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Background: Glioblastoma multiforme (GBM) is a common malignant brain

tumor with high mortality. It is urgently necessary to develop a new treatment

because traditional approaches have plateaued.

Purpose: Here, we identified an immune-related gene (IRG)-based prognostic

signature to comprehensively define the prognosis of GBM.

Methods: Glioblastoma samples were selected from the Chinese Glioma

Genome Atlas (CGGA). We retrieved IRGs from the ImmPort data resource.

Univariate Cox regression and LASSO Cox regression analyses were used

to develop our predictive model. In addition, we constructed a predictive

nomogram integrating the independent predictive factors to determine the

one-, two-, and 3-year overall survival (OS) probabilities of individuals with

GBM. Additionally, the molecular and immune characteristics and benefits

of ICI therapy were analyzed in subgroups defined based on our prognostic

model. Finally, the proteins encoded by the selected genes were identifiedwith

liquid chromatography-tandemmass spectrometry and western blotting (WB).

Results: Six IRGs were used to construct the predictive model. The GBM

patients were categorized into a high-risk group and a low-risk group. High-

risk group patients had worse survival than low-risk group patients, and

stronger positive associations with multiple tumor-related pathways, such

as angiogenesis and hypoxia pathways, were found in the high-risk group.

The high-risk group also had a low IDH1 mutation rate, high PTEN mutation

rate, low 1p19q co-deletion rate and low MGMT promoter methylation rate.

In addition, patients in the high-risk group showed increased immune cell

infiltration, more aggressive immune activity, higher expression of immune

checkpoint genes, and less benefit from immunotherapy than those in

the low-risk group. Finally, the expression levels of TNC and SSTR2 were

confirmed to be significantly associated with patient prognosis by proteinmass

spectrometry and WB.

Conclusion: Herein, a robust predictive model based on IRGs was developed

to predict the OS of GBM patients and to aid future clinical research.
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Introduction

Glioblastoma multiforme (GBM) is the most common

malignant brain tumor and it has high mortality and morbidity.

In the USA, GBM accounts for 14.7%, 47.7%, and 56.6% of all

primary brain tumors, malignant brain tumors, and gliomas,

respectively (1, 2). At present, treating GBM entails maximal

surgical resection and subsequent application of radiation

therapy (RT) plus chemotherapy. Chemotherapeutic regimens

most often include the alkylating agent temozolomide (TMZ)

according to the Stupp protocol, which has been shown to

positively impact long-term outcomes (3, 4). However, there are

some challenges that need to be addressed, including how to

achieve complete resection of tumors based on their location

in core or inoperable sites in the brain, as well as on their

infiltration into neighboring healthy brain tissues. Even with

aggressive and comprehensive treatment, cancer relapse cannot

be completely avoided. Patients with GBM have a dismal

prognosis, with a 5.6% 5-year OS rate and a median OS time of

12–15 months (5, 6). Considering the dismal survival outcomes

of individuals with GBM and the low effectiveness of the current

treatment regimens, there is a pivotal need to identify novel

treatment targets as well as alternative therapeutic approaches.

The major functions of the human immune system are to

modulate organ homeostasis, offer protection against infectious

pathogens, and remove damaged cells. Research evidence shows

that adaptive and innate immunity play indispensable roles

in the onset of cancer and contribute to cancer progression

and treatment efficacy (7, 8). Over the last few decades,

immunotherapy has become a revolutionary anticancer therapy.

It has shown considerable benefits, such as enhancing survival,

in numerous cancers, such as lung cancer, melanoma, and breast

cancer (9, 10). Past research has suggested that the central

nervous system has immune privilege due to the presence of

the blood–brain barrier. However, in 2015, Louveau defined a

new route for lymphatic outflow from the brain along different

channels parallel to the dural venous sinuses. Therefore, most

antigen-presenting cells that leave the brain likely reach the

lymph nodes in the deep neck, where they can prime T and B

lymphocytes. This suggests that immunogens in the brain can

generate a powerful immune response.

