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Functional magnetic resonance imaging (fMRI) of the human spinal cord (SC)

is a unique non-invasive method for characterizing neurovascular responses

to stimuli. Group-analysis of SC fMRI data involves co-registration of subject-

level data to standard space, which requires manual masking of the cord and

may result in bias of group-level SC fMRI results. To test this, we examined

variability in SC masks drawn in fMRI data from 21 healthy participants from a

completed study mapping responses to sensory stimuli of the C7 dermatome.

Masks were drawn on temporal mean functional image by eight raters with

varying levels of neuroimaging experience, and the rater from the original

study acted as a reference. Spatial agreement between rater and reference

masks was measured using the Dice Similarity Coe�cient, and the influence

of rater and dataset was examined using ANOVA. Each rater’s masks were

used to register functional data to the PAM50 template. Gray matter-white

matter signal contrast of registered functional data was used to evaluate the

spatial normalization accuracy across raters. Subject- and group-level analyses

of activation during left- and right-sided sensory stimuli were performed

for each rater’s co-registered data. Agreement with the reference SC mask

was associated with both rater (F(7, 140) = 32.12, P < 2×10−16, η
2 = 0.29)

and dataset (F(20, 140) = 20.58, P < 2×10−16, η
2 = 0.53). Dataset variations

may reflect image quality metrics: the ratio between the signal intensity of

spinal cord voxels and surrounding cerebrospinal fluid was correlated with

DSC results (p < 0.001). As predicted, variability in the manually-drawn masks

influenced spatial normalization, and GM:WM contrast in the registered data

showed significant e�ects of rater and dataset (rater: F(8, 160) = 23.57, P <

2×10−16, η
2 = 0.24; dataset: F(20, 160) = 22.00, P < 2×10−16, η

2 = 0.56).

Registration di�erences propagated into subject-level activation maps which

showed rater-dependent agreement with the reference. Although group-level

activation maps di�ered between raters, no systematic bias was identified.
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Increasing consistency inmanual contouring of spinal cord fMRI data improved

co-registration and inter-rater agreement in activation mapping, however our

results suggest that improvements in image acquisition and post-processing

are also critical to address.
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Introduction

Functional magnetic resonance imaging (fMRI) of the spinal

cord is a technique for understanding neurovascular responses

to sensory and motor stimuli (1–3). fMRI studies of the cord

have demonstrated neural activation correlates to physiological

mechanisms of sensation, illustrating dermatomal patterns (4–

8), and motor control laterality (9). Furthermore, studies have

demonstrated interactions between the cortex and spinal cord

in both sensory and motor learning paradigms that further our

understanding of human neurology (10, 11). Encouraged by

observations of coordinated intrinsic activity within functional

brain networks, researchers have successfully demonstrated such

“connectivity” properties within the spinal cord, and between

the cord and brain (11–13). Uniquely positioned to provide

non-invasive functional mapping of large segments of the spinal

cord in humans, spinal cord fMRI is poised to play a critical

role in understanding both typical and pathologic sensation

and movement.

However, while significant advances have been made over

the years, the breadth of literature studying the spinal cord

still lags behind that of brain fMRI research, in part due

to remaining technical challenges, including those related to

cord anatomy. Specifically, analysis and interpretation of spinal

cord fMRI data is hindered by the large changes in magnetic

susceptibility of tissues approximating the cord, the small size of

the target neural tissues (typically leading to low signal-to-noise

ratio), and physiological noise from cardiac and respiratory

processes (14–18). Several analytical tools have been developed

to improve characterization of spinal cord fMRI data. These

tools include, but are not limited to the Spinal Cord Toolbox,

the Neptune Toolbox, and Pantheon (formerly spinalfMRI8)

(19, 20). There are also specific analysis strategies developed for

spinal cord fMRI denoising such as physiological noisemodeling

(17, 21), slice-wisemotion correction (19, 20), anisotropic spatial

smoothing (19), and principal and independent component

analysis based denoising (22–24).

At present, these noise-reduction strategies can dramatically

improve the quality of fMRI data. However, in typical 3T

fMRI scans, it remains challenging to confidently interpret

activation maps in individual subject data. As in brain fMRI,

an established way to make statistical inferences across the

sample or a population is to combine fMRI data from many

individuals for group-level analysis. One way to do this is by

using region of interest (ROI)-based group analysis relying

on regions defined at the subject level. However, in order

to retain complete, voxelwise spatial information, it is often

desirable to generate group-level activation maps. This process

necessitates the co-registration of fMRI data to a common or

standard space to facilitate comparisons across subjects with

variable cord anatomy (25). To this end, standard spinal cord

templates and techniques for registration have been developed

(18). Notably, and unlike brain fMRI co-registration, nearly all

spinal cord fMRI registration techniques require user input.

One early method that was iteratively developed required

the user to indicate various reference lines to inform affine

transformation to a reference image with minimal curvature

(26–29). This technique was applied on sagittally acquired

slices, and in 2015 an automated version was published (30).

Around the same time, different techniques were developed for

axially acquired data. One study performed normalization by

manually identifying the center of the cord in each slice, then

performing an in-plane translation (2 degrees of freedom) to

match a reference (11). A similar approach using a manually

defined spinal cord mask and 4 degrees of freedom (translation

and scaling) was also developed (6). Building on these axial

normalization techniques, the sct_register_multimodal function

was introduced as part of the spinal cord toolbox (SCT) in 2017.

This was the first non-linear registration algorithm for spinal

cord fMRI and it has since been used in various studies of the

cord (7, 9, 19, 31).

