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Objective: Vascular comorbidities are associated with reduced cognitive performance

and with changes in brain structure in people with multiple sclerosis (MS). Understanding

causal pathways is necessary to support the design of interventions to mitigate

the impacts of comorbidities, and to monitor their effectiveness. We assessed the

inter-relationships among vascular comorbidity, cognition and brain structure in people

with MS.

Methods: Adults with neurologist-confirmedMS reported comorbidities, and underwent

assessment of their blood pressure, HbA1c, and cognitive functioning (i.e., Symbol Digit

Modalities Test, California Verbal Learning Test, Brief Visuospatial Memory Test-Revised,

and verbal fluency). Test scores were converted to age-, sex-, and education-adjusted

z-scores. Whole brain magnetic resonance imaging (MRI) was completed, from which

measures of thalamic and hippocampal volumes, and mean diffusivity of gray matter

and normal-appearing white matter were converted to age and sex-adjusted z-scores.

Canonical correlation analysis was used to identify linear combinations of cognitive

measures (cognitive variate) and MRI measures (MRI variate) that accounted for the most

correlation between the cognitive and MRI measures. Regression analyses were used to

test whether MRI measures mediated the relationships between the number of vascular

comorbidities and cognition measures.

Results: Of 105 participants, most were women (84.8%) with a mean (SD) age of

51.8 (12.8) years and age of symptom onset of 29.4 (10.5) years. Vascular comorbidity
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was common, with 35.2% of participants reporting one, 15.2% reporting two, and 8.6%

reporting three or more. Canonical correlation analysis of the cognitive and MRI variables

identified one pair of variates (Pillai’s trace = 0.45, p = 0.0035). The biggest contributors

to the cognitive variate were the SDMT and CVLT-II, and to the MRI variate were gray

matter MD and thalamic volume. The correlation between cognitive and MRI variates

was 0.50; these variates were used in regression analyses. On regression analysis,

vascular comorbidity was associated with the MRI variate, and with the cognitive variate.

After adjusting for the MRI variate, vascular comorbidity was not associated with the

cognitive variate.

Conclusion: Vascular comorbidity is associated with lower cognitive function in people

with MS and this association is partially mediated via changes in brain macrostructure

and microstructure.

Keywords: multiple sclerosis, MRI, cognition, diabetes, hypertension

INTRODUCTION

Multiple sclerosis (MS) is a central nervous system disease
characterized by multiple signs and symptoms, including
cognitive impairment. Over 40% of individuals with MS struggle
with cognitive impairment (1, 2) and its adverse effects on
daily function (3). MS is characterized by demyelination and
axonal injury, therefore it is associated with macrostructural
changes in the brain such as atrophy, as well as microstructural
changes in normal appearing white matter (NAWM). Lower
whole brain and regional gray matter volumes, particularly
thalamic volumes (4) are associated with cognitive dysfunction
(5–7). Microstructural abnormalities, as measured using
diffusion tensor imaging (DTI) appear to provide even stronger
prediction of cognitive impairment than macrostructural
abnormalities (8–10).

Comorbid conditions are highly prevalent among individuals
with MS (11). The vascular comorbidities of hypertension and
hyperlipidemia are among the most common comorbidities with
MS, and increase in prevalence with age. They are associated
with outcomes such as relapses, disability progression and
lower quality of life (12, 13). More recent studies suggest that
hypertension and diabetes are also associated with reduced
cognitive function in domains such as processing speed, verbal
learning and visual memory for persons with MS (14–16).
However, findings have varied across studies, possibly reflecting
differences in study populations, comorbidity measurement and
cognitive tests employed. Although findings are inconsistent as
to the magnitude of the effect and the specific comorbidities
involved (14, 17–19), vascular comorbidities have been associated
with macrostructural brain changes such as lower brain volumes
in people with MS. In the general population widespread
changes in white matter microstructure are known to be
associated with vascular risk factors; mean diffusivity (MD)
appears to be more sensitive to these effects than FA or
mean kurtosis (20, 21). The association of vascular comorbidity
and brain microstructure has not been explored in people
with MS.

Depression and anxiety disorders are other common
comorbidities associated with lower cognitive performance in
people with MS (22). Depression has also been associated with
lower brain volumes, specifically affecting the temporal lobes
and hippocampus (23–25), and has also been associated with
altered microstructure in the form of higher MD in NAWM
and gray matter in the left temporal lobe in persons with MS
(26). Therefore these comorbidities need to be accounted for
when the effects of vascular comorbidities on brain structure and
cognition are assessed.

Better understanding of the relationships among
comorbidities, brain structural changes, and outcomes such
as cognitive functioning is needed for persons with MS.
Understanding causal pathways is necessary to support the
design of interventions to mitigate the impacts of comorbidities,
and to monitor their effectiveness. For example, if the effects of
vascular comorbidity on cognition were mediated by changes in
brain structure, intervention studies aimed at treating vascular
comorbidity to improve cognition could use MRI measures as
intermediate outcomes to enable shorter, smaller studies. We
aimed to extend our prior work examining relations between
comorbidity and cognition (15) and hypothesized that the effects
of vascular comorbidity on cognition would be mediated by
changes in brain structure in people with MS.

