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Objective: We hypothesized that quantitative net water uptake (NWU), a

novel neuroimaging marker of early brain edema, can predict symptomatic

intracranial hemorrhage (sICH) after acute ischemic stroke (AIS).

Methods: Weenrolled patients with AIS who completed admissionmultimodal

computed tomography (CT) within 24h after stroke onset. NWU within the

ischemic core and penumbra was calculated based on admission CT, namely

NWU-core and NWU-penumbra. sICH was defined as the presence of ICH

in the infarct area within 7 days after stroke onset, accompanied by clinical

deterioration. The predictive value of NWU-core and NWU-penumbra on

sICH was evaluated by logistic regression analyses and the receiver operating

characteristic (ROC) curve. A pure neuroimaging prediction model was built

considering imaging markers, which has the potential to be automatically

quantified with an artificial algorithm on image workstation.

Results: 154 patients were included, of which 93 underwent mechanical

thrombectomy (MT). The median time from symptom onset to admission

CT was 262min (interquartile range, 198–368). In patients with MT, NWU-

penumbra (OR =1.442; 95% CI = 1.177–1.766; P < 0.001) and NWU-core (OR

= 1.155; 95% CI = 1.027–1.299; P = 0.016) were independently associated

with sICH with adjustments for age, sex, time from symptom onset to CT,

hypertension, lesion volume, and admission National Institutes of Health

Stroke Scale (NIHSS) score. ROC curve showed that NWU-penumbra had

better predictive performance than NWU-core on sICH [area under the curve

(AUC): 0.773 vs. 0.673]. The diagnostic e�ciency of the predictive model was

improved with the containing of NWU-penumbra (AUC: 0.853 vs. 0.760). A

pure imaging model also presented stable predictive power (AUC = 0.812).

In patients without MT, however, only admission NIHSS score (OR = 1.440;

95% CI = 1.055–1.965; P = 0.022) showed significance in predicting sICH in

multivariate analyses.
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Conclusions: NWU-penumbra may have better predictive performance than

NWU-core on sICH after MT. A pure imaging model showed potential value to

automatically screen patients with sICH risk by image recognition, which may

optimize treatment strategy.

KEYWORDS

brain edema, multimodal CT, net water uptake, symptomatic intracranial hemorrhage

(sICH), acute ischemic stroke (AIS), mechanical thrombectomy (MT)

Introduction

Brain edema is an important pathophysiological process

after acute ischemic stroke (AIS). The pathophysiological

mechanisms are primarily cytotoxic edema, angiogenic edema,

and cerebrospinal fluid influx (1, 2). Progressive edema

will lead to irreversible tissue injury, secondary neurological

deterioration, and poor outcome (3). Current assessments of

brain edema degree are mainly based on follow-up non-contrast

computed tomography (NCCT), as brain edema peaks around

3 days after stroke onset (4). Imaging characteristics such

as shrunken sulci, low density around infarct core, midline

shift, and even brain hernia suggest brain edema indirectly

(5). However, there are few neuroimaging markers able to

detect brain edema early, directly, and quantitatively, and none

of these neuroimaging markers were available in CT until

recently (6).

Quantitative net water uptake (NWU) is a relatively

novel neuroimaging marker of early brain edema after AIS,

first described in 2016 based on admission multimodal CT

(7). Researchers subsequently reported that NWU within the

ischemic core can identify patients within the thrombolysis

time window and predict poor outcomes at 90 days, and those

with malignant edema (8–10). In the hyperacute stage of AIS,

cytotoxic edema will lead to endothelial cell swelling, further

blood-brain barrier (BBB) breakdown, increased permeability,

and ultimately may contribute to hemorrhagic transformation

(HT). Previous research reported that NWUwithin the ischemic

core was a predictor of HT in patients with successful

reperfusion (11). In this study, NWU within the ischemic

core and the ischemic penumbra were calculated separately.

The predictive values of NWU-core and NWU-penumbra on

symptomatic intracranial hemorrhages (sICH) after AIS were

further investigated.

Methods

Patients

This is a single-institute retrospective study. The clinical

and imaging data were obtained from an established database,

which contains data from all patients with AIS admitted to the

Emergency Department at Ningbo First Hospital (Advanced

Stroke Center) between July 2017 and September 2019.