When using sct_register_multimodal to register functional

data to a template, it is advisable to use the warping field

from a previously completed structural to template registration

to initialize the algorithm and exploit the high-resolution

information available for the individual subject. Additionally,

due to the challenges of image distortion in EPI data, it is

recommended for this function that the user inputs a binary

spinal cord mask in native fMRI space to inform registration. It

is common for this input mask to be manually defined, as there

are currently no reliable algorithms for segmenting the spinal

cord in functional data (Note that spinal cord data acquired with

non-EPI methods, and with high-resolution data acquired from

a common field-of-view, may facilitate alternative automated

approaches for cord masking that would not be impacted by a

manual masking step). The remaining challenges of spinal cord

fMRI data quality [e.g., low signal-to-noise, residual physiologic

and motion artifacts, and poor contrast between spinal cord
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tissue and the surrounding cerebrospinal fluid (CSF)] may

lead to subjective differences when contouring the cord. These

differences could result in systematic bias in data co-registration

and thus alter individual and group analysis results. The extent

of this source of variability in spinal cord fMRI processing

pipelines is relatively unknown.

Standardization of both imaging protocols and processing

pipelines has been recommended to improve the robustness of

spinal cord fMRI findings (15, 18). In brain fMRI, differences

in functional image processing pipelines have been shown to

have large potential impacts on the resultant findings of a study

(32). Bowring et al. observed that variability in results from

task fMRI in the brain are heterogeneous, depending on the

input dataset and potentially each aspect of the image processing

pipeline (including registration) (32). Furthermore, study results

were also impacted by the software package utilized (32). While

there are multiple software packages for spatial normalization

of fMRI in the brain (33–35), spinal cord studies have fewer

options or must create bespoke techniques for registration to

labeled structural templates of the cord (18, 19, 36). Given the

lack of a unified method of preprocessing spinal cord fMRI data,

reproducibility of reported results is likely to be limited, and

improvements are needed to standardize image processing and

reduce sources of variability and bias at every stage of analysis.

In this work, we specifically assess the impact of variable

manual contouring of the spinal cord in native fMRI image

space, as needed for spatial normalization of individual fMRI

datasets to a standard template space. To achieve this, we

examine the effects of mask variability at different stages of a

single analysis pipeline for spinal cord fMRI using a previously

published study dataset. We characterize the variability in spinal

cord masks achieved by eight raters with varying levels of image

analysis experience, with respect to a “reference” rater from

the original study and publication. We then demonstrate how

this variability is propagated following registration of functional

imaging data to a standard spinal cord template image. We

subsequently run individual- and group-level analyses for a

sensory stimulus task, using each rater’s masks during co-

registration, to assess the impact on fMRI activation patterns

at the single-subject and overall study level. Finally, we

discuss the causes of this variability, their importance, and

make recommendations for prioritizing future improvements in

spinal cord fMRI.

Methods

Image acquisition and experimental
protocol

This work utilized a subset of anatomical and functional

MRI data from 24 healthy participants from a previous

study (37). Images were acquired using a 3T Siemens Prisma

scanner (Siemens, Erlangen, Germany), utilizing a 64-channel

head/neck coil and a SatPadTM cervical collar (SatPad Clinical

Imaging Solutions, West Chester, PA, USA). Anatomical T2-

weighted images were acquired covering the cervical and

upper thoracic spine, using the SPACE sequence (Siemens,

Erlangen, Germany), with parameters: TR = 1500ms, TEeff =

135ms, echo train = 74, flip angle = 90◦/140◦, slices = 64,

effective voxel size = 0.8 x 0.8 x 0.8 mm3, iPAT acceleration

factor = 3, interpolated in-plane resolution = 0.4 x 0.4 mm2

(38, 39). T2∗-weighted functional scans of the cervical spinal

cord were acquired, with 25 axially acquired slices centered

at the C5 vertebral level, using a gradient-echo echo-planar-

imaging sequence with ZOOMit selective field-of-view (40–

42). Functional imaging parameters were: TR3D = 2000ms,

TE = 30ms, flip angle = 80◦, volumes = 450, slice order was

interleaved, field-of-view = 128 × 44 mm2, acquisition matrix

= 128 × 44 voxels, in-plane resolution = 1 × 1 mm2, slice

thickness= 3mm, two dummy volumes discarded.

During each functional scan, alternating left and right tactile

stimuli were applied to the dorsum of each hand in the C7

dermatomal region (37). Stimulation was applied manually at

approximately 2Hz by examiners in the scan room. Stimulation

lasted for 15 sec on each hand and was interspersed with a 15 sec

rest period.

Preprocessing of the functional MRI time series was

performed as in the original study (11). Motion correction was

performed in two phases using FMRIB’s Linear Registration

Tool (FLIRT) for 3D rigid body alignment (6 degrees of

freedom), followed by rigid 2D slice-wise (axial) alignment

(2 degrees of freedom; x- and y-translation only) (34, 43),

and was optimized for a binary masked region around the

spinal canal. Temporal mean images were calculated from these

preprocessed functional data. fMRI data were further denoised

by removing periodic physiological noise confounds using the

PNM (Physiological Noise Modeling) tool in FSL (21, 44),

warped to the PAM 50 spinal cord template (45), and then

smoothed with a 2 mm3 full width half maximum Gaussian

smoothing kernel prior to individual- and group-level activation

mapping (46).

Manual contouring

Raters (N = 8) with differing levels of functional

neuroimaging experience were recruited to manually contour

the spinal cord on 21 temporal mean functional images, after 3

of the 24 datasets were utilized for rater training. Additionally,

as this dataset was collected for a previously completed and

published study (37), the original masks from that work were

included as “reference” contours. The reference masks (REF)

are provided by a researcher with 10 years of experience with

spinal cord fMRI (KAW). Including the reference contours, a

total of 9 sets of masks were used in subsequent analyses. A
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TABLE 1 Description of each rater’s background.