METHODS

Study Population
As described previously (15), our study sample was drawn
from a subgroup of adults with MS participating in a
longitudinal study regarding psychiatric comorbidity in
immune-mediated inflammatory diseases (the “IMID” study).
This subgroup included persons aged ≥18 years with definite
MS (27), as confirmed by a neurologist and medical records
review. Exclusion criteria included comorbid brain tumors,
neurodegenerative disorders, or contraindications to MRI. We
did not exclude any other comorbidities because comorbidities
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(predominantly vascular and psychiatric) were the focus of
the sub-study.

We also enrolled healthy controls who have been described
in detail elsewhere (28). Briefly, healthy controls were aged
18 years or older. Exclusion criteria for this group included
any chronic medical condition including vascular comorbidities,
cognitive impairment, a positive response to the Structured
Clinical Interview for DSM-IV (SCID-IV) screening questions
for depressive or anxiety disorders, head injury associated with
loss of consciousness or amnesia, or chronic medication use (29).
Hypertension, as measured during the study visit, was also an
exclusion criterion. For this analysis, they predominantly served
to allow us to develop regression-based norms for cognitive and
MRI measures.

All participants in the sub-study underwent standardized
assessments of physical, cognitive, and mental health
functioning, which they completed the same day. They also
had a brain MRI, which was completed within a maximum
of 4 weeks of the study visit in which they completed their
standardized assessments (30). All participants provided written
informed consent. The University of Manitoba Health Research
Ethics Board approved the study. Study data were collected
and managed using REDCap electronic data capture tools (31)
hosted at the University of Manitoba.

Sociodemographic Information
Participants reported gender, date of birth, race and ethnicity,
highest level of education attained, annual household income,
and marital status using self-administered questionnaires. Race
and ethnicity were assessed using response options from
Statistics Canada; race was categorized as white vs. non-white
because the number of non-white participants was too small
to further subdivide. We categorized level of education as high
school or less, vs. more than high school (including college,
university, technical/trade).

Clinical Characteristics
Age at MS symptom onset, clinical course (relapsing remitting,
secondary progressive, primary progressive), relapses in the last
12 months, and current disease-modifying therapy (DMT) were
determined based on patient report and medical records review.
The Expanded Disability Status Scale (EDSS) was assessed by a
certified neurologist (RAM/JJM) (32).

Comorbidity and Health Behaviors
Participants reported their lifetime history of comorbidities
(including hypertension, diabetes, hyperlipidemia, and heart
disease) using a validated questionnaire (33), including the
year of diagnosis and whether the condition was currently
treated. This information was complemented by medical records
review and other assessments (15). During the study visit,
we recorded blood pressure in the seated position using an
automatic blood pressure machine. Participants were classified
as currently having hypertension if they reported physician-
diagnosed hypertension, or had an elevated blood pressure of at
least 140/90mm Hg, and/or used anti-hypertensive medications.
Participants were classified as currently having diabetes if they

self-reported physician-diagnosed diabetes, used medications for
diabetes and/or had a hemoglobin A1c measured at the study
visit >6.5% (34). We did not discriminate between type 1 and
type 2 diabetes. Participants were classified as currently having
heart disease if they self-reported physician-diagnosed heart
disease. We classified current smoking status as yes/no. We
calculated body mass index (BMI, kg/m2) based on measured
height and weight.

Given prior findings in the literature indicating that
psychiatric comorbidity affects cognition in MS including our
prior work (22, 35), current major depression and anxiety
disorders were assessed for inclusion as covariates using the
Structured Clinical Interview for DSM-IV (SCID-IV) (36), which
was administered by trained study staff, as described elsewhere
(30). We classified each condition as present or absent.

Cognitive Function
As delineated elsewhere, we chose validated neuropsychological
assessments included in the Brief International Cognitive
Assessment for Multiple Sclerosis (BICAMS) (37), and which
tested most cognitive domains addressed via the Minimal
Assessment of Cognitive Function in MS (MACFIMS) (38).
BICAMS uses the Symbol Digit Modalities Test (SDMT) (39),
the California Verbal Learning Test (CVLT-II; Trial 1–5 total
recall score) (40), and the Brief Visuospatial Memory Test-
Revised (BVMT-R; summed recall score for all three learning
trials) (41). The MACFIMS includes all of the tests from
BICAMS, the Controlled Oral Word Association Test (fluency)
as well as the Paced Auditory Serial Addition Test (processing
speed and working memory), Delis-Kaplan Executive Function
System Sorting Test (executive function), and Judgement of Line
Orientation Test (spatial processing). Specifically, we used the
SDMT (39) to assess information processing speed, the CVLT-
II; Trial 1–5 total recall score (40) to assess verbal learning
and memory, the BVMT-R (summed recall score for all three
learning trials) (41) to assess visual learning and memory, and
tests of verbal fluency (letter and animal categories) (42) to
assess language and executive abilities. We converted raw test
scores to age-, sex- and education-adjusted z-scores using local
regression-based norms because we previously demonstrated
that these performed better in our population than other
published regression-based norms (28). Z-scores of ≤-1.5 were
classified as impaired. To characterize the sample we also
included the Wechsler Test of Adult Reading (WTAR) (43) that
provided an age-, sex-, education-, and ethnicity-adjusted Full
Scale IQ estimate of premorbid intelligence. Test administration
was completed by trained study staff, overseen by a registered
clinical neuropsychologist.