Inclusion criteria: (1) acute anterior circulation infarction; (2)

admission multimodal CT including NCCT, CT angiography

(CTA), and CT perfusion (CTP) were completed within 24 h

after symptom onset. In patients with wake-up stroke, we

estimated the time of stroke onset by taking the midpoint

between sleep time and wake time (12); (3) follow-up CT

scans performed at 24 h and 1 week after stroke onset or

immediately in case of clinical deterioration; (4) the absence of

intracranial hemorrhage, brain tumor, or preexisting infarctions

in admission NCCT. The thrombolysis in cerebral infarction

(TICI) grading scale is used to define endpoints of successful

revascularization (13).

FIGURE 1

Quantification of NWU-core and NWU-penumbra in admission

CT. CBV and DT maps based on CTP were used to identify the

ischemic core and penumbra with the setting of di�erent

thresholds. The mean density of the ischemic core, ischemic

penumbra, and normal tissue derived from mirrored

contralateral were then calculated (Dre, Dpenra, and Dnra).
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TABLE 1 Baseline characteristics of enrolled patients.

Non-sICH (n= 126) sICH* (n= 28) P-value

Demographics

Age, mean± SD 69± 13 70± 11 0.353

Sex, male (%) 74 (58.7) 13 (46.4) 0.293

Comorbidities

Hypertension, n (%) 73 (57.9) 22 (78.6) 0.053

Diabetes mellitus, n (%) 11 (8.7) 6 (21.4) 0.088

Atrial fibrillation, n (%) 75 (59.5) 19 (67.9) 0.522

Coronary heart disease, n (%) 15 (12.0) 4 (14.3) 0.753

Stroke etiology 0.711

Atherothrombotic, n (%) 27 (21.4) 4 (14.3)

Cardioembolic, n (%) 72 (57.1) 18 (64.3)

Others, n (%) 27 (21.4) 6 (21.4)

NIHSS score, median (IQR) 17 (12–21) 21 (15–28) 0.008

Time from symptom onset to CT, min, median (IQR) 253 (194–366) 310 (242–398) 0.100

Imaging biomarkers

Ischemic core volume, ml, median (IQR) 24 (9–45) 48 (32–62) <0.001

Ischemic penumbra volume, ml, median (IQR) 66 (33–102) 87 (57–136) 0.060

NWU-core, %, median (IQR) 5.3 (2.7–8.9) 8.2 (5.8–10.9) 0.015

NWU-penumbra, %, median (IQR) 0.9 (−1.5 to 3.5) 3.6 (2.1–5.1) <0.001

Treatment 0.069

Mechanical thrombectomy, n (%) 51 (40.5) 18 (64.3)

Intravenous thrombolysis, n (%) 44 (34.9) 4 (14.1)

Bridging therapy, n (%) 19 (15.1) 5 (17.9)

Antiplatelet agents, n (%) 12 (9.5) 1 (3.6)

sICH, symptomatic intracranial hemorrhage; NIHSS, National Institutes of Health Stroke Scale; NWU-core, net water uptake within ischemic core; NWU-penumbra, net water uptake

within ischemic penumbra.

For continuous variables that follow a normal distribution, data were expressed as mean± SD, the t-test was used for group comparison. For non-normal continuous variables, data were

presented in the form of the medians (interquartile ranges), and the Mann-WhitneyU-test was applied. Categorical variables were expressed as frequencies (percentages), using the χ2 test

or Fisher’s test as appropriate.
*sICH was defined in reference to ECASSii criterion as hemorrhagic hyperintense in the infarction area scanned by CT within 1 week from symptom onset, accompanied by an increase of

at least 4 points in the NIHSS score from baseline. The bold values means p < 0.1.

Definition of sICH

According to the European Cooperative Acute Stroke

Study (ECASS) II criteria, hemorrhagic transformation (HT) of

infarcted brain tissue can be divided into four types, including

HI1 (scattered small petechiae, no mass effect), HI2 (confluent

petechiae, no mass effect), PH1 (hematoma within infarcted

tissue, occupying < 30%, no substantive mass effect), and PH2

(hematoma occupying 30% or more of the infarcted tissue,

with obvious mass effect). sICH was defined as the presence of

hemorrhagic hyperdensity in the infarction area on follow-up

CT scans within 7 days, accompanied by clinical deterioration

(an NIHSS score increase ≥ 4 from baseline) (14, 15) with no

explanation for the clinical deterioration other than secondary

intracerebral hemorrhage.

Imaging analysis

Admission multimodal CT was conducted by a 320-slice

scanner (Toshiba Aquilion ONE, Canon Medical Imaging,

Tokyo, Japan) with 320 axial sections and 0.5mm thickness.