Rater Job title MRI

experience

(years)

SC MRI

experience

(years)

SC fMRI

experience

(years)

Research keywords

Reference Instructor 12 10 10 Brain, spinal cord, pain, musculoskeletal MRI, neurological injury

A Assistant professor 14 2 2 Cerebrovascular MRI, fMRI denoising, physiologic modeling

B PhD student 1 1 1 Spinal cord fMRI, analysis methods

C Postdoctoral researcher 8 8 1 Spinal Cord MRI, pain, traumatic injury

D Undergraduate student 1 1 1 Spinal cord fMRI, analysis methods

E Undergraduate student 0 0 0 N/A

F Postdoctoral researcher 7 0.5 0.5 Neuroscience, neuroimaging, cerebrovascular MRI

G Undergraduate student 0 0 0 N/A

H Undergraduate student 0 0 0 N/A

description of each rater’s background and experience in the

neuroimaging field is given in Table 1. Note that while raters

with no previous experience would not be expected to generate

masks in a typical preprocessing pipeline, their inclusion in this

study serves two purposes. First, we use these raters to establish a

baseline level of performance to which more experienced raters

can be compared. Second, by considering the most extreme

variability within reason, we leave no room to doubt whether

our range of raters is wide enough to observe an effect.

Contouring was performed by all raters in FSLeyes (34).

During an initial training session, raters who were unfamiliar

with the process of contouring (E, G, H) were guided with

specific instructions on using the software to optimize image

brightness, contrast, image orientation, and zoom in order to

discern the spinal cord boundary. All raters were instructed

to inform their contouring decisions primarily from the axial

view but were also allowed to assess the continuity of their

masks in the sagittal and frontal views. In addition, raters were

instructed to take approximately 15min per dataset. Note that

this training was primarily focused on utilizing software with

minimal guidance on interpreting the spinal cord boundary,

so we do not expect systematic similarity in mask variability

as a result of training. Following the initial training session, 3

training datasets were released to all raters to ensure competency

with the masking process. Then, the remaining 21 datasets were

released in 3 blocks (7 datasets each) with a randomized order

for each rater. Raters were given 2 weeks to complete each block

of masks.

Registration to standard space

Image registration was performed with the Spinal Cord

Toolbox (version 4.3) (19). First, the sct_deepseg_SC function

was implemented to automatically identify the cord in the

high-resolution T2-weighted anatomical images (47), and the

C3 and C7 vertebrae were manually labeled. The spinal cord

segmentation and vertebral level labels were then used to

register the anatomical image to the PAM50 spinal cord template

image using the sct_register_to_template function (19, 45). The

anatomical-to-template registration was performed once for

each dataset and did not vary between raters. The temporal

mean functional images were registered to the PAM50 template

using the sct_register_multimodal function, utilizing each rater’s

manually contoured masks of the cord and initial warping field

(generated from the anatomical registration above) as inputs.

The input rater-drawn spinal cord masks were only considered

in the second step of the command (see Appendix). In this step,

voxels within the mask were heavily weighted in the warping

field calculation, but added spatial regularization included in

the selected algorithm (“bsplinesyn”) warped voxels outside of

the mask as well. An overview of the masking and registration

process is shown in Figure 1.

Variability in pre- and post-registration
masks

The variability in rater-contoured masks was assessed by

comparing each rater mask (RM) to the reference mask (REF).

To quantify differences, the Dice Similarity Coefficient (DSC)

was calculated for the total volume and for each axial slice as:

DSC =
2∗ |REF ∩ RM|

|REF| + |RM |
.

Since DSC is a proportion on the unit interval [e.g., (0, 1)],

it was logit-transformed for all analyses. This allows DSC to be

more compatible with linear models, which are not constrained

to the unit interval. Empirically, this resulted in improvedmodel

fits relative tomodeling rawDSCs. ANOVAwas used to compare

DSC, averaged by dataset, between raters and the reference. The
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FIGURE 1

Outline of non-linear registration. A mean temporal image was created; then a reference rater and 8 raters with varied levels of experience

contoured the spinal cord manually. Non-linear registration was performed with the Spinal Cord Toolbox, utilizing additional information from a

high resolution anatomical T2 weighted image. The impact of the resulting registration of the functional image to template space was analyzed.

most superior and inferior slices were not included in these

analyses due to poor image quality.

To assess the effect of fMRI image quality on rater

agreement, two metrics were calculated for each dataset on

the temporal mean functional image: (1) the coefficient of

variation (CV) of voxels adjacent to the reference spinal cord

mask and (2) the ratio between the mean signal of adjacent

voxels and the mean signal within the reference spinal cord

mask (Adjacent:SC ratio). For bothmetrics, adjacent voxels were

defined by a 2-voxel dilation from the reference SC mask. The

CV of adjacent voxels captures inconsistencies in CSF signal

and the Adjacent:SC ratio represents the signal contrast required

to contour spinal cord boundaries. A higher CV or lower

Adjacent:SC ratio could obscure the delineation between spinal

cord and surrounding CSF and would increase the difficulty of

contouring the cord, potentially leading to increased variability

in rater masks.