It is believed that although the brain is an immunologically

unique site, the immune microenvironment provides ample

opportunities to implement immunotherapy against brain

tumors (11). Currently, numerous immunotherapeutic

modalities for GBM have been proposed and established. They

include immune checkpoint inhibitors, such as antibodies

against cytotoxic T lymphocyte antigen 4 (CTLA-4),

programmed cell death protein 1 (PD-1), or its ligand

programmed death-ligand 1 (PD-L1), as well as CAR-T,

vaccine and oncolytic virus therapies (12). Generally, a

combination strategy involving immunotherapy, surgery, and

chemoradiotherapy has been proposed as a prospective effective

approach for treating GBM. Therefore, the purpose of the

current study was to identify an IRG-based prognostic signature

to comprehensively define the prognosis of GBM. In our

study, six IRGs (CRH, CRLF1, SERPINA3, SSTR2, TNC, and

TNFRSF19) closely associated with OS in GBM were identified

using univariate and LASSO Cox regression analyses and used

to construct a model to predict survival in GBM patients. We

then characterized the molecular and immune features of our

model and examined its prognostic power for patients treated

with immunotherapy. Finally, we used mass spectrometry

and WB to verify that the expression of the proteins encoded

by these IRGs differed between patients with long and short

survival times and constructed a ceRNA regulatory network.

The flow chart of the study is shown in Figure 1.

Materials and methods

Study population

RNA sequencing (RNA-seq) data and survival information

of GBM patients in the CGGAmRNAseq_693 dataset were used

as the training dataset. RNA sequencing data of normal brain

tissue were obtained from the CGGA mRNA sequencing (using

non-glioma as a control) dataset. RNA-seq data and survival

information used for external model validation were obtained

from the Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo) and CGGA databases. The GBM patients

in the independent mRNAseq_325, GSE16011, and GSE83300

datasets were used as the validation datasets. MicroRNA

expression data and lncRNA expression data were obtained from

the microRNA_198 and mRNA-array_301 datasets in CGGA.

Finally, gene mutation information was also obtained from the

CGGA database.

Di�erential expression analysis

The gene list comprising 1793 IRGs was obtained from

the ImmPort data resource. The “limma” package in R was

used for differential analysis, and the normalize between Arrays

function in the “limma” package was used to normalize the gene

expression profile (13). IRGs that were differentially expressed

had P 0.05 along with absolute log2-fold change (FC) 1.5. GO

functional enrichment and KEGG pathway enrichment analyses

of differentially expressed IRGs were performed using the GO

database (http://geneontology.org) and KEGG database (http://

www.genome.jp/kegg/) (14, 15).
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FIGURE 1

The flowchart of our study.

Construction and validation of the
prognostic model

Patients in the CGGA mRNAseq_693 dataset were used as

a training cohort to construct our prognostic model. Univariate

Cox regression and LASSO-Cox regression analyses were

used to screen for IRGs that were significantly associated

with survival (16). The risk score formula was calculated as

follows: [−0.0475×expression value of corticotropin releasing

hormone (CRH)]-[0.0260×expression value of cytokine
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receptor-like factor 1(CRLF1)]+[0.0640×expression value of

serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,

antitrypsin), member 3(SERPINA3)]-[0.0162×expression value

of somatostatin receptor 2(SSTR2)]+[0.0456×expression value

of tenascin C(TNC)]+[0.0272×expression value of tumor

necrosis factor receptor superfamily, member 19(TNFRSF19)].

Each sample’s risk score was calculated by multiplying the

expression values of the specific genes by their weights in the

Cox model and then summing the products. Patients were

clustered into high- and low-risk groups according to the

median risk score. Kaplan–Meier analysis was used to compare

the difference in survival between the two groups. Then,

receiver operating characteristic (ROC) curves for 1–3-year

survival were drawn. The area under the curve (AUC) was

used to estimate the sensitivity and specificity of the model for

survival prediction. Finally, we used three independent datasets

(CGGAmRNAseq_325, GSE16011 and GSE83300) to validate

our prognostic model (17–19).