All imaging data were processed by commercial software

(MIstar, Apollo Medical Imaging Technology, Melbourne, VIC,

Australia). CTP was used to identify the ischemic core and

ischemic penumbra. The threshold of ischemic core was delay

time (DT) > 3 s and cerebral blood flow (CBF) < 30%. The

threshold of ischemic penumbra was DT > 3 s and CBF >

30% (16). Regions of interest (ROIs) corresponding to the

ischemic core and penumbra according to these thresholds

were drawn manually, and mirrored contralateral ROIs were

generated automatically and defined as normal tissue. These
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FIGURE 2

Data distributions of NWU-core and NWU-penumbra in patients stratified by reperfusion therapies. (A) Scatter plot showed the relationship

between NWU-core and NWU-penumbra in patients with MT. (B) Group 1: NWU-core of sICH patients, group 2: NWU-core of non-sICH

patients, group 3: NWU-penumbra of sICH patients, group 4: NWU-penumbra of non-sICH patients. Box plot showed that in patients with MT,

sICH group had higher NWU-core [8.8 (6.0–10.9) vs. 5.0 (2.8–9.0), P = 0.013] and NWU-penumbra [2.6 (3.6–5.1) vs. 0.7 (−1.2 to 3.4), P < 0.001]

than those without sICH. (C) Scatter plot showed the relationship between NWU-core and NWU-penumbra in patients without MT. (D) Group 1:

NWU-core of sICH patients, group 2: NWU-core of non-sICH patients, group 3: NWU-penumbra of sICH patients, group 4: NWU-penumbra of

non-sICH patients. Box plot showed that in patients without MT, there was no statistical di�erence in NWU-core [6.8 (1.1–12.6) vs. 6.0 (2.3–8.0),

P = 0.885] and NWU-penumbra [2.0 (−0.4 to 7.2) vs. 1.5 (−2.8 to 4.1), P = 0.318] between sICH and non-sICH group. * p < 0.05; ** p < 0.01; ***

p < 0.001; **** p < 0.0001.

ROIs were then superimposed on NCCT to measure CT density

(Dre, Dpenra, and Dnra) with Hounsfield units (HU) between

20 and 80 (Figure 1). NWU-core was defined as an elevated

volume of water (∆ ater) per unit volume of ischemic core

(core). Similarly, NWU-penumbra was defined as ∆ ater per

unit volume of ischemic penumbra (penumbra), according to the

following equations (6, 7):

NWUcore =
Vwater

Vcore
=

(

1−
Dcore

Dnormal

)

× 100%

NWUpenumbra =
Vwater

Vpenumbra
=

(

1−
Dpenumbra

Dnormal

)

× 100%

Statistical methods

We performed the statistical analyses under the supervision

of professional statisticians. SPSS version 22.0 (SPSS Inc,

Chicago, IL, USA), MedCalc version 20.027 (MedCalc Software

Ltd, Ostend, Belgium), and GraphPad Prism version 8.0

(GraphPad Software, San Diego, CA, USA) were used in

these analyses. Baseline characteristics were compared between

patients with and without sICH. For continuous variables

that followed a normal distribution, data were expressed as

mean ± SD, and the t-test was used for group comparison.

For non-normal continuous variables, data were presented

in the form of the medians (interquartile ranges), and the

Mann–Whitney U test was applied. Categorical variables were

expressed as frequencies (%) using the χ2 test or Fisher’s test as

appropriate. Univariate logistic regression analyses were used to

explore the associations between sICH, NWU-core, and NWU-

penumbra. Backward stepwise multivariate logistic regression

analyses were then performed. We used age, sex, admission

NIHSS score, time from symptom onset to CT, lesion volume,

and variables with P < 0.10 in the univariate analyses as

covariates. The variance inflation factor (VIF) was calculated

to examine multicollinearity among variables included in

regression models. Predictive models containing NWU-core

and NWU-penumbra were further built. The predictive

power of NWU-core, NWU-penumbra, and regression models

were measured by receiver operating characteristic (ROC)

curve analysis.
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TABLE 2 Univariate logistic regression analysis for risk of sICH in patients stratified by reperfusion therapies.