Magnetic Resonance Imaging
Acquisition
As described previously (18), all participants underwent a 3
Tesla brain MRI (Siemens TIM Trio, software version VB17a,
Siemens Healthcare, Erlangen, Germany; Siemens 32-channel
receive-only head coil), within 4 weeks of their study visit.
The images acquired included a high-resolution T1-weighted
(T1w) whole brain 3D magnetization prepared rapid gradient
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echo (MPRAGE), dual-echo proton density-weighted (PDw),
T2-weighted (T2w), fluid attenuated inversion recovery (FLAIR)
images, and two 55-direction high angular resolution diffusion
imaging (HARDI) scans that had phase encoding in opposite
directions (see Supplementary Table e1 for scan parameters).
Gadolinium was not administered. A radiologist reviewed the
MRIs to screen for any clinically relevant findings unrelated to
MS. All images were visually reviewed to assess for bulk motion
or other artifacts.

T1-Weighted Images
We used FSL’s FLIRT, and FNIRT (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/FLIRT) to linearly and non-linearly warp the T1w
brain images to the MNI152 template (44, 45). We created
lesion masks from FLAIR and T1w images using the Lesion
Segmentation Tool (LST) for SPM (46), and FSL’s automated
Brain Intensity AbNormality Classification Algorithm (BIANCA;
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA) (47). We created
final lesion masks for each participant as a binary cluster overlap
of the BIANCA and LST maps, as we have found that LST is
more specific but less sensitive and BIANCA is more sensitive but
less specific. This allowed us to eliminate spurious small clusters
identified by only one technique, reducing false positives. Lesions
were filled using the lesion filling command in FSL by inputting
each participant’s: (1) cluster-overlapped T1w_final_lesion_map,
(2) binary WM tissue map, and (3) bias-corrected T1w_brain
(48). We estimated whole brain volume and gray matter volume
from lesion-filled T1w images using FSL’s SIENA (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/SIENA) (49, 50). Volume estimates for
the thalamus (total of right and left) and hippocampus (total of
right and left) were obtained using FSL FIRST (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FIRST). All volumes were normalized relative
to intracranial volume for each participant.

Diffusion-Weighted Images

Artifact Correction
Diffusion-weighted images were processed using SPM12 Artifact
Correction in Diffusion MRI Toolbox (ACID; version beta
02; http://diffusiontools.com). This included simultaneous
motion and eddy current correction (51), and EPI distortion
correction based on the opposite polarity DWI images using
the Hyperelastic Susceptibility artifact Correction (HySCo)
algorithm (52, 53).

Tensor Model Fitting
We used the Fit Diffusion Tensor module to generate fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD)
and axial diffusivity (AD) maps. The robust least-squares fitting
algorithm was used to down-weight potential outliers in the
diffusion signal (54).

Registration
We non-linearly warped each participant’s high resolution,
lesion-filled T1w image to the MNI52 Template (using the
geodesic shooting method in the Computational Anatomy
Toolbox for SPM12 (CAT12 version r1318; http://www.neuro.
uni-jena.de/cat/)), then co-registered each of the diffusion

maps to the participant’s T1w image (by co-registering the
b0 image and applying the same transformations). Then we
spatially normalized the diffusionmaps to theMNI152_T1_1mm
template using subject-specific deformation fields generated
previously using CAT12. We extracted mean values of these
four DTI metrics for whole brain white matter (WM) as well
as gray matter (GM) using each participant’s CAT12 tissue
segmentations, and calculated mean values for NAWM by
removing voxels within each participant’s lesion mask from their
CAT12 WM segmentation.

Choice of Diffusion Metric
It is increasingly recognized that a large proportion of white
matter fiber tracts have complex architecture including crossing
fibers such that variations in DTI measures do not necessarily
reflect variations in structural integrity of myelin or axons (55,
56). Of the four DTI measures, FA, AD, and RD are most affected
by this and therefore we focused our analyses on MD (57).

Regression-Based Norms
Using a healthy control population which was enrolled
concurrently and underwent the same study procedures, we
developed regression-based norms for each MRI measure that
incorporated age and gender, similar to the approach used
to develop norms for cognitive tests in this population (28).
This allowed us to convert each MRI measure to a z-score,
enhancing their comparability despite the differences in their
value ranges, and normalizing them for subsequent regression
analyses. Because this was a healthy control population this
means that negative z-scores for a brain volume, for example,
indicated that the brain volume is lower than in a healthy person.

Analyses
Descriptive
We described the study population using means (standard
deviation [SD]), medians (interquartile range [IQR]),
and frequencies (percent). We observed strong Spearman
correlations between several of the MRI measures
(Supplementary Figure e1 and Supplementary Table e2).

Summarizing MRI Measures
We selected 4 measures for our analyses which captured brain
macrostructure and microstructure [thalamic and hippocampal
volumes, MD of NAWM and of gray matter (GM)] based
on as their established associations with cognition in the MS
literature. These measures also met the statistical criteria of no
multicollinearity amongst them (Supplementary Table e3), and
met the assumption of multivariate normality required for our
subsequent analyses (Supplementary Table e4).