Construction of the nomogram

Stepwise multivariate Cox regression analysis was used

to assess independent prognostic indicators, including the

radiotherapy status, chemotherapy status, and risk score.

Afterwards, these factors were used to construct a nomogram,

which was adopted to predict 1–3-year OS of patients with GBM.

The ROC curves, calibration curves and decision curve analysis

(DCA) curves were compared to determine the predictive

accuracy of the prognostic model (20).

Comprehensive analysis of the risk score

Gene set enrichment analysis (GSEA) was performed using

GSEA software (GSEA v4.1.0, http://www.broadinstitute.org/

gsea). Our analysis was based on HALLMARK and KEGG

gene sets. The package “ggplot2” was used to visualize the

GSEA results. Then, the package “maftools” in R was used to

visualize the somaticmutations in theGBMpatients with genetic

mutation data from the CGGA database. We also grouped the

patients according to their different clinical characteristics (age,

sex, IDH mutation, MGMT promoter methylation and 1p19q

codeletion) and compared the differences in the risk scores

among the clinical characteristics subgroups. The relationship

between IRGs and gene functional status was analyzed by

CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/) (21).

Immune characteristics analysis and
immunotherapy analysis

Enrichment scores for 16 immune cells and 13 immune-

related functions were estimated using single-sample gene set

enrichment analysis (ssGSEA). Then, 22 immune cell types were

quantified using the R package “CIBERSORT.” Only samples

with a CIBERSORT output p-value < 0.05 were screened

for this study. We also compared the expression levels of

immune checkpoints between the high-risk and low-risk groups.

Recent studies have revealed two distinct mechanisms of tumor

immune evasion. In some tumors, although cytotoxic T cells

are highly infiltrated, these T cells are often dysfunctional. In

other tumors, immunosuppressive factors can eliminate T cells

infiltrating tumor tissue. Peng Jiang et al. (22) designed a novel

computational architecture, the Tumor Immune Dysfunction

and Rejection (TIDE) score, to integrate these two tumor

immune escape mechanisms. We explored the predictive power

of our immunotherapy response prognostic model with the

TIDE website (http://tide.dfci.harvard.edu). These immune-

related characteristics were compared between the high- and

low-risk groups (23).

Liquid chromatography-tandem mass
spectrometry

Ten GBM samples were selected, of which five were

from patients with short survival times (OS <1 year) and

five were from patients with long survival times (OS >3

years). Clinical information for 10 patients is presented in

Supplementary Table 1. Samples were taken from storage at

−80◦C. Equal amounts of protein were taken from each

sample for enzymatic hydrolysis, and the peptides were labeled

according to the instructions of the TMT kit. Peptides were

fractionated by high pH reverse-phase HPLC on an Agilent

300 Extend C18 column (5µm particle size, 4.6mm ID,

250mm length). The peptides were dissolved in phase A of the

liquid chromatography mobile phase and separated using an

EASY-nLC 1,000 ultrahigh-performance liquid chromatography

system. MS data were retrieved using MaxQuant 1.5.2.8. The

quantitative method was set to TMT-10plex, and the FDR of

protein identification and PSM identification were both set

to 1%. P-values <0.05 and absolute FDR values >2 were

considered differentially expressed proteins.

Western blotting

GBM tissues (n = 4) cryopreserved in liquid nitrogen

after surgery at the First Affiliated Hospital of Wenzhou

Medical University were collected. Clinical information for 4

patients is presented in Supplementary Table 2. Total proteins

were extracted and quantified using a bicinchoninic acid

(BCA) assay. The antibodies used were: anti-TNC (Abcam

ab108930), anti-SSTR2 (Abcam ab229007), anti-SERPINA3

(Abcam ab205198), anti-TNFRSF19 (Abcam ab96220), and anti-

GAPDH (Abcam ab8245). All primary antibodies were rabbit
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anti-human antibodies. The secondary antibody was a goat anti-

rabbit antibody. Briefly, equal amounts (40 µg) of protein from

each sample (tumors and control tissues) were separated by

10% SDS-PAGE electrophoresis and then transferred to PVDF

membranes. The PVDF membranes were incubated with the

primary antibodies, followed by the secondary antibodies, and

then visualized. GAPDH was used as an internal reference for

the western blot analysis.

