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Frontotemporal dementia (FTD) is a spectrum of clinical syndromes that affects

personality, behavior, language, and cognition. The current diagnostic criteria recognize

three main clinical subtypes: the behavioral variant of FTD (bvFTD), the semantic variant

of primary progressive aphasia (svPPA), and the non-fluent/agrammatic variant of PPA

(nfvPPA). Patients with FTD display heterogeneous clinical and neuropsychological

features that highly overlap with those presented by psychiatric syndromes and other

types of dementia. Moreover, up to now there are no reliable disease biomarkers,

which makes the diagnosis of FTD particularly challenging. To overcome this issue,

different studies have adopted metrics derived from magnetic resonance imaging (MRI)

to characterize structural and functional brain abnormalities. Within this field, a growing

body of scientific literature has shown that graph theory analysis applied to MRI data

displays unique potentialities in unveiling brain network abnormalities of FTD subtypes.

Here, we provide a critical overview of studies that adopted graph theory to examine

the topological changes of large-scale brain networks in FTD. Moreover, we also discuss

the possible role of information arising from brain network organization in the diagnostic

algorithm of FTD-spectrum disorders and in investigating the neural correlates of clinical

symptoms and cognitive deficits experienced by patients.

Keywords: frontotemporal dementia, primary progressive aphasia, graph analysis, connectome analysis, small-

world, brain networks, magnetic resonance imaging, diffusion tensor imaging

INTRODUCTION

Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by executive,
behavioral, and/or language deficits (1, 2). The current diagnostic criteria recognize threemain FTD
subtypes according to clinical presentation: the behavioral variant of FTD (bvFTD), the semantic
variant of a primary progressive aphasia (svPPA), and the non-fluent/agrammatic variant of PPA
(nfvPPA) (3, 4). bvFTD is the most common subtype characterized by prominent changes in
behavior and personality, as well as deficits in executive functions and social cognition (3, 5). On
the other hand, loss of semantic knowledge, agrammatism, and fluency deficits are the core features
of svPPA and nfvPPA (4).
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The highly heterogeneous clinical and neuropsychological
phenotype presented by patients with FTD makes the diagnosis
of frontotemporal dementia per se and FTD subtypes particularly
challenging, especially in the early disease stages when the
symptoms are more nuanced (1). To overcome this issue several
studies have used magnetic resonance imaging (MRI) to identify
potential disease biomarkers and help clinicians in establishing a
correct and timely diagnosis (6–8). Neuroimaging studies have
consistently documented patterns of bilateral fronto-temporal
gray matter alterations in patients with bvFTD (9–11). Atrophy
in temporal brain regions has been associated with language
impairments in patients with svPPA (7, 12), while a higher
involvement of frontal regions (i.e., inferior frontal gyrus and
insula) is typically observed in patients with nfvPPA (13).

More recently, several studies have applied advanced MRI
acquisitions and analyses to obtain an in-depth characterization
of brain alterations with respect to the simple gray matter
atrophy. Particularly, an increasing number of studies have
assessed brain connectivity through graph-theoretical methods,
highlighting that this approach shows unique potentialities in
FTD (14–29).

Graph theory is an analytical framework that allows describing
the brain as a complex network identifying topological properties
that reflects global and local information communication (30–
33). Global and local graph properties allowed to identify
specific patterns of functional and structural alteration in
several neuropsychiatric and neurodegenerative disorders,
including FTD subtypes (34–38). Moreover, several studies have
demonstrated associations between cognitive impairments and
network properties, making graph theory a suitable approach to
investigate the neural correlates of cognitive performance (34).
Nonetheless, graph theory results are often difficult to interpret
due to the different metrics and levels (i.e., global and local) at
which the analysis can be performed.

Here, we provided a step-by-step guide to interpret graph
theory outcomes in FTD. Firstly, we introduced the key
concepts underlying brain network construction and described
the graph-based properties most frequently used to characterize
topological network organization. Second, we provided a critical
overview of studies that applied graph analysis in FTD by
discussing functional and structural network properties and their
association with clinical/neuropsychological variables. Finally,
we discussed the pros and cons of graph theory approaches in
FTD and points out a future research agenda.