Summarizing Vascular Comorbidity
Given the high degree of overlap between vascular comorbidities,
and our limited sample size, we summarized the four vascular
comorbidities (diabetes, hypertension, hyperlipidemia, heart
disease) as a count (0, 1, 2, 3+). We used an unweighted count
for consistency with a prior study showing a dose-response
association between an unweighted vascular comorbidity count
and brain volumes, and with performance-based measures
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FIGURE 1 | Hypothesized pathways between comorbidity and cognitive function.

including a cognitive test of processing speed (17). Moreover,
comorbidity counts are readily understood measures that have
been associated with multiple outcomes in MS (58, 59). The
prior study did not include smoking or BMI in the vascular
comorbidity count. Although we included smoking in the
vascular count in a complementary analysis as described further
below, we did not include higher BMI (i.e., being overweight
or obese) in the count. Seventy-five percent of the cohort
was overweight or obese. We had previously observed that
higher BMI was associated with better cognitive performance
(15), an effect opposite to those anticipated for other vascular
comorbidities of interest on cognition, and an effect opposite
to that expected on MRI outcomes. Studies in the general
population suggest that higher BMI may be protective of
cognition (60–62) and that this effect may be non-linear. The
assumption of using an unweighted comorbidity count is that
the effects of comorbidities are additive with the effects in the
same direction.

Primary Analyses
Our goal was to understand the relationship between vascular
comorbidity and cognition, and whether this was mediated
via brain structure (Figure 1). First, a multivariate approach
was used, due to the large number of variables assessing
each of cognition and MRI, the size of our sample, and
to minimize the number of comparisons made. Specifically,
our primary analysis began with canonical correlation analysis
to model the association between cognition and MRI; (63)
vascular comorbidity was not evaluated in this step. Canonical
correlation analysis has been used in other studies of cognition
in MS (64). In this situation we view the cognitive variables as
assessing a common underlying latent construct, and the MRI
variables as assessing the underlying latent construct of brain
structural integrity. In canonical correlation analysis, weighted
linear combinations of variables (“variates”) are created within
each dataset that account for the most correlation between the
two datasets. The first pair of variates has the highest possible
correlation, and successive pairs of variates are orthogonal
and independent of other variates. Variable loadings measure
the correlation between the original variable and the variate,
indicating the relative contribution of the variable to the variate.
This analytic approach is more powerful and reduces the number
of comparisons.We assessed the assumptions of multicollinearity

using correlations, multivariate normality using the Doornik-
Hansen test, and linearity (Supplementary Figures e1, e2). We
report the redundancy index (amount of variance explained).

Second, we constructed a series of linear regression models.
In the first model, we tested the association between the count
of vascular comorbidities and the cognitive variate (dependent
variable). In the second model we changed the dependent
variable to the MRI variate. In the third model, we tested the
association between the count of vascular comorbidities and the
cognitive variate (dependent variable), adjusting for the MRI
variate. The count of vascular comorbidities was included as
indicator variables. These regression analyses did not include
age or gender since these were captured in the z-scores for the
cognitive and MRI measures. In all models, covariates included
current depressive disorder, current anxiety disorder and use of
disease-modifying therapy (yes/no). We included use of disease-
modifying therapy as a covariate because of literature suggesting
that vascular comorbidity is associated with initiation (or not) of
disease-modifying therapy (65), and the association of disease-
modifying therapy with cognition (66). Regression analyses were
bootstrapped 1,000 times, and we report bias-corrected 95%
confidence intervals (95%CI). We assessed the proportion of the
direct effect of comorbidity on cognition mediated by MRI as
described for multi-level categorical variables (67).

Secondary Analyses
Third, we performed exploratory secondary analyses using
multivariate regression models. These analyses aimed to provide
insight into the relationships between vascular comorbidity,
cognitive and MRI measures at a more granular level.
However, these analyses need to be interpreted cautiously
given the number of comparisons (68). We used the same
three model approach as described using the canonical
variates but we included the z-scores for each of the
cognitive measures as dependent variables rather than the
single cognitive variate, and included all of the z-scores
for the MRI measures as independent variables rather than
the single MRI variate. If a statistically significant global
association was identified between an independent variable of
interest and cognition, we explored this further using linear
models which included only one cognitive z-score as the
dependent variable. Non-significant global associations were not
examined further.
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Complementary Analyses
We performed complementary analyses to test the sensitivity
of our findings to changes in sub-population or inclusion
of other variables. First, we limited the primary analyses to
women. Second, we included a history of ever smoking in the
count of vascular comorbidities, and repeated the regression
analyses that tested the association between the count of
vascular comorbidities and the cognitive variate (dependent
variable), adjusting for current depressive disorder, current
anxiety disorder and use of disease-modifying therapy (yes/no)
and for the MRI variate. Third, we repeated the primary
analyses after limiting the study population to participants
who were overweight or obese since the overlap between
overweight/obesity and vascular comorbidity was too substantial
to include it as a covariate.

Statistical analyses used SAS V9.4 (SAS Institute Inc., Cary,
NC) and STATA 17.0 (Statacorp LLC, College Station, TX).