Construction of the ceRNA regulatory
network

Co-expression analysis was used to screen miRNAs that

regulated mRNAs and lncRNAs that competed with miRNAs for

binding. A p-value <0.05 and an R-value >0.3 were considered

to indicate a significant correlation. Then, the mRNA targets of

miRNAs and miRNA targets of lncRNAs were analyzed with

the ENCORI web server (http://starbase.sysu.edu.cn/). RNAs

with identical results in coexpression analysis and ENCORI

analysis were suggested as possible components of a ceRNA

regulatory network.

Statistical analyses

Differences between the high-risk and low-risk groups were

compared by theWilcoxon test. Survival analysis was performed

using the log-rank test. Multivariate survival analysis was

performed using Cox regression analysis. Correlation analysis

was performed using the Spearman method, and a two-sided

p < 0.05 was considered significant. Statistical analysis was

performed in R 4.0.3.

Results

Di�erentially expressed immune-related
genes

In the differential expression analysis (249 tumor and 20

normal samples), a total of 142 differentially expressed IRGs

were obtained; specifically, 89 IRGs were upregulated and 53

IRGs were downregulated in the tumor samples compared with

the normal samples. The top 10 GOBP, GOCC, and GOMF

terms and top 15 KEGG pathways are shown in Figure 2. We

found that IRGs upregulated in tumor tissues were mainly

enriched in activities and pathways related to antigen processing

and presentation as well as MHC class II complexes. In contrast,

IRGs downregulated in tumor tissues were mainly enriched

in axon development, signaling receptor-related activities, and

T-cell receptor signaling pathways.

Glioblastoma prognostic signature

Univariate Cox regression analysis identified 27 genes

among the 142 differentially expressed IRGs. Then, the multiple

regression model was trained using the features selected by

LASSO Cox regression analysis. Finally, six genes (CRH, CRLF1,

SERPINA3, SSTR2, TNC, and TNFRSF19) were obtained. By

calculating each patient’s risk score using the same formula,

the patients were divided into high- and low-risk groups based

on the median risk score (Figure 3B). Kaplan–Meier analysis

showed significant differences in OS between the high-risk

group and the low-risk group in the training set (p = 1.938e-

02). In addition, time-dependent ROC analysis showed that

the risk score could efficiently estimate the 1, 2, and 3-year

OS probabilities. The results for the calculation of the 1-year

AUC (0.610), 2-year AUC (0.698), and 3-year AUC (0.694) are

presented in Figure 3C.

Then, three independent datasets – CGGA mRNAseq_325,

GSE16011, andGSE83300 – were used to validate our prognostic

model. The patients in each validation dataset were also divided

into two groups based on their median risk score. There were

also significant differences in the expression of six genes between

the high-risk and low-risk groups. KM and time-dependent

ROC analyses were performed in the three validation datasets.

The results showed that our prognostic signatures were well-

differentiated between the high- and low-risk groups. The

prognostic model also accurately estimated the OS probability

at 1–3 years (Figure 4).

GSEA, gene mutation landscape, and
clinical factor analysis

The results of KEGG analysis by GSEA showed that

the complement system pathway, extracellular matrix (ECM)

receptor pathway and cell adhesion pathway were enriched

in the high-risk group. The results also showed that multiple

hallmark gene sets associated with tumor development,

including angiogenesis, hypoxia and epithelial-mesenchymal

transition gene sets, were enriched in the high-risk group.