With MT (n= 93) Without MT (n= 61)

OR (95% CI) P-value OR (95% CI) P-value

Clinical characteristics

Age 1.020 (0.981–1.060) 0.322 0.996 (0.919–1.079) 0.926

Male 0.818 (0.318–2.100) 0.676 0.342 (0.053–2.227) 0.262

Hypertension 3.812 (1.274–11.406) 0.017 1.744 (0.181–16.778) 0.630

Diabetes mellitus 1.042 (0.388–2.797) 0.935 11.778 (1.394–99.511) 0.024

Atrial fibrillation 1.632 (0.442–6.021) 0.462 3.467 (0.364–33.001) 0.280

Coronary heart disease 1.605 (0.435–5.926) 0.478 NA 0.999

Stroke etiology 1.018 (0.634–1.636) 0.940 1.221 (0.523–2.850) 0.644

NIHSS score 1.054 (0.980–1.134) 0.157 1.237 (1.066–1.434) 0.005

Time from symptom onset to CT 1.001 (0.998–1.003) 0.657 1.003 (0.996–1.009) 0.412

Imaging biomarkers

Ischemic core volume 1.014 (1.001–1.027) 0.034 1.009 (0.996–1.022) 0.194

Ischemic penumbra volume 1.003 (0.994–1.011) 0.542 0.995 (0.974–1.016) 0.617

NWU-core 1.143 (1.024–1.277) 0.018 1.035 (0.858–1.250) 0.717

NWU-penumbra 1.431 (1.159–1.766) 0.001 1.131 (0.911–1.405) 0.265

sICH, symptomatic intracranial hemorrhage; MT, mechanical thrombectomy; NIHSS, National Institutes of Health Stroke Scale; NWU-core, net water uptake within ischemic core;

NWU-penumbra, net water uptake within ischemic penumbra. The bold values means p < 0.1.

Results

Baseline characteristics of enrolled
patients

A total of 154 patients with acute anterior circulation

ischemic stroke were included in the study. There were 58 cases

of HT (37.7%), including 8 cases of HI1 (5.2%), 24 cases of

HI2 (15.6%), 12 cases of PH1 (7.8%), and 14 cases of PH2

(9.1%). sICH occurred in 28 patients (18.2%). Table 1 shows

the baseline characteristics of patients. The median time from

symptom onset to multimodal CT was 262min (interquartile

range, 198–368). Compared with non-sICH patients, patients

with sICH have higher median admission NIHSS score [21 (15–

28) vs. 17 (12–21), P = 0.008], higher median ischemic core

volume [48 (32–62) vs. 24 (9–45), P < 0.001], higher median

NWU-core [8.2 (5.8–10.9) vs. 5.3 (2.7–7.9), P = 0.015] and

higher median NWU-penumbra [3.6 (2.1–5.1) vs. 0.9 (−1.5 to

3.5), P < 0.001].

Univariate logistic regression analysis for
risks of sICH in patients stratified by
reperfusion therapies

Among the 154 enrolled patients, 93 underwent MT,

of which 73 patients (78.5%) received successful reperfusion

according to the TICI grading scale. Of the 61 patients who

did not receive MT, 48 underwent intravenous thrombolysis

and 13 received antiplatelet agents only. Supplementary Table 1

shows patient’s demographics of group MT vs. non-MT and

indicates that 23 (82.1%) of the 28 patients with sICH underwent

MT. Figure 2 shows the data distributions of NWU-core and

NWU-penumbra. In the MT group, patients with sICH had

higher NWU-core [8.8 (6.0–10.9) vs. 5.0 (2.8–9.0), P = 0.013]

and higher NWU-penumbra [2.6 (3.6–5.1) vs. 0.7 (−1.2 to

3.4), P < 0.001]. Univariate analysis showed that hypertension

(OR = 3.812; 95% CI = 1.274–11.406; P = 0.017), ischemic

core volume (OR = 1.014; 95% CI = 1.001–1.027; P = 0.034),

NWU-core (OR = 1.143; 95% CI = 1.024–1.277; P = 0.018),

and NWU-penumbra (OR =1.431; 95% CI = 1.159–1.766; P

= 0.001) were associated with sICH after MT. However, in

patients without MT, none of the imaging biomarkers showed

significance, only admission NIHSS score (OR = 1.237; 95%

CI = 1.066–1.434; P = 0.005) and diabetes mellitus (OR =

11.778; 95% CI = 1.394–99.511; P = 0.024) were significantly

correlated with sICH (Table 2). The associations between NWU-

core and NWU-penumbra with different types of HT are shown

in Supplementary Table 2.