GRAPH THEORY: KEY CONCEPTS AND
NETWORK CONSTRUCTION

Network Construction
Graph theory allows modeling a network as a set of discrete
elements (nodes) and their mutual relationships (edges)
(30, 32, 39). Nodes usually represent predefined brain regions,
and edges represent functional or structural connections between
regions (30, 31). Two brain regions are considered functionally
connected if they display coherent or synchronized neural
activity (30, 40). Functionally connectivity is typically estimated

using functional MRI (fMRI) (41), but more recent studies
have shown that also single-photon emission computerized
tomography (SPECT) and F-fluorodeoxyglucose positron
emission tomography (FDG-PET) are reliable techniques to
assess functional connections (42–44). Structural connectivity is
typically estimated by the reconstruction of white matter arising
from diffusion tensor imaging (DTI) (45, 46). White matter
streamlines can be estimated using deterministic or probabilistic
tractography, and several measures of connectivity strength (e.g.,
number of streamlines, fractional anisotropy, mean diffusivity)
can be computed between pairs of brain regions (46, 47).
The structural connectivity between brain regions can also be
indirectly estimated in terms of covariation of their gray matter
morphological properties (volumes, cortical thickness, surface
area, and gyrification) or similarity among their gray-level
intensity (48–50) based on the assumption that morphological
features would covary due to shared axonal connectivity and/or
genetic factors (48). For detailed information on the pros, cons,
and most appropriate use of each MRI technique, we refer the
readers to the study by Islam et al. (51). The defined network
is represented through a connection matrix, which is typically
filtered by applying thresholding and binarization approaches
(52, 53). Different approaches could be used to reduce the
influence of spurious connections on network topology, from
the simplest application of an absolute or proportional threshold
to more recent approaches such as minimum spanning tree
(MST) (54). A graphical representation of the framework for
the construction of a structural and functional brain network is
presented in Figure 1.

Segregation and Integration Properties
Different global and local graphmetrics are used to assess features
of brain network organization. Overall, they can be grouped into
information processing integration and segregation metrics (30,
55, 56). Concerning brain network integration, the characteristic
path length (Lp) and global efficiency (global_E) are the most
frequently used metrics (55–57). Lp is defined as the average
shortest path length between all pairs of nodes in the network (56)
and global_E is defined as the average inverse shortest path length
(57). Brain networks with short Lp and/or high global_E are
thought to transfer information across regions more efficiently
(52, 56).

The modularity (M) and average clustering coefficient
(average_Clust_C) are the two widely used metrics of brain
network segregation that allow to assess information processing
within specialized brain subsystems (55, 56). M is calculated by
partitioning the network into subgroups of nodes maximizing
intraconnections and minimizing interconnections (58). The
average_Clust_C coefficient is defined as the average fraction
in which pairs of neighboring nodes are also neighbors of
each other (56). A high value of modularity and/or clustering
coefficient mirror a higher propensity of the brain to execute
specialized processes within interconnected brain regions (53,
56, 59). A small-world (SW) topology is characterized by high
clustering and short path length, which allows to support both
segregated/specialized and distributed/integrated information
processing (39, 55, 57).
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FIGURE 1 | Schematic representation of brain network construction. (A) Diffusion tensor imaging; (B) resting-state fMRI; (C) gray matter structural covariance.

The above-described global metrics can also be defined at a
local level to characterize integration (local path-length: local_Lp
and local efficiency: local_E) and segregation (local clustering
coefficient: local_Clust_C) properties for each brain region (56).
Within-module degree and participation coefficient can also be
computed for each node to characterize its connectivity within
and across modules (58).

Centrality Measures and Hubs Definition
Centrality measures allow to identify nodes with a high influence
on the network function (56). Nodal degree (deg) is a measure
of centrality defined as the number or the sum of connectivity
weights of the edges incident to a node (53, 56, 59). Between
centrality (BC) measures the fraction of shortest paths between all
node pairs in the network that pass through a given index node
(56, 59). Closeness centrality (CC) measures the mean distance
between a given node and the rest of the network (30, 56, 59).
Centrality measures allow the identification of network hubs,
which represent topologically central regions that play a crucial
role in inter-network communication (33). A brain region is
usually defined as a hub when its nodal metrics are at least one
standard deviation greater than the average of the corresponding
measure over the entire network (21, 60). Hub regions tend to
be densely interconnected and form a rich-club structure in the
brain organization where the hubs are more connected among
themselves than to nodes with lower centrality (33).

Regarding networks defined using the MST approach,
alternative metrics are used to characterize centrality (maximum

degree, maximum betweenness), distance (diameter), and
topological aspects (degree divergence, leaf fraction) (54).

