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Introduction: The Clock-Drawing Test (CDT) is a simple cognitive tool to examine

multiple domains of cognition including executive function. We aimed to build a CDT-

based deep neural network (DNN) model using data from a large cohort of older adults, to

automatically detect cognitive decline, and explore its potential as a mass screening tool.

Methods: Over 40,000 CDT images were obtained from the National Health and

Aging Trends Study (NHATS) database, which collects the annual surveys of nationally

representative community-dwelling older adults in the United States. A convolutional

neural network was utilized in deep learning architecture to predict the cognitive status

of participants based on drawn clock images.

Results: The trained DNN model achieved balanced accuracy of 90.1 ± 0.6% in

identifying those with a decline in executive function compared to those without [positive

likelihood ratio (PLH) = 16.3 ± 6.8, negative likelihood ratio (NLH) = 0.14 ± 0.03], and

77.2± 2.7 % balanced accuracy for identifying those with probable dementia from those

without (PLH = 5.1 ± 0.5, NLH = 0.37 ± 0.07).

Conclusions: This study demonstrated the feasibility of implementing conventional CDT

to be automatically evaluated by DNN with a fair performance in a larger scale than ever,

suggesting its potential as a mass screening test for ruling-in or ruling-out those with

executive dysfunction or with probable dementia.

Keywords: deep learning, screening, cognitive decline, dementia, clock drawing test (CDT)

INTRODUCTION

The Clock-Drawing Test (CDT) is a cognitive test conventionally used for assessing multiple
cognitive domains including executive function (1, 2). Because CDT is easy to use and can be
conducted across different cultural backgrounds (2), it is sometimes used as a screening tool such
as the Mini-Mental State Examination to identify individuals with cognitive decline. In Japan,

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.896403
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.896403&domain=pdf&date_stamp=2022-05-03
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kenisatou@m.u-tokyo.ac.jp
mailto:iwatsubo@m.u-tokyo.ac.jp
https://doi.org/10.3389/fneur.2022.896403
https://www.frontiersin.org/articles/10.3389/fneur.2022.896403/full


Sato et al. Automated Dementia Screening by CDT

CDT has been used as one of the screening tools in the
drivers’ license renewal process for individuals ≥ 75 years
(which included > 1.5 million individuals in FY2017) to detect
those who may have cognitive impairment that impedes their
ability to drive cars (https://www.npa.go.jp/policies/application/
license_renewal/ninti/index2.htm).

A potential barrier to implementing CDT for mass screening
is its wide variability and the complexity of evaluating the drawn
clock images (1). Assessment needs to be manually conducted
by trained raters according to particular scoring criteria, which
is time-consuming, and makes CDT essentially unsuitable to
apply in a very large number of people at once. Therefore,
if we could automatically evaluate CDT, the utility of CDT
would increase considerably: potential uses include screening
for eligible participants for clinical trials for Alzheimer’s disease
(3), and in clinical practice for outpatient visits (not limited to
memory clinic).

A deep learning-based approach to automatically score
the drawn clock images has been reported recently in some
earlier studies that achieved 96% of accuracy in dementia
screening (4) and 77% of accuracy in discriminating cognitively
impaired individuals from cognitively normal individuals (5),
thereby enabling automatic scoring of pictures to overcome the
previously mentioned limitations of using CDT in screening.
However, these earlier studies were conducted in a specific
clinical setting (e.g., memory clinic), which means that there
could be bias regarding the background of visiting patients, prior
probability of being dementia, comorbid diseases, or the causes of
cognitive decline. Therefore, the utility of CDT as a screening tool
has not always been evaluated in a large cohort that is similar to
the general population. As such, there is the need to simulate the
situation whereby CDT will be implemented as a mass screening
tool. In addition, the explainability of the model is one of the
major concerns regarding the use of deep learning-based models
(6) and would also need to be confirmed. To date, it remains
unclear which aspects of the imputed CDT images were utilized
for scoring in the DNN-based classifiers (5).