We compared DSC with the two metrics of image quality

(CV and Adjacent:SC ratio) for each axial slice of each dataset,

rather than using a summary metric for the entire volume of

each dataset. When raters contoured the spinal cord images,

the cord was primarily viewed in the axial plane. In this

orientation, image quality can vary across slice acquisitions:

for example, there is decreased efficiency of head/neck coils

in more inferior slices, where magnetic field inhomogeneities

may also be increased due to magnetic susceptibility variation

during respiration (48). While shimming of the magnetic field

can reduce static field inhomogeneities, present methods are still

incapable of fully compensating for smaller field variations due

to changes in anatomical structures such as the borders between

spinal discs and vertebral bodies (14, 15, 18), and custom

dynamic shimming techniques are not routinely available to

fully mitigate dynamic effects of respiration Additionally, under

normal breathing conditions, the cervical spinal cord moves

most in the C4-T1 region (49, 50). Combined, these factors

can create significant variation in the image properties across

axial slices of a given data set. Thus, we correlated slicewise

metrics of image quality with DSC values for each RM (with

respect to the REF) for all datasets. To do so, we calculated

a separate Spearman’s ρ for each RM and dataset, with the

variance within each RM-dataset pair arising from differences

between slices—this approach prevents the dataset effects from

dominating the correlations. The resulting correlations were

then converted to Fisher’s z and averaged across datasets (within

each RM). P-values were calculated using 5,000 max-T (or

min-P) permutations, which control for multiple comparisons

while accounting for covariation between outcomes. Within

each permutation, we (1) scrambled the DSC values across slices

within each RM-dataset pair, which assumes that the slices were

exchangeable and independent. (2) calculated the Spearman’s ρ

for each RM-dataset pair. (3) converted Spearman’s ρ to Fisher’s

z. (4) averaged across datasets (within each RM), and (5) added
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the max absolute Fisher’s z to the permutation distribution.

The observed absolute Fisher’s z values were compared to this

distribution to calculate two-tailed P-values that were adjusted

for multiple comparisons.

To evaluate the accuracy of the alignment of functional

data to the standard PAM50 template space, we considered the

signal contrast between gray matter (GM) and white matter

(WM) voxels using regions defined by the PAM50 spinal

cord atlas. Inherent signal contrast between GM and WM

tissues within the spinal cord will vary across acquisitions,

and the functional BOLD-weighted sequence was not designed

to optimize GM:WM contrast; therefore, this value is likely

small and highly variable across datasets. However, we use this

metric to evaluate the relative accuracy of the rater-specific

spatial normalization procedures for a given dataset: perfect

alignment with the PAM50 template should lead to maximal

GM:WM contrast using regions defined by that template atlas.

Imperfect alignment with the PAM50 template would cause

mixing of GM and WM signals across the two atlas regions,

reducing the observed GM:WM contrast for that dataset.

The GM:WM ratio was calculated for each dataset, following

spatial normalization procedures using each rater’s spinal cord

mask (or the reference). Since GM:WM is a ratio, it was

first log-transformed and then fitted via an ANOVA with

rater and dataset as independent variables, thus allowing us

to distinguish the impact of rater on spatial normalization

accuracy from inherent variability in signal contrast across the

datasets. The log-transformation improved the normality of

the residuals.

Variability in statistical activation in
participant- and group-level analyses

As described in the original study, participant-level analyses

were performed to characterize significant activation associated

with the sensory stimuli (37). Note that while participant-

level analysis is often performed in native space, where the

impact of spinal cord masks would be negligible, the analysis

in the original study was done in PAM50 space to facilitate

comparison across subjects and interpretation of participant-

level activation in standardized coordinates. In this scheme,

manual contours inform registration to template space before

the GLM is applied and can therefore lead to spatial variation

in activation patterns. In PAM50 space, trialwise left- and

right-sided stimuli were convolved with hemodynamic response

function and analyses were performed via a generalized linear

model, using FILM with prewhitening (51). Voxels with a Z-

score > 2.3 (p < 0.01, uncorrected) were classified as active.

These analyses were repeated for each rater. Participant-level

activation maps (z-statistics) for left- and right-sided sensory

stimuli were calculated using a fixed-effects analysis for each

dataset and rater. Based on spinal cord anatomy, activation from

the tactile stimulus was expected to localize to the ipsilateral

hemicord around the C7 spinal level. We therefore initially

focused our attention on ipsilateral activations, only. The spinal

cord was divided into the left and right hemicord, excluding

from analysis the center column of spinal cord voxels where the

hemicords meet. We considered activation with the left-sided

stimulus in the left hemicord, and activation with the right-sided

stimulus in the right hemicord, calculating the spatial correlation

(Fisher’s z) between the ipsilateral activation patterns for each

rater and the reference for each individual dataset.

Group-level activation results were achieved using the

participant-level activation maps derived from each rater and

the reference. As in the original study, all group-level analyses

were performed in the region of intersection of the functional

images, again using a fixed-level analysis in FILM, where voxels

with a Z-score > 2.3 and multiple comparisons correction

cluster significance threshold of p < 0.05 (51). The original

study found that activity was somewhat lateralized to the

ipsilateral cord, but also deviated from these expectations,

identifying activity more broadly distributed throughout the

dorsal and ventral aspects of the cord and also superiorly and

inferiorly to the expected cervical level (37). Thus, considering

the left and right hemicord regions separately, we assessed the

distribution of z-statistics associated with ipsilateral activation

(left cord, left stimulation; right cord, right stimulation) and

contralateral activation (left cord, right stimulation; right cord,

left stimulation) in the group-level results. These distributions

were compared between the reference and the raters by

standardizing (i.e., z-scoring) each of the reference’s z-statistics

(yi) relative to the raters’ distribution (−→xi ) for each voxel i = 1,

. . . , n, and then averaged the results:

z =
1

n

n
∑

i=1

yi − xi

σxi
,

Similarly, the standard deviation was also calculated:

SD [z] =

√

√

√

√

1

n− 1

n
∑

i=1

(

yi − xi

σxi
− z

)2

.