NETWORKS ALTERATIONS IN PATIENTS
WITH FTD

Sixteen studies applied graph analysis to assess structural and
functional brain network alteration in patients with FTD. Eleven
studies (68.7%) compared bvFTD patients with healthy controls,
one study compared svPPA patients with healthy controls,
one study compared nfvPPA with healthy controls and three
studies compared FTD subtypes among themselves and with
healthy controls. The study from Sedeno et al. reported on a
pooled sample of patients with PPA, which did not allow us to
discern disease-specific information, therefore, we decided not
to consider these results when discussing network alterations of
PPA patients. Collectively, these studies analyzed 472 bvFTD, 70
svPPA, 94 nfvPPA, and 15 logopenic-variant primary progressive
aphasia (lvPPA) patients. Detailed information for each study is
reported in Table 1.

Global and Local Networks Alterations in
BvFTD
Behavioral variant of FTD is by far the most extensively studied
FTD dementia in terms of brain network alterations. Overall,
the brain networks of patients with bvFTD showed preserved
small-worldness organization, but significant alterations in global
properties of the functional network have been consistently
observed across studies (14, 17, 18, 23). Studies that applied
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TABLE 1 | Summary of studies that used graph analysis in patients with FTD.

Reference Sample Mean Age MMSE Modality Network size Connectivity

measures

Binary(B)/

weighted

(W)

Global

properties

Local

properties

Hub (H)/

modularity

(M)

Agosta et al.

(14)

50 controls 18 bvFTD 61 ± 9

61 ± 8

29 ± 1

21 ± 7

rs-fMRI 90 ROIs grouped

into 8 macro-areas

Pearson’s

correlation

B Clust_C, Lp

global_E, Ass

mean deg

deg Bc H

Agosta et al.

(15)

50 controls 13 svPPA 61.0 ± 9.0

59.4 ± 9.6

22.2 ± 7.2

29.0 ± 1.0

rs-fMRI 90 ROIs Pearson’s

correlation

B Clust_C, Lp

global_E, Ass

mean deg, SW

deg Bc H

Daianu et al.

(16)

37 controls 20 bvFTD

23 EOAD

59.4 ± 9.6

60.7 ± 10.7

59.6 ± 8.8

29.1 ± 0.9

24.1 ± 4.7

23.4 ± 4.2

DTI 68 ROIs Fiber density FA

MD

W Rich club

organization

deg –

Sedeno et al.

(17)

12 controls 14 bvFTD

10 stroke

62.58 ± 6.30

66.42 ± 6.83

54.50 ± 9.80

29.08 ± 1.44

25.50 ± 3.87

28.80 ± 1.09

rs-fMRI 116 ROIs grouped

into 7 networks

Wavelet

analysis

B Average Bc – –

Sedeno et al.

(18)

Site 1: 16 controls 16

bvFTD 13 FIS; Site 2:

29 controls 17 bvFTD 8

PPA; Site 3: 15

Controls 14 bvFTD

15 AD

63.50 ± 7.22

69.37 ± 7.29

62.77 ± 10.4

61.30 ± 7.16

65.23 ± 8.29

60.12 ± 5.81

69.13 ± 6.59

65.33 ± 9.12

64.07 ± 7.34

– rs-fMRI 90 ROIs Pearson’s

correlation

B/W Lp

Clust_C

deg Bc CC –

Filippi et al.

(19)

32 controls 38 bvFTD

37 EOAD

62.3 ± 2.6

63.8 ± 7.3

62.1 ± 3.9

29.3 ± 0.8

22.7 ± 5.8

19.3 ± 4.9

rs-fMRI 220 ROIs grouped

into 6 macro-areas

Pearson’s

correlation

W Clust_C, Lp

local_E

mean strength

Clust_C, Lp

mean

strength

local_E

-

Vijverberg

et al. (20)

59 bvFTD 90 AD 74

SCD

62.1 ± 6.0

63.1 ± 6.1

61.3 ± 6.6

24.6 ± 3.5

21.1 ± 5.0

28.3 ± 1.9

T1 weighted 90 ROIs Intra-cortical

similarity

B deg, Lp

Clust_C, Bc

SW

deg, Lp

Clust_C Bc

-

Mandelli et al.

(21)

20 controls 20 nfvPPA 68.6 ± 6.0

68.8 ± 7.3

29.1 ± 1.5

26.2 ± 3.7

rs-fMRI 110 regions

belonging to the

speech production

network

Pearson’s

correlation

– global_E

Lp

Ass

deg Bc H

M

Reyes et al.