In this study, using sufficient CDT data obtained from a
large cohort of older adults from the National Health and
Aging Trends Study (NHATS), which collects annual interviews
of nationally representative samples of older adults among
Medicare beneficiaries in the United States (7), we aim to
build a deep learning-based model to detect cognitive decline
while confirming the explainability of the obtained models. Our
attempt will not only contribute to obtain a CDT screening tool
that is expected to be robust enough for use in mass screening,
but also to ascertain the reproducibility of previous DNN-based
CDT scoring models (4, 5).

METHODS

Data From NHATS
This is a retrospective study using publicly distributed data from
the NHATS (https://www.nhats.org). This study was approved
by the University of Tokyo Graduate School of Medicine
institutional ethics committee [ID: 11628-(3)]. Informed consent
was not required because the study uses publicly distributed,

anonymized data only. NHATS involves nationwide surveys
conducted since 2011 comprising annual interviews with
over 8,000 Medicare beneficiaries aged ≥ 65 years in the
United States, to investigate late-life disability trends and
trajectories (https://www.nhats.org) (7). A stratified random
sampling of community-dwelling older adults is conducted to
select the samples: the detailed study design and procedures are
described in their previous technical reports (8). The data have
been distributed annually, and we obtained data (round 1–9,
which are collected in 2011–2019) from their website (https://
nhats.org/researcher/data-access/public-use-files) in June 2021.

NHATS Data Related to Cognitive Function
In NHATS, cognitive features including CDT images
have been collected for every round from the participants
(Supplementary Figure S1A): A number of eight questionnaires
(i.e., today’s day of week, day, month, year, and the name of the
current president and vice president of the United States) to
assess orientation (0–8 in score), 10-word recall questionnaires
to evaluate memory (0–20 in score), and CDT to assess executive
function (0–5 in score). The cutoff threshold to determine
a significant decline in the study population is reported as
mean−1.5 SD (8): namely, 0–3 in orientation or in recall, and
0–1 in CDT. These cognitive tests were conducted for all the
participants for every round. Since all sample data of NHATS
include the annual survey of the same individuals, we refer
to individual survey results as “samples” and refer to unique
individual participants as “cases”.

In the NHATS study, CDT images were obtained from each
participant by having them draw a picture of analog clock
with the hands showing 11:10 am on a blank A4 size paper
(Figure 1A). The clock is to be drawn freely without a pre-
defined outer frame, which is different from that employed in
some previous studies analyzing CDT data (1, 4). Due to the
dropout or exclusion from surveillance follow-up, the number
of CDT images obtained from each case is not always equal.
Every CDT image is scored by the interviewers according to
the pre-defined criteria, using the range of 0–5 (Figure 3) as
follows: (0) not recognizable as a clock, (1) severely distorted
depiction, (2) moderately distorted depiction, (3) mildly
distorted depiction, (4) reasonably accurate depiction, and (5)
accurate depiction.

Data Preprocessing
The following data handling and analyses are conducted using
R statistical software (version 3.6.3, the R foundation) in macOS
Catalina. To build a deep neural network (DNN)model to predict
participants’ cognitive status based on the drawn clock pictures,
we used two different objective variables as targets to predict
as follows:

1. With/without significant decline in executive function
2. With/without probable dementia

For (1), all CDT images were dichotomized (0/1), where
CDT rating 0–1 corresponds to poorer performance (= 1 in
binary) or 2–5 corresponds to better performance (= 0 in
binary), as demonstrated in the earlier technical report (8).
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FIGURE 1 | Sample image preprocessing procedure. The original CDT images drawn on A4-sized papers (A) were preprocessed by automatically cropping in a

square (B). The images were further augmented by several combinations of manipulations such as rotation (90 or 180◦), horizontal flip, vertical flip, or black–white

reversal by edging (C). CDT, Clock-Drawing Test.