Results

DSC comparisons between individual raters and the

reference demonstrated variability across both rater and dataset

as shown in Figure 2 (rater: F(7, 140) = 32.12, P < 2×10−16,

η
2 = 0.29; dataset: F(20, 140) = 20.58, P < 2×10−16, η

2 =

0.53). Note that both the rater and dataset axes in Figure 2 are

sorted by average logit-transformed DSC, and this ordering is

also reflected in Table 1 detailing rater experience (i.e., rater A

achieved the highest average DSC while rater H achieved the

worst). Consistent with expectation, the rater with the most

MRI research experience (A) achieved the highest average DSC

while 2 novice raters with no prior experience (G, H) achieved
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FIGURE 2

Color map of Dice similarity coe�cients (DSC) comparing each rater mask with the reference mask for each of 21 datasets. Both the rater and

dataset axes are organized from lowest to highest average logit-transformed DSC. The margins (left and bottom) contain estimated marginal

means for each rater and dataset, and error bars indicate 95% CIs. Horizontal and vertical gradient trends indicate the e�ect of rater and dataset,

respectively, on agreement with the reference.

the lowest. However, it is notable that a researcher with 7

years of MRI experience (F) achieved lower DSC than a third

novice rater (E). The DSC of all rater masks compared to the

reference are additionally visualized by box-and-whisker plots

in Supplementary Figure 1.

The horizontal trend in Figure 2 illustrates differences in

DSC attributable to dataset features, potentially including image

quality or subject anatomy. Reported in Table 2, the CV of

voxels adjacent to the spinal cord was poorly to moderately

negatively correlated with DSC for 6 raters (ρ = −0.50 to

−0.14). The Adjacent:SC signal ratio was poorly to moderately

positively correlated with DSC for 7 raters (ρ = 0.15 to 0.50). All

corresponding Adjacent:SC and DSC values, for each imaging

slice of each dataset, are shown in Supplementary Figure 2.

Qualitatively, the registration of functional images to

template space and the inverse registration of the template

atlas to the functional image both showed visible differences

in alignment (Figure 3). For example, in Dataset 2, shown with

registrations informed by the reference and rater H, the PAM50

template masks of GM andWM are clearly not co-localized.

GM:WM contrast, calculated using the PAM50 template

masks following spatial normalization of the functional data

to the PAM50 template image (akin to the top panels in

Figure 3), was greatest for the original study results (REF).

Figure 4 shows the GM:WM contrast results for all raters and

datasets, maintaining the ordering of Figure 2 with the REF

results added on the top row. Across raters, this metric generally

increased with higher agreement between RM and REF (with

exceptions), as illustrated by a vertical gradient. As anticipated,

TABLE 2 Spearman correlations between rater agreement (DSC) with

reference masks and coe�cient of variation (CV) and adjacent: SC

ratio across all participants and slices (n = 467).

DSC vs. CV DSC vs. Adjacent:SC

Rater Spearman’s ρ p–value Spearman’s ρ p–value

A −0.16 0.007 0.15 0.018

B −0.31 < 0.001 0.45 < 0.001

C −0.14 0.036 0.22 < 0.001

D −0.26 < 0.001 0.23 < 0.001

E −0.30 < 0.001 0.48 < 0.001

F −0.39 < 0.001 0.42 < 0.001

G −0.50 < 0.001 0.50 < 0.001

H −0.30 < 0.001 0.23 < 0.001

there is also substantial variability of GM:WM contrast across

the individual datasets, unrelated to rater masking and spatial

normalization. ANOVA revealed that both rater and dataset

had marked contributions to variance in GM:WM contrast,

with dataset contributing relatively more variance, as anticipated

(rater: F(8, 160) = 23.57, P < 2×10−16, η
2 = 0.24; dataset:

F(20, 160) = 22.00, P < 2×10−16, η2 = 0.56).

Fisher’s z spatial correlations between individual participant

ipsilateral activation maps generated by each rater and the

reference are shown in Figure 5. Horizontal and vertical

trends are both present in the spatial correlations, indicating

dataset and rater effects are both influencing the agreement of

observed activation maps at the individual-level. Note, datasets
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FIGURE 3

Di�erences in alignment between registration informed by

reference and rater H masks, from dataset 2. The mean DSC was

0.736 across the axial slices for the input masks between the

reference and rater for dataset 2 (Top) Registration of functional

images to the PAM50 template. The yellow line represents the

most anterior white matter voxel coordinate of the template

mask. The orange arrow indicates an area of gray matter in the

dorsal horn that is not aligned with the template mask in a

registration informed by Rater H masking (Bottom) Registration

of the PAM50 template atlas to functional image space. The

green line represents an estimate of the most dorsal coordinate

of the functional image. The pink arrow indicates an area of gray

matter in the dorsal horn that is not aligned with the atlas in

Rater H registration. Accuracy of registration alignment was

supported by the GM:WM ratio, as misalignment introduces a

mixing of GM, WM, and potentially CSF voxels into the masked

areas, reducing the observed contrast.

were ordered by initial logit-transformed DSC agreement (as

described for Figure 2) for this visualization. Results from

group-level analyses are also shown in Figure 6 (left) and

Table 3, where results from z-testing between the reference

and raters for each stimulus and hemicord condition (e.g.,

Left hemicord, left stimulus) were distributed about 0 for all

cases, illustrating no average Z-score differences. Detailed in

Table 4, spatial correlations between the raters’ and reference’s

group-level results ranged from 0.954 to 0.875 (mean of 0.923)

for the ipsilateral activations, and 0.952 to 0.781 (mean of

0.892) for the contralateral activations. Thus, while systematic

trends were not observed across the results of different raters,

there was observable disagreement in activation mapping at

the group-level. An illustration of these differences is shown in

Figure 6 (right).