Then, by mutation analysis, we found that IDH1 and TP53

gene mutations were more common in the low-risk group and

PTEN mutations were more common in the high-risk group

(Figure 5B). When the patients were grouped according to

their clinical characteristics, a comparison of the differences in

risk scores between the two groups demonstrated that younger

patients had lower risk scores. In addition, patients with MGMT

promoter methylation, IDH mutation, and 1p19q co-deletion

had lower risk scores. The differences associated with all of these

molecular features demonstrate a strong link between the risk

score and the molecular tumor subtype (Figure 5C).
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FIGURE 2

GO and KEGG enrichment analyses of di�erentially expressed IRGs. (A) GO analysis of upregulated IRGs. (B) KEGG analysis of upregulated IRGs.

(C) GO analysis of downregulated IRGs. (D) KEGG analysis of downregulated IRGs.

Construction of the nomogram

Multivariate Cox regression analysis was used to explore the

risk score as an independent predictor of survival. The data

suggested that the risk score can be used as an independent

variable to assess the prognosis of GBM patients (p =

0.005). In addition, radiotherapy and chemotherapy were also

independent prognostic factors (Figure 6A). A nomogram was

constructed to estimate the 1–3-year survival probabilities using

the independent factors (radiotherapy status, chemotherapy

status, and risk score) (Figure 6B). The multivariate ROC

analysis showed that the nomogram had the largest AUC

(Figure 6C), and the DCA results showed that the nomogram

curve had the greatest deviation, both of which suggest that the

nomogram has better predictive ability than any independent

factor alone (Figure 6D). In the calibration curves for predicting
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FIGURE 3

Identification of the IRG prognostic signature. (A) Coe�cients of the determined characteristics are shown by the lambda parameter. The partial

probability deviance relative to log (λ) was calculated via the LASSO Cox regression approach. (B) Prognostic assessment of the gene signature

in the CGGA mRNAseq_693 cohort. Top: The dotted line designates the median risk score and stratifies the patients into low-risk GBM and

high-risk GBM groups. Middle: Survival status of the patients. Bottom: Heatmap showing the expression patterns of the prognostic genes in the

low-risk GBM and high-risk GBM groups. (C) Kaplan–Meier survival analysis of patients stratified by the gene signature. Time-dependent ROC

analysis of the gene signature.

1–3-year survival, the red line indicates estimated survival,

and the gray line indicates ideal survival. All three lines

are closely aligned, showing good calibration in the CGGA

mRNAseq_693 dataset (Figure 5E). Data from the validation

set CGGA mRNAseq_325 were also acceptable in terms of

predictive power (Figure 6F).
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FIGURE 4

Patients in the validation set were used to verify the risk score model. Top: The dotted line designates the median risk score and stratifies the

patients into low-risk GBM and high-risk GBM groups. Middle: Survival status of the patients. Heatmap of the prognostic genes in the low-risk

GBM and high-risk GBM groups. Bottom: Kaplan–Meier survival curves and time-dependent ROC curves of the patients in the validation sets. (A)

CGGA mRNAseq_325 dataset. (B) GSE16011 dataset. (C) GSE83300 dataset.

Immune characteristics analysis in
di�erent risk groups

To understand the relationship between the risk score

and the immune microenvironment, ssGSEA-based enrichment

scores were calculated for 16 immune cells and 13 proteins with

immune-related functions. There were significant differences in

13 immune cells between the high-risk and low-risk groups,

with the high-risk group having higher levels of CD8T cells

and TILs. Likewise, the high-risk group exhibited higher levels
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FIGURE 5

(A) GSEA between the high-risk group and the low-risk group based on the HALLMARK gene sets and KEGG gene sets. (B) The somatic

landscape of the low-risk group samples and high-risk group samples. Mutation information for each gene in each sample is shown in waterfall

plots, with di�erent colors at the bottom representing specific annotations indicating various mutation types. (C) Boxplots showing the

distribution of risk scores in GBM samples categorized by di�erent factors, including age, sex, IDH mutation status, MGMT promoter methylation

status, and chr1p19q codeletion status.
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FIGURE 6