For (2), all CDT images were dichotomized (0/1) whether
the case on the same round fulfills the criteria of probable
dementia (8): the case exhibited abnormal performance in at
least 2 of 3 cognitive categories [i.e., orientation (questionnaire
score ≤ 3), memory (questionnaire score ≤ 3), and executive
function (CDT score ≤ 1)].

All eligible cases were randomly split into three subgroups
(i.e., training, validation, or test) in an approximate 8:1:1 ratio
(Figures 2A–C), and then, the CDT image samples derived from
these cases were to belong to the same subgroup as of cases,
regardless of the inter-participant variability in the dropout
timing. This is because of the concern regarding data leakage
between subgroups, since the same participant may draw such
specific or similar clock pictures for every round that they can
be identifiable by themselves. Data splitting was conducted by R
package {caret}, enabling the target variables to be almost equally
distributed between the subgroups.

Since the original CDT samples are by themselves not suitable
to impute to DNN directly because of the small size of the clock
drawn on paper, different directions of paper the CDTwas drawn,
or contamination of any other unrelated noises to blackout
as in Figure 1A to mask identifiable information. Therefore,

the raw images were preprocessed by automatically cropping
in a square (Figure 1B) and resized to 112∗112 regardless of
the original image size. The images were further augmented to
increase the number of samples to impute to DNN by adding
the combination (Supplementary Table S1) of the following
manipulations: rotation (90 or 180◦), horizontal flip, vertical flip,
or black–white reversal by edging (Figure 1C). For test subgroup
samples, only original or rotated images were used to simulate
actual settings.

Since the original sample data are highly imbalanced
(e.g., the proportion of cases with dementia is < 10%),
proportions of positive vs. negative samples in training and
validation subgroups were adjusted to be equal (i.e., 1:1)
(Figures 2A,B). This was achieved by randomly downsampling
negative samples from the training and validation subgroups,
respectively. The same procedure was not conducted in the
test subgroup.

DNN Architecture
We applied the same layer architecture as that of “mini-
VGG” (https://github.com/amrfodd/MINI-VGG-Architecture.
git), although we have not used its ready-made network
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FIGURE 2 | Data workflow for training and validating. All eligible cases were randomly split into three subgroups [i.e., training (A), validation (B), or test (C) subgroup]

in an approximate 8:1:1 ratio, and then, the CDT image samples derived from these cases were to belong to the same subgroup as of cases. Data splitting was

conducted so as to make the proportion of positive samples included in each subgroup being almost equal. Then, for training and validation subgroups, proportions in

the positive vs. negative samples were further adjusted to be 1:1 within each subgroup by randomly downsampling negative samples, since the original sample data

are highly imbalanced (e.g., proportion of cases with dementia is < 10%).

weights [e.g., transfer learning using Visual Geometry Group
(VGG) network (9)]. This network comprises four sets of
convolution and activation layers, thereafter fully-connected
layers to discriminate 2 target classes (positive vs. negative)
(Supplementary Figures S1B–D; name and output form (e.g.,
“32∗32∗32”) are shown in each layer). Kernel size was set to 3∗3.

Model Training and Validating
For training DNN classifier, we used R package {keras} (https://
keras.rstudio.com). Training to increase the predictive accuracy
and its validation were conducted in reference to the training and
validation subgroup sample images, respectively, for a maximum
epoch of 50 times. Categorical cross-entropy was used as a loss
function (4). In minimizing or maximizing the loss function,
Adam algorithm was used (4) with its default settings (e.g.,
learning rate = 0.001, decay = 0) in keras. The mini-batch size
was set to 32. To terminate the learning process of training and
validating, early stopping was arbitrarily applied based on the
validation accuracy curve.

The obtained classifier was then applied to the test subgroup
samples to eventually evaluate the performance of DNN models.
Accuracy, sensitivity, and specificity, positive likelihood ratio
(PLH), and negative likelihood ratio (NLH) were measured.
Since the test subgroup comprises imbalanced data, we mainly
refer to PLH and NLH but not accuracy to discuss the degree
of performance of the obtained classifiers. We repeated trials
using the same procedure–data split, training and validation,

and test–for 10 times while setting different random seeds, and
thereby obtained the averaged performance.