Multivariate logistic regression analysis
for predictive models of sICH in patients
stratified by reperfusion therapies

Table 3 shows four different predictive models of sICH

in patients with MT. Model 1 was built without NWU for
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TABLE 3 Multivariable logistic regression analysis for predictive

models of sICH in patients with MT.

OR (95% CI) P-value

Model 1: without NWU

Hypertension 3.663 (1.199–11.186) 0.023

Ischemic core volume 1.013 (0.999–1.026) 0.067

Model 2: containing NWU-core

NWU-core 1.155 (1.027–1.299) 0.016

Hypertension 4.338 (1.330–14.150) 0.015

Ischemic core volume 1.012 (0.998–1.026) 0.091

Model 3: containing NWU-penumbra

NWU-penumbra 1.442 (1.177–1.766) <0.001

Hypertension 5.209 (1.466–18.508) 0.011

Ischemic core volume 1.017 (1.000–1.034) 0.052

Model 4: pure imaging biomarkers

NWU-penumbra 1.412 (1.150–1.735) 0.001

Ischemic core volume 1.017 (1.001–1.033) 0.034

sICH, symptomatic intracranial hemorrhage; MT, mechanical thrombectomy; NWU-

core, net water uptake within ischemic core; NWU-penumbra, net water uptake within

ischemic penumbra.

Model 1 was built without NWU for subsequent comparison. Model 2 containing NWU-

core was adjusted by age, sex, baseline NIHSS score, time from symptom onset to CT.

Model 3 containing NWU-penumbra was adjusted by age, sex, baseline NIHSS score,

time from symptom onset to CT. Model 4 was a pure imaging predictive model without

the adjustment of clinical characteristics. The bold values means p < 0.1.

subsequent comparison. Models 2 and 3 included NWU-

core and NWU-penumbra separately as they were correlated

(Spearman correlation coefficient = 0.555; P < 0.001). Model

4 contained only imaging markers. We found that NWU-

penumbra (OR = 1.442; 95% CI = 1.177–1.766; P < 0.001) and

NWU-core (OR = 1.155; 95% CI = 1.027–1.299; P = 0.016)

were independently associated with sICH after adjustment for

age, sex, admission NIHSS score, time from symptom onset to

CT, lesion volume, and hypertension. The imaging-only model

contained ischemic core volume (OR= 1.017; 95% CI= 1.001–

1.033; P = 0.034) and NWU-penumbra (OR= 1.412; 95% CI=

1.150–1.735; P= 0.001). In patients without MT, only admission

NIHSS score (OR = 1.440; 95% CI = 1.055–1.965; P = 0.022)

was independently associated with sICH.

ROC curve analyses of sICH in patients
with MT

With multivariate regression analysis, we discovered

that NWU-penumbra and NWU-core were independently

associated with sICH in the MT group and built four different

predictive models. ROC curve analyses were conducted to

test the predictive power of individual variables for models

predicting sICH. Figure 3 shows that the area under the curve

(AUC) of NWU-penumbra was higher than that of NWU-core

(0.773 vs. 0.673). The diagnostic efficiency of the predictive

model was improved with the inclusion of NWU-penumbra

(AUC of model 3 vs. model 1 = 0.853 vs. 0.760). The pure

imaging predictive model also demonstrated a stable predictive

effect (AUC of model 4 = 0.812). It is also noteworthy that

NWU-penumbra demonstrated high sensitivity (91.30; 95% CI

= 72.0–98.9) in predicting sICH with an optimal cut point of

1.7%. Supplementary Figure 1 shows the illustrative cases for

high NWU with sICH vs. low NWU without sICH.

Discussion

In this research, quantitative NWU was used to assess the

degree of early post-stroke brain edema within the ischemic core

and penumbra separately. We found that NWU-penumbra may

have a better value than NWU-core for predicting sICH after

MT, and a pure imaging model containing NWU-penumbra and

ischemic core volume showed a potential value for predicting

sICH after MT independent of clinical variables.