Construction of the nomogram. (A) Multivariate Cox regression analysis was adopted to select the independent variables, including radiotherapy

status, chemotherapy status, and risk score. (B) The nomogram constructed using radiotherapy status, chemotherapy status and risk score. For

each patient, three lines are drawn upwards to verify the points assigned from the three predictors of the nomogram. The sum of these points is

located on the ‘Total Points’ axis. Then, a line is drawn downwards to assess the 1–3-year overall survival probabilities of patients with GBM. (C)

Multivariate ROC analysis was used to compare the predictive power of each variable. (D) DCA was used to compare the predictive power of

each variable. (E) The calibration curve for the evaluation of the nomogram. The Y-axis shows the actual survival rate, while the X-axis shows the

nomogram-estimated 1–3-year OS probabilities of patients in the training set. (F) The predicted 1–3-year OS probabilities of patients in the

verification set.
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of all 13 proteins with immune-related functions than the low-

risk group (Figure 7A). We also found that the expression

levels of the immune checkpoints PD-1, PD-L1, B7-H3, CD28,

CD40, and TIM3 were significantly higher in the high-risk

group (Figure 7B). We then found by CIBERSORT analysis

that resting memory CD4T cells, plasma cells, monocytes,

activated dendritic cells, eosinophils and M0 macrophages were

more abundant in the high-risk subgroup, while activated NK

cells were more abundant in the low-risk group (Figure 7C).

These results revealed significant differences in the level of

immune cell infiltration and immune activity between the high-

risk group and the low-risk group. We also found higher

TIDE scores and immune exclusion in the high-risk group

than in the low-risk group, suggesting that the low-risk group

would benefit more from immune checkpoint inhibitor (ICI)

therapy (Figure 7D). We found that TNC and TNFRSF19 were

significantly overexpressed in the high TIDE group (Figure 7E).

Validation of di�erential protein
expression and construction of a ceRNA
regulatory network

Our MS results showed that long-term survivors had

higher expression of SSTR2 and lower expression of TNC

than short-term survivors, and these results were consistent

with our prognostic model. The differences in the expression

of CRLF1 and SERPINA3 were not statistically significant,

and the expression of CRH could not be detected in the

samples (Figure 8A). Our WB results are consistent with the MS

results, with long-term survivors having higher expression of

SSTR2 and lower expression of TNC than short-term survivors,

with no statistically significant differences in SERPINA3 and

TNFRSSF19 expression (Figure 8B).

The results of single-cell analysis with the CancerSEA

database showed that high expression of SSTR2 was negatively

related to invasion, EMT and metastasis. High expression

of TNC was positively related to hypoxia and metastasis

(Figures 8C,D). We attempted to construct separate ceRNA

regulatory networks for TNC, SSTR2 and TNFRSF19. However,

consistent results between co-expression analysis and ENCORI

analysis were obtained only for TNC. We found that the

expression levels of miR-330-5p, miR-129-5p, and miR-137

were significantly negatively correlated with that of TNC

and that these miRNAs were TNC targets in ENCORI

(Figure 9A). Because high expression of miR-330-5p was

considered beneficial, we searched for targeted lncRNAs that

were significantly negatively related to miR-330-5p (Figure 9B).

HOTAIR, NEAT1, and SNHG12 were found to be significantly

negatively related to miR-330-5p and HOTAIR, and SNHG12

had a strong correlation with a poor prognosis (Figures 9C,D).

The lncRNA–miRNA–mRNA ceRNA regulatory network is

shown in Figure 9E.

Discussion

GBM, an aggressive primary malignant brain tumor,

is common in adults. Currently, treatment strategies for

GBM consist of surgery alone for early-stage disease and

adjuvant radio/chemotherapy integrated with surgical

resection for advanced-stage disease. However, the

outcome of most GBM patients remains poor. For

instance, surgical resection does not yield a satisfactory

outcome since the GBM cells readily metastasize (24).