Visualizing Extracted Features in DNN
Next, we apply gradient-weighted class activation mapping
(Grad-CAM) (10) to visualize the features on which the
DNN model focuses within CDT images to make a judgment.
Alternative method such as layer-wise relevance propagation (11)
was not used here because it was not available in the R keras
toolchain. Output from the last convolutional layer as marked
by a star in Supplementary Figure S1C was used for the analysis
(https://github.com/rstudio/keras/issues/182). The obtainedmap
was overdrawn on the original image, to assess the extent to
which the DNN-based prediction may be valid visually. Heatmap
coloring was made by R package {viridis}.

RESULTS

Basic Features
We included 9,861 unique participants in total, among whom
57.1% (5,632/9,861) were women. The median age class was 75–
79 years. We included 40,131 CDT images obtained from all
participants. When focusing on the first-time sample for each
participant, the proportion of cases with probable dementia was
1.54% (152/9,861), and the proportion of cases with executive
dysfunction was 4.12% (406/9,861). The basic characteristics are
provided in Table 1.
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TABLE 1 | Basic characteristics of participants.

Objective

variable

Target (1)

(executive dysfunction

or not)

Target (2)

(probable dementia or

not)

CDT ≤ 1 CDT ≥ 2 Probable

dementia

others

Total N 406 9,448 152 9,702

Median

age (years)

80–84 75–59 80–84 75–79

Sex:

female (%)

193 (47.5%) 5,439 (57.6%) 94 (61.8%) 5,538 (57.1%)

CDT, Clock-Drawing Test.

Prediction Performance
Figures 3A,B show an example of the learning curve for
predicting executive dysfunction: (Figure 3A) shows decreasing
loss function in training and validation subgroups, and
(Figure 3B) shows increasing accuracy in training and validation
subgroups. In this curve, accuracy and loss function appeared to
plateau around epoch= 15.

Overall performance in the test subgroup samples is
summarized in Figures 3C–F in mean +/- SD by different target
variables. For the target (1) (i.e., executive dysfunction or not),
there were 93.2 +/- 3.3% of accuracy, 90.1 ± 0.6% of balanced
accuracy, 16.3 +/- 6.8 of PLH, and 0.14 +/- 0.03 of NPH.
Specificity was higher than sensitivity for all trials: for example,
sensitivity = 0.719 and specificity = 0.879 when PLH = 5.95 (>
5) and NLH= 0.320 (> 0.20).

In addition, for the target (2) (i.e., probable dementia or
not), there were 86.3 +/- 1.8% of accuracy, 77.2 ± 2.7% of
balanced accuracy, 5.1 +/- 0.5 of PLH, and 0.37 +/- 0.07 of
NPH. Specificity was also higher than sensitivity: for example,
sensitivity = 0.847 and specificity = 0.953 when PLH = 18.1 (>
10) and NLH= 0.16 (< 0.20).

Class Activation Mapping
Next, we visualized Grad-CAM (10): Figure 4 shows the
examples of imputed original images and their extracted features
through the CNN network (Grad-CAM is overdrawn on the
original images). Yellow or green color corresponds to the higher
weighted region of interest. For target (1), clock letters and
hands were referred to within clock images with a better quality.
Meanwhile, for target (2), not only clock letters, hands, and outer
circle, but also clock background spaces were also referred to
within clock images with a better quality.

DISCUSSION

In this study, using CDT data obtained from NHATS, we created
a DNN-based prediction model to detect cognitive decline.
The achieved performance in balanced accuracy was ∼90% for
executive dysfunction and 77% for probable dementia, being
similar to the performance in other DNN-based studies using
CDT (4, 5). The unique characteristics of our study compared

to these earlier studies are as follows: (1) we used sufficient
CDT data obtained from a large cohort of older adults, which
is much closer to that of the general population than that of
the memory clinic, and (2) we visually confirmed some extent
of validity of feature extraction of the DNN models by class
activation mapping.