RESULTS

We included 105 participants. Most participants were women,
and most had a moderate level of disability (Table 1). Vascular
comorbidity was common, affecting 62 (59.0%). Just over half
of participants had hypertension (50.5%), whereas only 11.4%
had diabetes. Overlap between comorbidities was common. All
12 participants with diabetes had hypertension, while 10 (90.9%)
were overweight or obese and 9 (75%) had hyperlipidemia.
Twelve of the 53 participants with hypertension had diabetes
(22.6%), while 47 (90.4%) were overweight or obese. Of six
participants with heart disease, 5 (83.3%) had hypertension, and
one-third had diabetes. Nearly 10% of participants currently
had an anxiety disorder, of whom 8 (80%) were currently
using a psychotropic medication. Fifteen percent of participants
currently had a depressive disorder, of whom 13 (81.2%) were
currently using a psychotropic medication. Based on average
(standard error) z-scores determined using regression-based
norms, cognitive performance was lowest for the SDMT (−0.76
[0.12]), followed by verbal fluency (animals,−0.61 [0.11]), verbal
fluency (letter, −0.25 [0.10]), BVMT-R (−0.064 [0.11]), and the
CVLT-II (0.031 [0.12]). Overall, 28 (26.7%) participants were
classified as cognitively impaired based on the SDMT. In contrast,
11 (10.5%) were impaired on the CVLT-II, 13 (12.4%) on the
BVMT-R, 12 (11.4%) on verbal fluency (averaging fluency for
animals and letters).

The number of vascular comorbidities correlated with MD of
NAWM (r = −0.27; 95%CI: −0.44, −0.086) but not with MD
of GM (0.18; −0.014, 0.36), nor with thalamic (−0.084; 95%CI:
−0.27, 0.11) or hippocampal (r = 0.001; −0.19, 0.19) volumes.
Age at MS symptom onset was not correlated with the number of
vascular comorbidities after accounting for age at assessment (r
= 0.12, p = 0.21). Similarly, disease duration was not correlated
with the number of vascular comorbidities after accounting for
age at assessment (r =−0.12, p=0.21).

Canonical Correlation Analysis
The canonical correlation analysis identified one statistically
significant pair of variates (Pillai’s trace = 0.45, p = 0.0035),

TABLE 1 | Cohort demographic and clinical characteristics.

Characteristic Value

N 105

Age, year mean (SD) 51.8 (12.8)

Female gender, n (%) 89 (84.8)

Education, n (%)

≤High School/GED 33 (32.0)

Post-secondary 70 (68.0)

MS characteristics

Age at MS onset, years, mean (SD) 29.4 (10.5)

Age at MS diagnosis, years, mean (SD) 35.1 (10.2)

Disease duration, years, mean (SD) 22.4 (12.3)

Current course, n (%)

Relapsing remitting 85 (81.7)

Secondary progressive 13 (12.5)

Primary progressive 6 (5.8)

EDSS, median (p25–p75) 3.5 (3.0–5.0)

Any relapses in last 12 months, n (%) 3 (2.9)

Any disease-modifying therapy, n (%) 58 (55.2)

Any psychotropic medication, n (%) 65 (61.9)

Comorbidity & health behaviors

SCID Current anxiety disorder, n (%) 10 (9.5)

SCID Current depressive disorder, n (%) 16 (15.2)

Hypertension (self-reported physician diagnosis), n (%) 28 (26.7)

Hypertension (self-reported physician diagnosis,

measured blood pressure and medication use), n (%)

53 (50.5)

Hyperlipidemia (self-reported physician diagnosis), n (%) 24 (22.9)

Hyperlipidemia (self-reported physician diagnosis and

medications), n (%)

25 (23.8)

Diabetes (self-reported physician diagnosis), n (%) 11 (10.5)

Diabetes (self-reported physician diagnosis, medications

and HbA1c), n (%)

12 (11.4)

Heart disease (self-reported physician diagnosis), n (%) 6 (5.7)

No. vascular comorbidities, n (%)

0 43 (41.0)

1 37 (35.2)

2 16 (15.2)

3+ 9 (8.6)

Ever smoker, n (%) 62 (59.1)

Current smoker, n (%) 15 (14.3)

BMI (kg/m2), mean (SD) 29.1 (6.4)

EDSS, Expanded Disability Status Scale.

which had a correlation of 0.50 (Supplementary Figure e3).
Based on variable loadings, the biggest contributor to the
cognitive variate was the SDMT (0.88), followed by verbal fluency
(letter, 0.76), visual memory (0.52), verbal fluency (animals,
0.49); the CVLT-II verbal learning score was the smallest
contributor (0.20) (Supplementary Figure e4). The biggest
contributors to the MRI variate were gray matter MD (−0.79)
and thalamic volume (0.63), followed by hippocampal volume
(0.26) and NAWM MD (0.20) (Supplementary Figure e5).
The canonical redundancy index for the cognitive variate
(i.e., the total fraction of variance accounted for by the
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MRI variables) was 9.7%. The canonical redundancy index
for the MRI variate was 7.2%. Age at MS symptom onset
was not correlated with the cognitive variate (r = −0.13,
p= 0.20).

TABLE 2 | Association of comorbidity with cognitive variate and magnetic

resonance imaging (MRI) variate.

