular lesions, and (3)
evidence for a temporal relationship between stroke and
cognitive loss (78). In recent years, miRNAs are regarded as
cost-effective and non-invasive biomarkers in disease diagnosis
and therapy response monitoring (79). Additionally, miRNAs are
easily detected in biofluids like plasma and cerebrospinal fluid
(CSF) due to their unique biological characteristics (15), which
can provide biological and clinical breakthroughs.

To gain a better understanding of howmiRNAs could support
both diagnosis and therapy, studies of clinical patients and
biological experiments have been conducted. Validation studies
revealed that four miRNAs (miR-409-3p, miR-502-3p, miR-
486-5p, and miR-451a) are potentially valuable biomarkers for
identifying VCID with relatively high sensitivity and specificity
(80). Moreover, combined receiver operating characteristic curve
analysis of seven miRNAs revealed an area under the curve
(AUC) of 0.64 with a sensitivity of 55.5% and specificity of
65.7%, whereas plasma miR-409-3p, miR-502-3p, miR-486-5p,
and miR-451a could differentiate patients with VCID from
healthy controls (80). To improve the diagnosis and anti-diastole
level of dementia, the value of miRNAs in differential diagnosis
protocols was determined. Through the measurement of miRNA
expression levels in MCI, VCID, AD, and Parkinson’s disease
with dementia (PDD), miR-1, miR-384, and miR-19b-3p were
identified as good diagnostic biomarkers and provided a novel
insight in disease prevention (81, 82). Another study comparing
different miRNAs expressed in AD, MCI, and healthy controls
found that miR-455-3p, miR-4668-5p, miR-3613-3p, and miR-
4674 were upregulated, whereas miR-6722 was downregulated in
AD andMCI compared with healthy controls (83).More research
is warranted concerning the clinical consequences of VCID and
expression changes of miRNAs, especially in disease diagnosis
and prediction (Table 1).

A large number of fundamental experiments have been
conducted to gain a better understanding of their signaling
pathways and the post-transcriptional mechanisms of miRNAs.
Comparison of astrocytic andmicroglial activation,WMdamage,
water channels, and glymphatic dysfunction in mice with
miR-126 deletion (miR-126 EC−/−), and control (miR-126
flox/flox), miR-126 EC−/−mice showed significantly decreased
cerebral blood flow (CBF) and increased inflammation that was
accompanied by poor performance and cognitive deficits (84).
As a vasoconstrictor factor, endothelin-1 (ET-1) was increased
in the plasma of patients after stroke and in the CSF of patients
with VCID (86). AnmiR-125a inhibitor substantially upregulated
the expression of ET-1, whereas miR-125a and the presence
of the rs12976445 minor allele polymorphism downregulated
the delivery of ET-1 to ECs (87). These results suggested that
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TABLE 1 | Changes in miRNAs expression level and its role in

disease diagnostics.

miRNAs Source Expression

level

Diagnosis Reference

miR-409-3p Plasma Down Discrimination

diagnosis

(80)

miR-502-3p Up

miR-486-5p Up

miR-451a Up

miR-1 Exosome Down AD, VaD, or PDD (81), (82)

miR-384 Up

miR-19b-3p Down

miR-455-3p Serum Up AD, MCI, or

healthy

(83)

miR-4668-

5p

Up

miR-3613-

3p

Up

miR-4674 Up

miR-126 Mouse

serum

Down Neuroinflammation,

water channel

and glymphatic

dysfunction

(84)

miR-191 Mice Up Apoptosis and

proliferation

dysregulation

(85)

miR-125a, ET-1, and rs12976445 have a promising potential as
pathological solutions for post-stroke dementia.

Apoptosis and proliferation have been implicated in many
diseases, confirming the negative correlation between miRNAs
and cognitive impairment. It is known that miR-191 can
aggravate apoptosis and misregulate proliferation and migration;
in vivo studies have shown that applying an miR-191 antagomir
significantly attenuated infarction volume by mechanically
targeting vascular endothelial zinc finger 1 (VEZF1) transcript
(85). In addition, miR-196a and LRIG3 enhanced learning and
memory by ameliorating injury to hippocampal neurons via
the PI3K/Akt pathway (88). Although these studies represent
only the tip of the iceberg, they provide a novel insight into
the multiple miRNAs that can intervene in signaling pathway
function and affect the outcomes of patients with different forms
of dementia and cognitive impairment.

Various treatments and interventions have been reported to
be effective for dementia; however, no therapeutic cures are
currently available. According to previous reports, symptomatic
and alternative therapies are effective; however, antipsychotic
treatment is less satisfactory (89). For VCID caused by vascular
factors that may be mixed with AD pathological changes,
more attention should be focused on therapeutic agents for
synaptic protection, anti-pathologic therapeutics, and effective
management of vascular risk factors (90). However, acupuncture
is a promising alternative therapy and may be an underlying
TLR4 inhibitor for VCID (65). Preclinical experiments indicate
the advantages of remote ischemic conditioning (RIC) for

decreasing the recurrence of ischemic stroke, and repetitive
treatments with RIC in patients for 6 months show satisfactory
outcomes, especially in neuropsychological assessments (91).
Currently, therapeutics based on miRNAs are mainly focused
on miRNA mimics and inhibitors (antagomirs), respectively,
to adjust the expression level of target genes (92). Mice with
transient middle cerebral artery occlusion showed that pre- or
post-ischemic treatment with an miR-7 mimic decreased lesion
volume and improved motor and cognitive functional recovery
(43). Biomarkers can aid in early diagnosis before the pathology
occurs, limiting disease progression, and potentially indicating
patient response to the treatment. Thus, refining the use of
biomarkers will allow dementia treatment to enter the era of
precision medicine (93).

CONCLUSION

This is an exciting time for miRNAs research because of
the recent advancement and identification of miRNA genes,
their expression patterns, and their regulatory targets in
diseases such as VCID, AD, and other neurodegenerative
diseases. The mechanisms discussed in this review provide
prima facie evidence for the mutual effects of miRNAs on
the pathogenesis of VCID. A vast number of miRNAs play
roles in the mutual regulation in genes and proteins, and
it has been reported that high- or low-expression level of
miRNAs can improve or impair the pathological progress of
diseases. Hence, we have highlighted the roles of miRNAs
in the modulation of VCID. However, the clear interventions
of miRNAs and VCID are still poorly reported, and further
studies in this area are expected to emphasize the pathways
and mechanisms that could improve disease and help develop
VCID therapies.
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