In addition, there is still controversy as to whether

systemic adjuvant treatment should be administered after

surgery, considering the potential adverse effects and tumor

heterogeneity (25).

In recent years, novel immunotherapies targeting the glioma

immune microenvironment have shown great promise in the

clinical management of tumors. Among various treatment

strategies, drugs targeting immune checkpoint molecules have

been hailed as breakthroughs (26–28). However, the efficacy

of immunotherapy varies greatly and is affected by many

factors. Sex, race, aging, obesity, exercise, alcohol consumption,

and other factors have all been reported to affect the efficacy

of immunotherapy. Compared with Asian Americans and

Caucasians, people of African descent have a higher risk

of certain malignancies. In addition, estrogen may promote

higher levels of Treg cells, and female patients with malignant

tumors are more likely to benefit from immunotherapy.

For lifestyle habits, smoking and alcohol consumption can

result in higher tumor mutational burdens and increased

responsiveness to immunotherapy. A high-sugar, high-calorie

diet reduces IL-17 levels and the benefit of immune checkpoint

therapy. Finally, obese patients have high levels of TNF-

α, IL-6, and IL-8 due to chronic inflammation, and when

given immunotherapy, they live significantly longer (29–32).

Therefore, it is essential to identify critical biomarkers to

predict the outcomes of GBM patients. In the current study,

an immune-related gene (IRG)-based prognostic signature

was explored as a comprehensive approach to predicting the

outcome of glioblastoma (GBM) and it exhibited significance in

most analyses.

Many recent investigations have focused on the association

of IRG expression with the onset and progression of diverse

cancers (33). Comprehensive research evidence has documented

that IRGs have a stable capacity to estimate the prognosis of

patients, and numerous IRGs with robust estimation roles have

been identified (34). To date, some existing nomograms have

employed IRGs as predictive factors for individuals with glioma.

A recent study established a nomogram with immune-linked

gene pairs for estimating the survival of individuals with GBM
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FIGURE 7

(A) Boxplots showing the levels of 16 immune cells in the two groups determined using ssGSEA. (B) Boxplots showing the levels of 13 proteins

with immune-linked functions in the two groups determined by using ssGSEA. (C) Boxplots showing the expression of immune checkpoint

genes in the high- and low-risk groups. (D) Boxplots showing the infiltration levels of 22 immune cell infiltrates in the two groups using

CIBERSORT analysis. (E) TIDE, T-cell dysfunction and exclusion scores in the two groups. The variables were compared between the two groups

with the Wilcoxon test. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 8

(A) The expression distribution of risk score IRGs in the short-survival time group and the long-survival time group. The asterisks represent levels

of significance *p < 0.05, ns: not statistically significant. (B) Western blot analysis of four di�erentially expressed IRGs in the signature model. The

protein expression level of TNC in the short survival group was significantly upregulated, and the protein expression level of SSTR2 was

significantly downregulated. There was no significant di�erence in the expression of SERPINA3 and TNFRSF19 between the two groups. (C) High

expression of SSTR2 was negatively related to tumor invasion, EMT and metastasis. (D) High expression of TNV was positively related to tumor

metastasis and hypoxia.

(35), and a risk model based on 20 differentially expressed IRGs

was demonstrated to exhibit efficient OS estimation potential in

LGG (36).