MRI variate Cognitive variateb Cognitive variatec

β (95% CI)* β (SE)* β (SE)*

Vascular comorbiditya

1 −0.54 (−0.94, −0.057) −0.38 (−0.87, 0.11) −0.096 (−0.58, 0.37)

p = 0.015 p = 0.12 p = 0.68

2 −0.76 (−1.35, −0.18) −0.65 (−1.19,

−0.040)

−0.32 (−0.84, 0.17)

p = 0.013 p = 0.025 p = 0.23

≥3 −1.24 (−1.83, −0.50) −0.91 (−1.52, −0.24) −0.38 (−1.10, 0.38)

p = 0.0001 p = 0.05 p = 0.32

Anxiety 0.036 (−0.56, 0.68), 0.48 (−0.17, 1.21) 0.43 (−0.18, 1.21)

p = 0.91 p = 0.16 p = 0.21

Depression 0.60 (0.091, 1.18) 0.14 (−0.51, 0.77) −0.12 (−0.73, 0.41)

p = 0.03 p = 0.66 p = 0.67

Disease-

modifying

therapy

−0.082 (−0.45, 0.29) −0.050 (−0.47, 0.34) −0.029 (−0.40, 0.34)

p = 0.68 p = 0.80 p = 0.88

MRI variate 0.46 (0.28, 0.64)

p = 0.0001

Adjusted R2 0.12 0.045 0.23

*Based on 1,000 bootstrap replications; a-reference group = 0; b-without adjustment for

MRI variate; c-with adjustment for MRI variate. Bold indicates p < 0.05.

After adjusting for disease-modifying therapy, vascular
comorbidity was associated with the MRI variate (Table 2, global
test χ

2
= 16.88, p = 0.0007). We observed that the higher the

number of vascular comorbidities, the lower the value of (i.e., the
more abnormal) the MRI variate. Similarly, vascular comorbidity
was associated with the cognitive variate (Table 2, global test χ

2

= 9.78, p = 0.021) and we observed that the higher the number
of vascular comorbidities the lower the value of the cognitive
variate. After we added the MRI variate to the model, vascular
comorbidity was no longer associated with the cognitive variate
(global test χ2

= 2.0, p= 0.57) but theMRI variate was associated
with the cognitive variate (χ2

= 22.98, p = <0.0001). Over
one-third (37%) of the effect of vascular comorbidities on the
cognitive variate was mediated by the MRI variate.

Multivariate Regression Analyses
In the multivariate regression analysis which included all
cognitive variables as dependent variables, vascular comorbidity
remained associated with cognition in the global test (χ2

=

26.9, p = 0.03). In the follow-up individual regression analyses,
vascular comorbidity was associated with lower performance on
the SDMT, CVLT-II, and verbal fluency (animal) (Table 3).

In the multivariate regression analysis which included all
MRI variables as dependent variables, the number of vascular
comorbidities was associated with the MRI variables overall (χ2

= 39.7, p = 0.0001). In the follow-up individual regression
analyses, the number of vascular comorbidities was associated
was not associated with individual MRI measures (Table 4),
indicating it was important to consider them in aggregate.

Therefore, subsequent analyses focused on the association
of vascular comorbidity with the SDMT, CVLT-II, and verbal
(animal) fluency. After addition of the MRI variables to the
model, vascular comorbidity was no longer associated with the

TABLE 3 | Association of vascular comorbidity with individual cognitive tests.

SDMT CVLT-II BVMTR COWAT-FAS COWAT- Animals

β (SE)* β (SE)* β (SE)* β (SE)* β (SE)*

Vascular comorbiditya

1 −0.48 (−1.02, 0.030) −0.63 (−1.13, −0.11) −0.38 (−0.90, 0.14) −0.30 (−0.82, 0.24) −0.73 (−1.18, −0.29)

p = 0.079 p = 0.018 p = 0.15 p = 0.26 p = 0.001

2 −0.61 (1–0.33, 0.13) −0.52 (−1.23, 0.26) −0.80 (−1.45, −0.11) −0.47 (−1.06, 0.098) −0.94 (−1.64, −0.35)

p = 0.119 p = 0.20 p = 0.026 p = 0.12 p = 0.004

≥3 −0.94 (−1.74, −0.12) −0.39 (−1.57, 0.51) −0.55 (−1.45, 0.22) −0.77 (−1.62, 0.037) −0.87 (−1.65, 0.0055)

p = 0.023 p = 0.45 P = 0.20 p = 0.078 p = 0.037

Global test vascular comorbidity χ
2
= 20.3, p = 0.042 χ

2
= 22.9, p = 0.018 χ

2
= 19.5, p = 0.052 χ

2
= 19.6, p = 0.051 χ

2
= 22.2, p = 0.023

Anxiety 0.45 (−0.42, 1.37) 0.071 (−1.05, 1.04) 0.43 (−0.73, 1.42) 0.049 (−0.69, 0.69) (0.51, 1.78)

p = 0.99 p = 0.90 P = 0.44 p = 0.89 p <0.0001

Depression −0.13 (−1.13, 0.76) 0.052 (−0.91, 0.81) 0.33 (−0.55, 1.23) 0.38 (−0.16, 0.88) 0.032 (−0.58, 0.17)

p = 0.79 p = 0.90 P = 0.46 p = 0.16 p = 0.91

Disease-modifying therapy −0.11 (−0.61, 0.32) −0.27 (−0.032, 0.98) −0.063 (−0.49, 0.46) −0.12 (−0.63, 0.32) −0.037 (−0.46, 0.35)

p = 0.65 p = 0.29 P = 0.80 p = 0.63 p = 0.85

*Based on 1,000 bootstrap replications; a- reference group = 0; SDMT, Symbol Digit Modalities Test; CVLT-II, California Verbal Learning Test-II; BVMT-R, Brief Visuospatial Memory

Test-Revised; COWAT, Controlled Oral Word Association Test.