These features suggest the potential of CDT as a mass
screening tool for cognitive decline in the general older
population, of which clinical settings are raised as follows:
CDT may become more easily utilized in the outpatient clinic
for primary care but not limited to specialized care (e.g.,
memory clinic). CDT can be included as one of the contents in
routine health checkup or can also be conducted in long-term
care facilities, to identify elderly individuals with unknowingly
deteriorating cognition. In these contexts, PLH for predicting
those with probable dementia was 5.1 (> 5.0), suggesting that
the CDT possesses some degrees of reliability in identifying
participants whose cognitive level is mild cognitive impairment
or dementia.

In addition, CDT may also be utilized in the screening
process of Alzheimer’s disease (AD) prevention trials, of which
the background is described as follows. Recent advances in the
development of AD prevention drugs highlight the importance
of enrolling individuals with no or limited cognitive impairment
(12, 13) (e.g., asymptomatic “preclinical AD” or mild cognitive
impairment). Because the target individuals are likely to have
mild symptoms, there are some attempts to recruit participants
via web-based registry (3). In this context, since individuals
whose cognitive decline had progressed substantially are not
eligible for such AD prevention trials, we wondered whether it
is possible that the CDT can be incorporated into the online
registries to help to exclude those with apparent executive
dysfunction or the possibility of probable dementia, thereby
facilitating an increase in the probability of participants being
eligible for AD prevention trials. In the context of such mass
screening to facilitate AD prevention trials, we should focus
on NLH to rule out those who may have dementia: NLH
in the prediction for those with probable dementia was 0.37,
suggesting that CDT is not always a reliable screening tool to
rule out non-eligible participants. NLH for those with executive
dysfunction was 0.14 (< 0.20), so that DNN-based automated
CDT exhibits some degrees of reliability as a screening test for
executive function.

Based on the PLH and NLH, the performance of models was
generally better in predicting those with executive dysfunction
than in predicting those with probable dementia, which can be
explained not only by the difference in the number of positive
samples but also in terms of the cognitive domain corresponding
to CDT (e.g., executive dysfunction). AD as the most prevalent
cause of dementia (14) is known to frequently cause memory
impairment during its early phase compared to other cognitive
domain disabilities; therefore, it is understandable that the
performance of CDT-based prediction for probable dementia was
poorer than that for executive dysfunction.

The DNN architecture and hyper-parameter tuning used in
this study may not have been the best, and there remains
room to improve the prediction performance to a state-of-art
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FIGURE 3 | Prediction performance. An example of the learning curve for predicting executive dysfunction. Serial change is observed in loss function (A) and

accuracy (B) as learning goes. Predictive performance is summarized in terms of accuracy (C), balanced accuracy (D), PLH (E), and NLH (F) for each of the target

variables (i.e., “executive dysfunction” or “probable dementia”). PLH, positive likelihood ratio; NLH, negative likelihood ratio.

FIGURE 4 | Grad-CAM examples. Examples of imputed CDT images and their extracted features through the CNN network. Yellow or green color corresponds to the

higher weighted region of interest. For target (1), clock letters and hands were referred to within clock images with a better quality. Meanwhile, for target (2), not only

clock letters, hands, and outer circle, but also clock background spaces were also referred to within clock images with a better quality. CDT, Clock-Drawing Test;

Grad-CAM, gradient-weighted class activation mapping.

level. Using transfer learning by fine-tuning a ready-made image
classifier should also be considered (15). Achieving the highest
performance was not our primary objective; however, even at
such a level of parameter tuning, we could confirm that the
prediction performance was similar to those of earlier reports.
This confirms the reliability and robustness of CDT as a screening
tool regardless of the settings in which the CDT is obtained.