(22)

32 controls 50 bvFTD

14 svPPA 22 nfvPPA

61.25 ± 7.28

65.85 ± 8.1

60.3 ± 7.65

63.63 ± 6.87

28.86 ± 1.27

22.47 ± 6.5

16.67 ± 7.66

16.9 ± 6.92

rs-fMRI 90 ROIs Pearson’s

correlation

W global_E

Lp, deg,

Clust_C, Bc

– –

(Continued)
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TABLE 1 | Continued

Reference Sample Mean Age MMSE Modality Network size Connectivity

measures

Binary(B)/

weighted

(W)

Global

properties

Local

properties

Hub (H)/

modularity

(M)

Saba et al.

(23)

39 controls 41 bvFTD 61.7 ± 6.5

65.6 ± 7.01

– rs-fMRI 116 ROIs Wavelet correlation B (MST) Maximum deg,

maximum Bc,

diameter, Ecc,

Ass, deg

leaf fraction

– –

Malpetti et al.

(24)

82 controls 82 bvFTD 67.93 ± 6.95

69.37 ± 7.73

68.7 ± 1.5

71.4 ± 2.2

FDG-PET 121 ROIs Metabolic

connectivity

– – – H

M

Tao et al. (25) 17 controls 18 nfvPPA

15 lvPPA 9 svPPA

65 ± 8.18

69 ± 5.37

64 ± 8.12

69 ± 5.25

- rs-fMRI 76 ROIs Pearson’s

correlation

B global_E, Lp

Ass, Clust_C

SW

Lp Clust_C H

Zhou et al.

(26)

20 controls 64 bvFTD 68.7 ± 1.5

71.8 ± 1.7

29.50 ± 0.1

20.08 ± 4.35

SPECT 90 ROIs Pearson’s

correlation

B global_E

SW

local_E Bc

deg

H

Nigro et al.

(27)

20 controls 25 bvFTD 63.60 ± 5.90

66.92 ± 7.69

27.90 ± 1.68

20.80 ± 5.57

T1 82 ROIs Joint variation W SW local_E

Clust_C

deg

-

Ng et al. (29) 47 controls 14 bvFTD

50 AD

63.20 ± 5.00

62.05 ± 5.47

65.45 ± 5.87

29.02 ± 1.15

20.82 ± 5.66

21.21 ± 6.72

rs-fMRI 141 ROIs Pearson’s

correlation

W - deg, local_E

within-

module deg

partic_c

M

Nigro et al.

(28)

110 controls 34 svPPA

34 nfvPPA

63.12 ± 7.49

62.91 ± 6.29

68.32 ± 7.27

29.35 ± 0.77

24.97 ± 5.10

25.54 ± 4.04

T1 82 ROIs Joint variation W SW local_E

Clust_C

deg

H

bvFTD, behavioral variant of frontotemporal dementia; svPPA, semantic variant of primary progressive aphasia; nfvPPA, non-fluent/agrammatic variant of primary progressive aphasia; lvPPA, logopenic variant of primary progressive

aphasia; PPA, primary progressive aphasia; EOAD, early-onset Alzheimer’s disease; FIS, fronto-insular stroke; AD, Alzheimer’s disease; SCD, subjective cognitive decline; MMSE, Mini-Mental State Examination; rs-fMRI, resting state

functional magnetic resonance imaging; DTI, diffusion tensor imaging; FDG-PET, F-fluorodeoxyglucose positron emission tomography; SPECT, single-photon emission computed tomography; ROI, region of interest; Clust_C, clustering

coefficient; Lp, path length; E, efficiency; Ass, assortativity; deg, degree; SW, small-worldness index; Bc, betweenness centrality; Ecc, eccentricity.
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graph analysis to resting state-fMRI documented alterations
of both integration and segregation of information processing
as reflected by lower average clustering coefficient, global
efficiency, and higher characteristic path length (14, 18). A
recent study that adopted MST-based analysis provided further
information documenting a higher diameter and eccentricity
(23), which indicates a loss of efficiency in exchange information
capacity. Similar results arise from studies that applied graph
theory to structural MRI (20, 27), which showed a reduced
global efficiency and clustering coefficient, suggesting an overall
reduced ability in information transfer. On the other hand,
evidence is less conclusive for studies that assessed alterations
at the local level. The majority of studies found a reduction of
nodal degree, particularly evident over frontal regions (namely,
orbitofrontal gyrus, anterior cingulate cortex, superior temporal
pole, insula, superior and middle frontal gyri) (14, 16, 17,
19, 26), but alterations have been also observed over the left
caudate nucleus, superior parietal and occipital lobes (14). A
decreased integration and interconnection in temporal and
frontal brain regions were also confirmed by a multicenter
study investigating functional brain network organization (18).
Moreover, patients with bvFTD showed an extensive reallocation
of nodes across modules, most notably in the fronto-parietal,
limbic-basal ganglia, and cingulum-temporal modules (24).
Studies on structural MRI corroborated these findings by
documenting lower local efficiency in the cortical thickness of
caudal and rostral middle frontal gyrus, rostral anterior cingulate,
and transverse temporal gyrus (27).