Bold indicates p < 0.05.
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TABLE 4 | Association of vascular comorbidity with individual magnetic resonance

imaging measures.

Thalamic

volume

Hippocampal

volume

GM MD NAWM MD

β (SE)* β (SE)* β (SE)* β (SE)*

Vascular

comorbiditya

1 −0.32 (0.39) 0.089 (0.27) 0.49 (0.32) −0.48 (0.43)

p = 0.41 p = 0.74 p = 0.13 p = 0.26

2 −0.52 (0.61) 0.23 (0.50) 0.70 (0.41) −0.56 (0.60)

p = 0.39 p = 0.65 p = 0.087 p = 0.35

≥3 −0.91 (0.59) −0.28 (0.54) 0.86 (0.66) −1.71 (0.70)

p = 0.12 P = 0.60 p = 0.19 p = 0.015

Global test vascular

comorbidity

1.15 0.64 0.49 3.34,

p = 0.56 p = 0.72 p = 0.78 p = 0.19

Anxiety −0.50 (0.43) −0.23 (0.39) 0.049 (0.52) 0.53 (0.47)

P = 0.24 P = 0.78 p = 0.92 p = 0.27

Depression 0.20 (0.50) −0.013

(0.40)

−0.45 (0.44) 0.89 (0.57)

0.69 P = 0.98 p = 0.31 p = 0.27

Disease-modifying

therapy

−0.75 (0.36) −0.079

(0.299)

0.35 (0.28) 0.99 (0.37)

P = 0.039 0.78 p = 0.21 p = 0.007

*Based on 1,000 bootstrap replications; a- reference group = 0; GM, gray matter; MD,

mean diffusivity; NAWM, normal-appearing white matter.

Bold indicates p < 0.05.

cognitive variate in the global test (χ2
= 18.9, p= 0.22), nor with

the individual cognitive variables SDMT (χ2
= 12.0, p = 0.36),

CVLT-II (χ2
= 14.4, p = 0.21) or animal fluency (χ2

= 13.5,
p = 0.26). Collectively, the MRI variables were associated with
cognition in a global test (χ2

= 45.4, p = 0.001), and specifically
with the SDMT (χ2

= 45.4, p = 0.001), the CVLT-II (χ2
= 28.5,

p= 0.028) and animal fluency (χ2
= 28.3, p= 0.029).

Complementary Analyses
After we limited our primary analyses to women, our findings
were similar. Vascular comorbidity was associated with the
cognitive variate in the model that did not include the MRI
variate (χ2

= 18.8, p = 0.0003) but not when the MRI variate
was added to the model (χ2

= 1.15, p = 0.76). After we
included ever smoking in the count of vascular comorbidities,
and repeated the primary analyses our findings were similar
(Supplementary Table e5). When we limited the analysis to
participants who were overweight or obese, our findings were
similar (Supplementary Table e6).

DISCUSSION

In this cross-sectional study we assessed the inter-relationships
between vascular comorbidity, brain structure as measured by
MRI, and cognition among 105 individuals with MS enrolled
from a population-based MS Clinic. We found that a higher
number of vascular comorbidities was associated with lower
cognitive function overall, and specifically with measures of

processing speed, verbal learning and memory, and oral fluency.
These associations were fully attenuated after we accounted
for MRI measures of thalamic and hippocampal volume, and
mean diffusivity of gray matter and NAWM, consistent with
our hypothesis that the impacts of vascular comorbidity on
cognition in people with MS are mediated by differences
in brain structure (as depicted in Figure 1). This suggests
that future intervention studies targeted at treating vascular
comorbidity to improve cognition could use MRI measures
as intermediate outcomes. It also highlights the complexity
of relationships between comorbidity and outcomes in MS.
Impacts of vascular comorbidity on brain health, including
brain structure and cognition, may reflect increased peripheral
inflammation, endothelial injury, and alterations in blood vessel
function, cerebral blood flow and metabolism (69–72).

Some prior studies have reported an association between
vascular comorbidities and brain volumes in persons with MS.
The largest cross-sectional study to date, which included 6,409
from the MS-PATHS study, found that the presence of two or
more vascular comorbidities was associated with lower whole
brain and gray matter volumes (17). However, another MS-
PATHS study including some of these participants, but based at
a single center, found that while depression was associated with
lower whole brain and gray matter volumes, hyperlipidemia was
associated with higher whole brain volumes for unclear reasons
(14). In the general population vascular comorbidities are also
reportedly associated with differences in brain structure. A recent
study including 9,722 participants from the UK Biobank found
that the higher the total number of vascular risk factors the
lower the brain volume and the greater the changes in brain
microstructure (73). To our knowledge, prior studies in the MS
population have not examined the association between vascular
comorbidity and DTI measures. In the general population,
vascular comorbidity is associated with differences in FA and
MD in the NAWM. Higher systolic blood pressure and higher
glucose in midlife are reportedly associated with worse white
matter microstructure as measured using FA and MD (20, 74).