Quantitative NWU, based on admission multimodal CT,

has been described as a novel neuroimaging marker of early

brain edema (6, 7). The NWU began immediately after AIS

with the extravasation of fluid into ischemic tissue through the

BBB, which may allow the detection of ionic edema earlier

and more sensitively than previous methods (17). Previous

studies reported that NWU within the ischemic core was

an independent predictor for patients with AIS developing

malignant edema (9, 18, 19) and poor neurological outcomes

(8, 10). The cerebral ischemic lesion consists of a central

irreversible necrotic zone and reversible peripheral ischemic

penumbra. One of the main findings in our study was that

NWU-penumbra demonstrates better predictive performance

than NWU-core on sICH after MT. Themost likely mechanisms

for this water uptake involve disruption of the BBB caused

by cytotoxic edema and angiogenic edema (20, 21). Although

speculative, the presence and elevation of early brain edema

within the penumbra may indicate a more serious tissue injury

and damage expansion. Timely reperfusion can salvage ischemic

penumbra but may also aggravate BBB destruction due to

reperfusion injury. Tissue edema may compress the small blood

vessels, leading to the impairment of microcirculation, which

may contribute to vascular endothelial injury and secondary

hemorrhage (22). Previous studies indicated that NWU-core

was associated with HTwithin 36 h after successful endovascular

treatment (11, 23). In this study, we focused on sICH within

7 days after stroke onset, which was defined as the presence

of HT accompanied by clinical deterioration (the NIHSS score

increased by more than 4 points from baseline). From a clinical

perspective, sICH is strongly related to patient outcomes and

often leads to longer hospital stays and more attention from

neurologists to optimize treatment strategies, such as reducing

intraoperative heparin dosage, avoiding dual antiplatelet, and
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FIGURE 3

ROC curves for prediction of sICH in patients with mechanical thrombectomy. (A) The ROC curves of NWU-penumbra vs. NWU-core (AUC:

0.773 vs. 0.673). (B) The ROC curves of model 1 vs. model 3 (AUC: 0.760 vs. 0.853). (C) The curves of model 3 vs. model 4 (AUC: 0.853 vs. 0.812).

(D) Table showed the data of ROC curve analysis.

appropriate blood pressure management. This study showed

that in patients with AIS without MT, the predictive value

of NWU on sICH might be overwhelmed by the admission

NIHSS score. This result may be explained by an insufficient

number of patients and a comparably low incidence of sICH

among patients without MT. Patients who received MT tended

to have larger vessel occlusions and had a higher recanalization

probability, which may result in more severe reperfusion injury

and BBB disruption. The surgery itself can also cause damage to

blood vessels.

In this study, we examined several different models for

predicting sICH after MT and found that the inclusion of

NWU-penumbra significantly improved the predictive power of

such models. Importantly, the pure imaging model containing

NWU-penumbra and ischemic core volume also showed a stable

predictive value for sICH after MT. In most hospitals, CT at

admission is the standard care for patients with AIS, with the

advantages of being widely and rapidly available and intrinsically

quantitative (24). Therefore, compared with other predictors

for sICH, such as serum occludin level, interleukin-33, and

platelet-to-lymphocyte ratio (25–27), imaging makers would be

comparatively simple and practical. A pure imaging model that

does not include clinical characteristics may have the potential

to be calculated automatically on the image workstation through

deep neural networks (28). In future studies, the imaging model

may be served as part of the computer-aided diagnosis systems

to screen patients at sICH risk before treatment.

Our study has some limitations. Foremost, is the fact that

it was a retrospective and single-center study. Further external

validation trials in larger cohorts are required before clinical

implementation. Secondly, the incidence of sICH was relatively

low in the non-MT group, which may result in insufficient

statistical power.

In conclusion, we found that NWU-penumbra had better

predictive performance than NWU-core on sICH after MT. The

pure imaging model based on admission CT may automatically

flag patients with elevated sICH risk. It helps further hypothesis

generation to better identify patients at risk of reperfusion

injury or parenchymal hemorrhagic transformation in patients

undergoing endovascular thrombectomy.
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SUPPLEMENTARY FIGURE 1

Illustrative cases for high NWU with sICH vs. low NWU without sICH.

Case 1 (A–C), (A) lesion map, green region represents ischemic

penumbra and red represents ischemic core. (B) NCCT with

hand-drawn ROI, NWU-core = 4.8%, NWU-penumbra = −0.5%. (C)

Follow-up CT didn’t indicate ICH. Case 2 (D–F), (D) lesion map, green

region represents ischemic penumbra and red represents ischemic core.

(E) NCCT with hand-drawn ROI, NWU-core = 11.3%, NWU-penumbra =

5.1%. (F) Follow-up CT indicates parenchymatous hematoma in the

basal ganglia.

SUPPLEMENTARY TABLE 1

Patient’s demographics of group MT vs. non-MT.

SUPPLEMENTARY TABLE 2

Univariate logistic regression analysis for risks of NWU-core and

NWU-penumbra on di�erent types of HT.
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