Finally, a loss of hubs over different brain regions, namely
frontal gyrus (right superior frontal, inferior orbitofrontal gyri,
left anterior cingulate cortex, and cuneus), basal ganglia, limbic
system, cerebellum, and temporo-occipital cortex has also been
reported. By contrast, new hubs appeared in the orbitofrontal and
parietotemporal brain regions (14, 24).

Global and Local Networks Alterations in
svPPA
The global brain network organization of patients with svPPA
was characterized by a decreased global efficiency and clustering
coefficient, and a higher characteristic path length (15, 22),
which could reflect lower segregation and integration in the
overall network organization. This finding was also confirmed
by a recent study showing a reduced small-worldness index in
the structural brain network of patients (28). At a local level,
a reduced nodal efficiency, degree, and clustering coefficient
have been observed in several brain regions, including the left
middle and superior temporal gyri, entorhinal cortex, amygdala,
fusiform, hippocampus, and insula (15, 28). Moreover, a loss of
hubs was observed in left-hemisphere regions (15).

Global and Local Networks Alterations in
nfvPPA
In patients with nfvPPA, a lower global efficiency was observed
over the whole-brain network and in the speech production
network (SPN) (21, 22). Increased path length, clustering
coefficient, and modularity were also observed in the SPN (21).

While the increased path length suggested a reduction in the
information integration, the higher clustering coefficient and
modularity may indicate a tendency of the network to segregate
into smaller communities (21). At a local level, lower clustering
coefficient, degree, and local efficiency were observed in several
frontal regions including the left caudal and middle frontal
gyrus, superior frontal gyrus, and left pars opercularis (27).
Moreover, a loss of hubs in the left fronto-parietal-temporal
area of the SPN, typically affected by the disease, was also
documented while additional hubs were being recruited more
anteriorly within the left frontal regions and in the right
hemisphere (21).

Global and Local Networks Alterations
Between FTD Subtypes
When FTD subtypes were directly compared, a lower global
efficiency was observed in patients with nfvPPA relative to
bvFTD but not to svPPA (22). Moreover, patients with nfvPPA
presented a less small-worldness index than patients with
svPPA (28). At local level, significant differences were observed
only between PPA subtypes. In particular, decreased clustering
coefficient, degree, and local efficiency in the temporal pole
were observed in patients with svPPA relative to nfvPPA.
By contrast, patients with svPPA display higher values of
these local metrics in the left caudal frontal gyrus and left
pars opercularis than nfvPPA (28). A different configuration
of hubs was also found among PPA variants (25). More
in detail, both lvPPA and svPPA showed a lateralized hub
distribution (right brain hemisphere) while patients with nfvPPA
were characterized by a bilateral distribution across both
hemispheres (25).

Association of Brain Network Topology
With Clinical/Neuropsychological
A very limited number of studies have correlated graph analysis
metrics with clinical/neuropsychological impairments in FTD,
with all studies specifically focused on patients with bvFTD.

A lower clustering coefficient in the right hippocampus has
been associated with impairment in cognition and executive
functioning, while a lower degree in the superior occipital
gyrus has been associated with attentional impairments (20).
Apathy and inhibition (measured through the frontal system
behavior scale) showed a negative association with path length
and a positive association with global efficiency, degree, and
clustering (22). Increased nodal centrality in the left insular and
right frontal hubs resulted associated with the degree of social
cognition impairments. More recently, the severity of behavioral
alterations (assessed through the neuropsychiatric inventory)
was associated with lower modularity in the salience/ventral
attention network and higher modularity within the module
degree in the left cingulate cortex of the control network (29).
Finally, higher overall cognitive functioning (assessed through
the MMSE) resulted associated with higher efficiency of caudal
anterior cingulate thickness (27).
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LIMITATIONS AND FUTURE DIRECTIONS