A handful of studies have examined the association between
vascular comorbidity and cognition in people with MS. A study
involving 11,506 individuals in the MS-PATHS study found
that those with two or more vascular comorbidities, including
diabetes, hypertension and hyperlipidemia, had lower correct
scores on a test of processing speed, though no other cognitive
domains were examined (17). A retrospective study involving
69 persons with MS found that a one-point increase in the
Framingham risk score was associated with lower CVLT-II
scores, and this appeared to be driven by male sex and higher
lipid levels, though they did not observe any associations with the
SDMT and BVMT-R (16). Even without overt cerebrovascular
disease, hypertension, hypercholesterolemia, and diabetes are
associated with cognitive impairment, an increased risk of
dementia (75–77). However, a systematic review of several
studies that included individuals without dementia reported
that diabetes and hypertension were associated with reduced
cognitive function (78). A 10-point increment in diastolic blood
pressure (BP) is associated with increased odds of cognitive
impairment (7%; 1–14%) in a North American sample even after
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controlling for numerous other factors (79). Thus, the findings
reported for studies of MS samples appear consistent with these
adverse impacts of vascular comorbidity, including diabetes and
hypertension, on cognition in the general population.

Limitations to our study include our modest sample size,
though we were careful to take several steps to reduce the
number of variables examined and the number of comparisons
performed in our primary analysis. Nonetheless, our findings
should be replicated in other, larger populations. Most of our
participants were women, consistent with the general female
predominance of MS, thus our findings may not generalize
as well to men with MS. While we did not comprehensively
measure all cognitive domains, we assessed those most often
affected in people with MS, those included in the BICAMS,
and those affected by the comorbidities investigated here. Like
other studies to date we were unable to account for the
severity of vascular and other comorbidities or their treatments,
and could not discriminate the effects of individual vascular
comorbidities or behavioral factors such as smoking; this
warrants further investigation. Prior studies have reported that
depression and anxiety disorders are associated with lower
cognitive performance and alterations in brain structure, and
we did incorporate these variables into all of our regression
models as covariates (80–82). Use of psychotropic medications
may adversely influence cognition, however, their use overlapped
substantially with the depression and anxiety disorders in our
cohort, precluding an assessment of their effects (including
whether they were mediated by changes in brain structure as
illustrated in Figure 1 or via other pathways). Psychotropic
medications may improve cognition as the psychiatric disorder
remits, or worsen cognition (83). These effects on cognitive
function may vary by drug class and possibly by specific
agent, mandating the use of large samples to elucidate their
effects. However, though we used the gold standard structured
interview to identify these conditions, the small number of
individuals affected precluded more detailed analysis. Our
MRI protocol did not include gadolinium so it is possible
that we included participants with focal inflammatory activity,
which might have affected cognitive performance (84, 85).
Other studies have suggested that vascular comorbidities,
such as hyperlipidemia, are associated with an increase in
gadolinium-enhancing lesions. Therefore, it is possible that
a larger proportion of cognitive performance might have
been mediated by MRI measures if we had been able to
capture gadolinium-enhancing lesions. However, the proportion
of participants with a relapse in the prior year was quite
low. We used a small number of MRI measures to address
multicollinearity and meet assumptions of our analyses. We
focused on a subset of readily available MRI measures. Use
of more advanced imaging measures, and incorporating other
measures such as lesion volume might have increased the
proportion of the vascular comorbidity effect on cognition
mediated by MRI measures. That is, using a more limited
set of measures may have biased our findings toward the
null. Moreover, targeting more focal hypotheses may provide
greater insight into the mechanisms evaluated herein. Although
our study suggests that changes in MRI measures mediate

the effects of vascular comorbidity on cognition, we cannot
determine whether the changes in MRI measures solely reflect
vascular effects similar to those in the general population, or
whether the vascular comorbidities lead to increases in MS-
specific pathologic changes. Finally, the cross-sectional nature
of the study design limits causal inference. Nonetheless, cross-
sectional studies that use mediation analyses can provide
strong theoretical frameworks to guide future research, and
more appropriately account for variables that lie in the same
causal pathway than other approaches, as illustrated in the
chronic pain literature (86). Future studies should examine these
relationships longitudinally.

Our findings demonstrate that vascular comorbidity is
associated with lower cognitive function in people with MS and
this association is mediated, at least in part, via measurable
changes in brain macrostructure and microstructure. This
underscores the importance of preventing and treating vascular
comorbidity effectively in persons with MS to mitigate their
impacts on cognition and brain structure. Our findings highlight
the importance of ensuring that etiologies other than MS,
such as vascular comorbidity, are considered when evaluating
individuals experiencing cognitive impairment. Our findings
also suggest that additional MRI measures, such as DTI, may
be considered useful methods of assessing the efficacy of
interventions aimed at vascular comorbidities affecting persons
with MS in the future, potentially warranting future consensus
efforts (87).
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