However, the models established in past studies often do

not have high AUC values and are not externally validated

using independent datasets. Furthermore, they did not perform
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FIGURE 9

(A) Target miRNAs significantly negatively correlated with TNC. (B) KM curves of TNC-targeting miRNAs. (C) Target lncRNAs significantly

negatively correlated with miR-330-5p. (D) KM curves of miR-330-5p-targeting lncRNAs. (E) HOTAIR and SNHG12 can regulate TNC expression

by competitively binding to miR-330-5p.
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experimental validation of the genes included in the model. In

our study, after a series of analyses based on the CGGA dataset,

a prognostic signature consisting of six IRGs (CRH, CRLF1,

SERPINA3, SSTR2, TNC, and TNFRSF19) was identified, and

a nomogram with good predictive power was constructed,

combining the risk score, radiotherapy status and chemotherapy

status. Of the two IRGs validated by protein mass spectrometry

and WB, TNC participates in vasculogenic mimicry (VM)

formation, which is the generation of vessel-like structures

by highly infiltrative tumor cells. VM has been regarded

as one of the numerous mechanisms that account for the

failure of antiangiogenic treatment in individuals with glioma

(37). It has also been reported that TNC is a promoter

of the invasiveness of brain tumor-initiating cells through

a mechanism involving ADAM-9 proteolysis via the c-Jun

NH2-terminal kinase pathway (38). SSTR2 was reported to be

associated with favorable outcomes in various solid tumors.

Appay et al. (39) validated that high expression of the SSTR2A

protein was associated with a lower proliferation index, the

absence of microvascular proliferation and the absence of

necrosis, leading to better overall survival and progression-

free survival.

We found that the risk score was associated with multiple

tumor development-related pathways. Patients in the high-

risk group were older and had lower IDH1 mutation rates,

lower 1p19q co-deletion rates and lower MGMT promoter

methylation rates. All of these differences would also lead to

poor survival. Then, ssGSEA and CIBERSORT analysis showed

that the infiltration level of NK cells in the high-risk group

was significantly lower than that in the low-risk group, and the

expression of MHC class I molecules was significantly higher

in the high-risk group than in the low-risk group. We know

that glioma cells can inhibit antigen-presenting cell-mediated

recognition and NK-cell-mediated killing by expressing MHC

class I molecules that interact with NK-cell immunoglobulin-

like receptors.

We also found higher expression levels of PD-1

and PD-L1 in the high-risk group than in the low-risk

group. PD-1 negatively regulates T-cell receptor-mediated

signal transduction pathways, binds to PD-L1, inhibits its

activation and cytotoxic T-cell effects, blocks the production

of inflammatory factors, and leads to T-cell inactivation.

Tumor-expressed PD-L1 is regulated by multiple mechanisms,

including activation of the phosphatidylinositol 3-kinase (PI3K)

signaling pathway and TIL-secreted interferon gamma (IFN-γ).

In gliomas, PD-L1 is mainly expressed on tumor cells and

TAMs and is negatively correlated with patient prognosis

(40–42). In addition, patients in the high-risk group had

higher TIDE scores and exclusion scores, demonstrating worse

immunotherapy outcomes.

The recently proposed concept of ceRNAs plays an

important role in the development of cancer. We constructed

a TNC-centered ceRNA regulatory network, which helped us

to explain the regulatory mechanism by which high TNC

expression leads to a poor prognosis of GBM patients. It has

important guiding significance for future research. In summary,

our study utilized public databases to construct a prognostic

model of six IRGs and validated it at the protein expression

level. HOTAIR and the SNHG12–miR-330-5p–TNC axis might

promote tumor progression via tumor cell metastasis and

tumor hypoxia.

Limitations

There are some limitations of this research. First, although

we used MS/MS and WB to validate the protein expression

differences of IRGs in the predicted model in GBM tissues

with different prognoses, the small sample size may have biased

the results. Second, in vivo and in vitro functional experiments

are required to validate the functional importance of TNC

and SSTR2. In addition, we assessed patients’ immunotherapy

susceptibility only with the TIDE score. We also need to detect

the expression levels of IRGs in the prognostic model in a

cohort of patients receiving immunotherapy, which will more

intuitively reflect the predictive ability of our model for the

response to immunotherapy.

Conclusion

In this study, the immunogenomic landscape was

analyzed, and an IRG-related prognostic signature for

GBM was developed. The results of this study provide a

more comprehensive understanding of the immune response

in the TME and prospective immunotherapy targets for

clinical use.
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