Another approach to achieve good prediction accuracy
would be first to extract and quantify all parameters of a
drawn clock through image processing, such as the center
dot of a clock, lengths of horizontal and vertical axes of
clock, number, angle, and length of clock hands, or number
and location of clock digits (16). Then, making machine-
learning models to predict CDT scoring or the diagnosis
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of dementia based on these parameters was done in an
earlier open challenge (https://www.aicrowd.com/challenges/
addi-alzheimers-detection-challenge). Although this approach is
not as straightforward as our direct-imputing approach is, it
would still have an advantage regarding some additional points
that its extracted features can also be referred to in the known
scoring systems (1).

A digital device to measure CDT performance has been
developed (17–19), which measures hand movements during the
drawing of the clock image and to predict cognitive status (18).
It should have far greater potential than that of conventional
CDT in terms of its ability to obtain abundant mechanical
information during drawing. However, this study using samples
with conventional CDTwould still possess some advantages, such
as in the availability of considerable accumulated past data, or
greater accessibility than the hand-tracking digital pencil has. It
requires a specific testing device, which is not convenient for use
by a large number of web-based study participants (20).

Our study has some limitations. First, CDT scoring in the
NHATS does not provide detailed criteria so that there is a risk
that depends on the interviewers’ subjective evaluation. This can
cause inconsistency in the scoring across all samples, leading to a
limitation in the improvement of prediction accuracy. This is one
of the reasons whywe had not used the CDT score itself as a target
to predict. One possible solution for this issue is to re-score all the
clock images manually, so that we can obtain classifiers that are
applicable to multiple types of CDT scoring systems.

Second, the quality of automatic cropping in the preprocessing
(Figure 1) may not always be optimized, and some clock images
with too poor quality (e.g., a mere circle with distorted shape,
or a small circle) could have been removed from the analysis
during the preprocess procedure. This would account for a
slightly smaller proportion of probable dementia or executive
dysfunction than those actually reported in the earlier technical
paper by the original NHATS study team (8).

Third, although we considered that population background
and the samples used in our study might have simulated much
closer settings and discussed a hypothetical situation where a
web-based approach was to be employed in the actual AD
prevention trials, the actual applicability of CDT to web-based
application has not been validated and needs to be verified in
future studies. Remote CDT is also different from conventional
CDT in terms of the easiness to cheat (e.g., watching clock in
their room during the test). Although tablet-based or mobile
phone-based CDT would be technically feasible as reported in
an earlier study (20), it might be more difficult for patients
with dementia to complete digital CDT on the tablet than in
completing conventional CDT, so that we must expect a higher
dropout rate when using CDT in remote online screening.

Fourth, we could not include participant basic features such
as age, sex, education history, or family history, which are
important features in predicting dementia, because this study was
a CNN-based approach. Machine-learning approach inputting
these features in combination with the CDT-based probability for
being dementia may be helpful to further increase the prediction
accuracy. In addition, we also could not exclude potential cases

with specific medical history such as semi-lateral visual neglect
which might interfere with the appropriate CDT testing. This
is because it was impossible to detect such participants from
the database.

To conclude, the current DNN-based study using CDT
achieved similar performance as of earlier studies in terms of
accuracy but in a larger scale than ever, suggesting the feasibility
of implementing the conventional CDT as one of the mass
screening tools for detecting decreased executive function or
the status of probable dementia, thereby enhancing clinical
practice and facilitating clinical studies for dementia in the post-
pandemic era.
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Supplementary Figure S1 | Data constitution and DNN architecture. Cognitive

features including CDT images have been collected in NHATS study for every

round from the participants (A). Due to the dropout or exclusion from surveillance

follow-up, the number of CDT images obtained from each case is not always

equal. For DNN network, we used the same layer architecture as that of

“mini-VGG.” This network comprises 4 sets of convolution and activation layers

(B,C), thereafter fully-connected layers to discriminate 2 target classes (positive

vs. negative) (D). DNN, deep neural network; ReLU, rectified linear unit.

Supplementary Table 1 | Combination of manipulations for data augmentation.

For the test subgroup, only not-edged rotation (cells with gray color) was applied

for data augmentation.
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