Discussion

In this study, we assessed the potential impact of manual

spinal cord contouring in native fMRI space, which is currently

a recommended input to spatial normalization and group

analyses in spinal cord fMRI. In a small cohort of 8 raters

of varying experience, independently contouring the cord in

21 fMRI datasets acquired at 3T as part of a prior study, we

observed mask differences attributable to both rater and dataset

quality. Variability in masking was assessed by calculating DSC

agreement with a reference rater (i.e., the rater from the original

published work).

Regarding inter-rater variability, a priori expectation was

that raters with more neuroimaging experience would achieve

higher DSC agreement with the reference. While this was

observed to be true at the extremes, there are notable

deviations from this prediction: ordering raters by average logit-

transformed DSC, one novice rater with no prior imaging

experience (E) outperformed a researcher with 7 years of

MRI experience (F), and a trainee with 1 year of spinal MRI

experience (B) outperformed a researcher with 8 years of

spinal MRI experience (C). Considering rater experience as

categorized in Table 1, years of experience specifically in spinal

cord fMRI (as opposed to neuroimaging or spinal cord MRI

more generally) may be a more important factor. The obscured

spinal cord boundary in fMRI data (due to partial-volume

effects, low tissue contrast, and physiologic noise) may also

lead to highly variable contouring performance among all non-

experts. However, while rater F is surpassed by a novice rater

(E) based on average logit-transformed DSC, they achieve a

noticeably small spread of DSC values across all datasets. as

visualized by Supplementary Figure 1. This suggests that more

experienced raters may generate contours in a more consistent

manner, therefore DSC with the reference may suffer as a result

of systematic differences in interpreting the cord rather than

inconsistent masking. Observations from downstream analysis

suggest that this consistency in masking can lead to more

robust downstream analysis: rater F overtakes raters D and E

in GM:WM (Figure 4) and spatial correlation in individual-level

analysis (Figure 5).

However, several limitations must also be acknowledged

related to our choice of raters and their respective experience

and training. First, while there is a wide range of MRI experience

represented, all our raters have limited experience with spinal

cord fMRI. We also acknowledge that there may be individuals

more qualified than our reference rater to provide spinal

cord masks for comparison (for example, a board certified

neuroradiologist with equivalent years of spinal cord fMRI

experience). We stress that the purpose of this study was to

generate variability in masking by recruiting raters of varying

levels of experience and describe how this variability affects

the results of a previously published analysis pipeline. Our

observations of downstream variability arising from this cohort

of raters suggest that efforts should bemade to standardize spinal

cord masking to ensure robustness of results. One such way

to increase robustness in masking may be to use the STAPLE

method to combine segmentations from multiple experienced
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FIGURE 4

Color map of GM:WM contrast across all rater registrations. Higher GM:WM contrast for a given input dataset indicates relatively better

registration alignment. The margins (left and bottom) contain estimated marginal means for each rater and dataset, and error bars indicate 95%

CIs. The reference masks produced registrations with the highest GM:WM contrast. Rater mask agreement with the reference mask

(logit-transformed DSC) is correlated with higher levels of GM:WM contrast following spatial registration. Moreover, there are marked dataset

e�ects on GM:WM, which are reflected by the ANOVA results.

FIGURE 5

Summary of the individual- (or dataset-) level activation maps. Spatial correlation of statistical activation maps derived from the individual-level

analysis results of each rater and the reference, for ipsilateral activation of left- and right-sided stimulation trials. Results shown as a color map

of Fisher’s z correlations between rater and reference un-thresholded statistical activation maps, with the dataset order matching Figures 2 and

4. The horizontal and vertical gradient trends indicate that rater agreement with the reference mask and dataset factors influence agreement

with the reference individual-level statistical activation maps. Marginal mean Fisher’s z scores by dataset and rater are shown at the axes. Error

bars on the marginal means indicate 95% CIs.

raters (52). Another limitation is that the environment in

which raters generated contours was not controlled. Therefore,

although raters were instructed to take approximately 15min per

dataset, there may have been variability in the level of effort or

focus put into the masking process, possibly confounding rater

trends that were observed. Note that this effect is not expected

to be systematic across datasets and should therefore not affect

trends attributable to dataset.

Mask variability was attributable to dataset as well. Because

these differences naturally occur along the edges of the cord,
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FIGURE 6

Summary of the group-level activation maps. Left: distribution of group-level activation z-statistics in the left and right hemicords for left- and

right-sided stimulation trials. The shape and centering of the distributions are generally similar across all raters illustrating no systematic

di�erence in average z-score. Right: group-level activation maps from the reference, rater A, rater F, and rater H. Activation is thresholded at

Z-score>2.3 (cluster corrected p < 0.05). Data have been transformed to the standard PAM50 template space, and the approximate level of

C5–C7 spinal levels are indicated (L, left; R, right sided stimulation).

TABLE 3 Magnitude of the reference’s group–level z–statistics

relative to the raters’ distribution.

Side Stimulation Mean ± SD

Left Ipsilateral 0.05 ±1.07

Right Ipsilateral 0.30 ±1.35

Left Contralateral −0.09 ±1.27

Right Contralateral 0.49 ±1.30

The reference group–level z–statistic for each voxel was scaled by the distribution of z–

statistics from the other raters. Presented here are themean and standard deviations of the

standardized reference z–statistics. A mean of 0 would indicate that the reference has the

same z–statistic as the other raters (on average); values greater than zero indicate greater

z–statistics than the raters’ average; and values lower than zero indicate lower z–statistics

than the raters’ average.

at the anatomical boundary of spinal cord white matter and

surrounding CSF, we hypothesized that the signal contrast

between these regions in each dataset would be associated

with the agreement of rater masks with the reference. Indeed,

better contrast at the edges of the cord (higher Adjacent:SC

ratio) was significantly correlated with higher values of DSC,

as shown in Supplementary Figure 2, which illustrates the slice-

wise DSC and Adjacent:SC ratio correlations for every rater.