The diagnosis of FTD-spectrum dementia is established based
on clinical presentation, yet at the same time it is becoming
increasingly reliant on neuroimaging. Indeed, the current
diagnostic criteria (3, 4) require the documentation of frontal
and/or anterior temporal atrophy for establishing the diagnosis
of “probable” bvFTD. With the advent of new and more
sophisticated analytical techniques, such as graph theory analysis
and the study of connectome, neuroimaging data are likely to
gain a key role in the diagnosis of dementia, including FTD
subtypes. However, up to now, graph theory has been extensively
applied to document altered brain connectivity in Alzheimer’s
disease (36, 61–63), while studies in FTD are rare and markedly
skewed in favor of bvFTD, with only two studies specifically
focused on svPPA and nfvPPA.

In bvFTD, graph analysis revealed a loss of efficiency in the
information processing across brain regions reflected by reduced
clustering coefficient and increased path length.

The pattern of neuroanatomical involvement highlighted by
graph analysis overlapped with that observed in previous studies
that analyzed “classic” quantitative neuroimaging metrics (i.e.,
gray-matter atrophy) in documenting alterations over frontal and
temporal regions, further confirming their crucial role in bvFTD
pathogenesis (10, 11, 64). Local network alterations showed loss
of central nodes in the frontotemporal cortex and limbic system
and a reorganization of network hubs, which could either mirror
a compensatory process or be related to disease progression.
Moreover, global and local metrics were associated with the
severity of behavioral symptoms, overall cognitive functioning,
and impairment in specific cognitive domains, suggesting that
the alterations of information processing may exert a significant
effect on the cognitive and behavioral symptoms experienced
by patients.

Concerning svPPA, the few available studies documented
reduced nodal efficiency, degree and clustering, and loss of hubs
over several temporal and limbic regions, which indicates a
reduced centrality of these regions in the information transfer.
On the other hand, alterations over frontal brain regions
such as the caudal middle and superior frontal gyrus were
associated with nfvPPA. Moreover, patients with nfvPPA showed
a reorganization of hub distribution in the speech production
network and loss of hubs in the fronto–parietal–temporal areas.

When network alterations are compared between FTD
subtypes, nfvPPA presented a higher impairment of global
metrics compared to both bvFTD and svPPA. Moreover, svPPA
and nfvPPA showed differences in local metrics: patients
with nfvPPA display local abnormalities in brain regions
crucial for language production (left caudal frontal gyrus and
pars opercularis), while patients with svPPA showed greater
impairment in areas associated with language comprehension
such as the temporal pole.

Taken together, these results indicate that graph theory is
capable of detecting specific brain network alterations in patients
with FTD that could potentially serve as a disease biomarker.

However, there is a series of methodological issues that limits its
broader applicability.

First, there is a lack of standardized protocols for performing
graph analysis, resulting in a wide variability of metrics and
approaches across studies. Particularly the choice of thresholding,
which is often arbitrary, significantly affects graph metric
quantification and therefore limits the reproducibility of results.
More recent techniques, such as MST, have the potential to
overcome this issue but to date have been applied only in one
study in the field of FTD.

Second, graph metrics are influenced by the parcellation
scheme used to define network nodes, yet no consensus
exists regarding which brain parcellation could be considered
optimal to capture functional activity or anatomical intersubject
variability. Third, all studies reviewed that analyzed fMRI focused
on static functional connectivity, assuming temporal stability
over scanning time. However, recent studies have reported
that connectivity shows time-dependent fluctuations on the
scale of seconds to minutes (65). Noteworthy, these time-
dependent changes per se have provided novel insights into
brain organization and should be considered in future studies
on patients with FTD (66). Fourth, new reliable and practical
frameworks need to be proposed to define graph metrics using
the integration of different brain imaging modalities. Finally,
all studies applied a “transversal” research design, with different
graph metrics being assessed during a singular MRI session,
while longitudinal studies are completely lacking, precluding the
possibility to quantify the predictive value of these metrics on
disease progression.

CONCLUSIONS

Graph analysis is proven to be able to detect specific global and
local brain network alterations in patients with bvFTD, while
the number of studies is too limited to draw any definitive
conclusions on svPPA and nfvPPA. The assessment of network
alterations in FTD spectrum may have important clinical
implications both in the diagnostic process, as a potential disease
biomarker, and in the follow-up as an approach potentially able
to track disease course.
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