Interestingly, we observe many datasets in this study presented

with Adjacent:SC ratios < 1, which is not anticipated given

the T2∗ of tissue vs. CSF. Furthermore, this ratio shows added

variability across longitudinal image slices of each dataset. Signal

dropout that could cause CSF voxels to appear darker than tissue

voxels may be a result of susceptibility artifacts due to magnetic

field inhomogeneity and intra-voxel dephasing through the

use of thicker slices (3mm) in the functional acquisition. The

breakdown of the expected positive contrast was often observed

in the dorsal aspect of the cord, perhaps due to a posterior

shift while a participant is being scanned in a supine position

(53). A posterior shift of the cord reduces the amount of CSF

buffer between neural tissue and ligamentum flavum, disc, or

bone from the spinal canal and may lead to increased partial

volume averaging of these tissues. CSF flow may also impact

the signal intensity of CSF voxels in this acquisition, potentially

increasing or decreasing voxel brightness, thus influencing the

Adjacent:SC ratio and mask fidelity (Note, the effect of this

contrast breakdown on rater masking was also captured by

the negative association between CV of adjacent voxels and

DSC: inconsistent brightness among voxels surrounding the

cord led to decreased agreement of the rater mask with the

reference mask).

This study used the temporal mean functional image for

contouring the spinal cord, which maymerge these flow artifacts
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TABLE 4 Group–level activation map spatial correlations (Fisher’s z)

between each rater and the reference by side [left (L) or right (R)] and

stimuli condition (ipsilateral or contralateral activation).

Rater Side Spatial correlation

(Fisher’s z)

Ipsilateral Contralateral

A L 0.950 0.952

R 0.931 0.924

B L 0.952 0.942

R 0.954 0.935

C L 0.916 0.902

R 0.930 0.871

D L 0.933 0.901

R 0.923 0.863

E L 0.944 0.930

R 0.910 0.895

F L 0.943 0.907

R 0.905 0.896

G L 0.928 0.890

R 0.902 0.839

H L 0.875 0.849

R 0.877 0.781

and reduce apparent image contrast. It may be more successful

to contour the spinal cord on one fMRI volume, rather than the

temporal mean image, if a volume with maximal Adjacent:SC

contrast can be identified. However, it will be challenging to

do this in a robust and systematic manner and appropriately

integrate this step into volume realignment (i.e., motion

correction) procedures, and this would not fully compensate

for inherently poor Adjacent:SC contrast across the scan. These

findings support the need for continued improvement in spinal

cord fMRI acquisition techniques to improve and stabilize image

contrast (and particularly tissue-CSF contrast) along the length

of the cord while mitigating flow artifacts, such as improved

receive coils (18, 54, 55), higher static magnetic field strengths

(18, 54), sequence and protocol optimization (18, 41, 42), and

image processing techniques (14–19, 54).

Following spatial normalization to a template image, the

functional image GM:WM ratio (using GM and WM masks

from the PAM50 template) was also reflective of both rater

and image quality. In T2∗-weighted images, GM is expected

to be brighter than WM, and thus a well-registered functional

dataset will yield a more positive GM:WM contrast compared

to a less successfully registered version of the same input data.

Indeed, registration informed by the reference masks achieved

the highest GM:WM values in 15 of the 21 datasets. In our

results (Figure 4), rater disagreement with the reference mask

appeared associated with lower GM:WM ratios following image

registration, suggesting that the underlying tissue projections

onto the template contained a mix of tissue classes. These results

demonstrate how a rater’s manual contouring of the spinal cord

in native fMRI space influences the success of image registration

to template space.

Reducing the dependency of the image registration

algorithms on manual inputs could potentially mitigate many

of these confounds: as has been done for the registration

of high-resolution anatomical images of the spinal cord,

convolutional neural networks could be trained for automated

cord segmentation in fMRI datasets (47). Such advances

would have the added benefit of speeding up the image

processing pipeline by removing the rate-limiting step of

manual contouring, and would have the added benefit of

improving analysis repeatability and facilitating robust sharing

and combining of spinal cord fMRI data resources.

Differences in masking were also shown to impact the

spatial distribution of activation at the individual-level, shown

in Figure 5, however the impact on group-level results is less

obvious (Figure 6).Thismay be due to averaging over a relatively

large voxel size (1x1x3mm) when evaluating the cord with an

average size of 7.4 ± 0.9mm anterior-posterior and 11.4 ±

1.2mm left-right at the C7 level (56). The “straightening” of the

cord inherent to registering individual spinal cord anatomy to

the PAM50 template will produce subject-specific interpolation

effects that could also influence the accuracy and sensitivity of

group-level activation results. Additionally, the neural activation

of interest, due to the tactile stimulus, is expected near the

center of the cord, in GM, where rater masks are most likely to

agree (Supplementary Figure 3) and the non-linear registration

algorithm may produce more consistent results (Note that large

BOLD signal changes may also occur in draining venous vessels,

spanning both central and peripheral regions of the spinal

cord) Figure 6 (right) illustrates the group-level activation maps

achieved using reference and example rater masks. While some

spatial differences are observable (for example, Rater F misses

activation to the left stimulus in superior slices of the cord),

differences in spatial correlations of unthresholded activation

patterns (Table 3) do not result in large qualitative differences

in thresholded activation maps.

To further investigate any systematic differences between

the group-level activation maps for each rater and the reference

rater, difference maps (Supplemental Figure 4, left) and a

non-parametric one-sample t-test with threshold-free cluster

enhancement were calculated. The Z-score difference map tends

negative in some regions, such as C6, (i.e., raters’ activation is less

than that of the reference). Supplemental Figure 4 (right) shows

voxels in which the difference between raters and the reference

is significant (P < 0.05, family-wise error rate controlled).

Although this provides insight into the spatial distribution of

activation differences between the raters and reference, it is a

generous test and assumes the reference rater results to be a

perfect ground-truth, as the variability of the reference rater

masking and activation results is unknown.
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Finally, the lack of robust, systematic differences in the

group-level results (despite clear impact on individual-level

results) may also simply reflect the inherent challenges of

measuring BOLD responses in the spinal cord, where there

are poorly resolved physiologic motion confounds and a small

anatomical target relative to the image resolution. In the

original work, the classical definitions of dermatomal sensory

distributions were not clearly observed in the group-level

activation to left and right sensory stimuli (37). Although

predominantly ipsilateral activations were observed, they

were not localized to the dorsal aspects of the cord, and

activation spread across vertebral levels rather than localizing

to the expected C7 region. One interpretation is that there

is a more complex anatomical network underlying spinal

neurological response to stimuli, and we refer the reader

to the original work for a more detailed neurophysiological

interpretation. However, it could also suggest that there remains

a fundamental obstacle of low signal-to-noise ratio in spinal

cord fMRI that hinders robust mapping of true activations.

The results of this study indicate that such limitations in

spinal cord fMRI sensitivity and specificity may be more

critical to activation mapping than the subtle variations in

image co-registration that arise from manually contoured spinal

cord masks. However, as image quality improves, through

developments in hardware, acquisition strategies, and image

processing techniques, it may become apparent that co-

registration of functional data to a standard template space is

increasingly important in achieving accurate and robust group-

level results.

Conclusions

We observed differences in individual rater masks of the

spinal cord in fMRI data when compared to masks from a

reference rater. These differences were driven by both rater

and dataset effects, and led to variable co-registration with a

standard spinal cord template image. This variability propagated

into differences in individual-level fMRI activation results, as

measured via spatial correlation between the reference and

raters’ activation maps for left and right sensory stimuli.

However, when performing group-level analyses, these masking

and co-registration differences did not have a systematic effect

on the average Z-score of resulting group-level activation. While

increasing consistency in manual contouring of spinal cord

fMRI data could improve data co-registration and ultimately

the inter-rater agreement in activation mapping, our results

suggest that other improvements in image acquisition and

post-processing may be more critical to address. Automated

approaches for segmenting the spinal cord in fMRI data,

although potentially inferior to an expert manual segmentation,

would speed processing times and potentially reduce rater

bias in the analysis pipeline. Future work to ensure robust

processing of functional imaging data is needed to improve the

sensitivity and specificity to true neural activations in the human

spinal cord.
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SUPPLEMENTARY FIGURE 1

DSC of each rater mask compared to the reference mask visualized as

box-and-whisker plots. Top, DSC plotted by rater; Bottom, DSC plotted

by dataset.

SUPPLEMENTARY FIGURE 2

Slice-wise DSC and Adj:SC ratio correlations for every rater. Top left: a

visualization of masks defining adjacent and SC voxel regions on the

reference mask. Plots A-H: DSC and Adj:SC ratio are positively

correlated for every rater. Greater contrast between spinal cord and

adjacent voxels on a given transverse slice is associated with increased

agreement with the reference (positive correlation).

SUPPLEMENTARY FIGURE 3

An example of the summed di�erences between the reference and the

raters’ mask. Eight raters and reference rater contoured the spinal cord

on temporal mean fMRI images. The reference mask was subtracted

from each of the rater masks and the di�erences summed. The resultant

summed di�erence maps are shown on the right. The di�erence map

colorscale runs from −8 to +8, with negative values representing voxels

included in the reference mask were not selected by the 8 raters, and

positive values being the reverse, where the raters included voxels that

were not selected by the reference. The di�erence maps illustrate the

location of disagreement between the raters and reference is at the

edges of the spinal cord.

SUPPLEMENTARY FIGURE 4

Left: mean di�erence of group-level activation Z-score maps (shown in

Figure 6) between the reference and each of the 8 raters (e.g., rater

A–Reference) for the left and right contrasts. Right: map of significant

voxels from non-parametric one-sample t-test with threshold-free

cluster enhancement (P < 0.05, family-wise error rate controlled). For

the left contrast, 6.20% (2.06% Raters > Ref., 4.14% Raters < Ref.) of

voxels in the spinal cord were significantly di�erent between the 8 raters

and the reference rater. For the right contrast, 4.25% (1.90% Raters >

Ref., 2.35% Raters < Ref.) of voxels in the spinal cord were significantly

di�erent between the 8 raters and the reference rater. Slices shown are

the same as in Figure 6.
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Appendix

Spinal Cord Toolbox commands utilized to register

functional images to the PAM50 template.

sct_deepseg_sc

- i anatomical_image

- c t2

- centerline svm

- kernel 2d

sct_register_to_template

- i anatomical_image

- s anatomical_image_segmented.nii.gz

- l anatomical_image_vertebrae_labels

- c t2

sct_register_multimodal

- i PAM50_t2∗_template_image

- iseg PAM50_spinal_cord_mask

- d functional_mean_image

- dseg functional_mean_image_spinal_cord_mask

- param

step= 1

type= seg

algo= centermass

step= 2

type= seg

algo= bsplinesyn

slicewise= 1

iter= 3

- initwarp template_to_anatomical_image

- initwarpinv anatomical_image_to_template
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