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China, 3Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China

Background: The Pipeline embolization device (PED) is a flow diverter used to

treat intracranial aneurysms. In-stent stenosis (ISS) is a common complication

of PED placement that can a�ect long-term outcome. This study aimed to

establish a feasible, e�ective, and reliable model to predict ISS using machine

learning methodology.

Methods: We retrospectively examined clinical, laboratory, and imaging

data obtained from 435 patients with intracranial aneurysms who underwent

PED placement in our center. Aneurysm morphological measurements were

manually measured on pre- and posttreatment imaging studies by three

experienced neurointerventionalists. ISS was defined as stenosis rate >50%

within the PED. We compared the performance of five machine learning

algorithms (elastic net (ENT), support vectormachine, Xgboost, Gaussian Naïve

Bayes, and random forest) in predicting ISS. Shapley additive explanation was

applied to provide an explanation for the predictions.

Results: A total of 69 ISS cases (15.2%) were identified. Six predictors of

ISS (age, obesity, balloon angioplasty, internal carotid artery location, neck

ratio, and coe�cient of variation of red cell volume distribution width)

were identified. The ENT model had the best predictive performance with a

mean area under the receiver operating characteristic curve of 0.709 (95%

confidence interval [CI], 0.697–0.721), mean sensitivity of 77.9% (95% CI,

75.1–80.6%), and mean specificity of 63.4% (95% CI, 60.8–65.9%) in Monte

Carlo cross-validation. Shapley additive explanation analysis showed that

internal carotid artery location was the most important predictor of ISS.

Conclusion: Ourmachine learningmodel can predict ISS after PED placement

for treatment of intracranial aneurysms and has the potential to improve

patient outcomes.

KEYWORDS

machine learning, flow diverter, Pipeline embolization device, complication,

endovascular treatment, intracranial aneurysm
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Introduction

Flow diversion are widely used in the treatment of

intracranial aneurysms. Among the various available devices, the

Pipeline embolization device (PED; Medtronic, Dublin, Ireland)

is the most widely studied. The PED was initially developed and

approved for treatment of large and giant aneurysms located on

the internal carotid artery (ICA) from the petrous to the superior

hypophyseal segments (1). Owing to its high occlusion rate and

satisfactory safety profile, PED use has been expanded to treat

ruptured and unruptured saccular and non-saccular aneurysms

of the anterior communicating, middle cerebral, vertebrobasilar,

and posterior inferior cerebellar arteries (2–8). In-stent stenosis

(ISS) is a common complication of PED placement and has been

defined as intimal hyperplasia within the stent that appears as an

unfilled contrast space between the contrast filled vascular cavity

and stent on digital subtraction angiography (7). However, long-

term complications of PED placement are not well understood.

Previous studies have reported that most patients with ISS are

asymptomatic and that ISS usually gradually improves; however,

it may worsen (8–14). In addition, ISS may result in hemiplegia

(14, 15) or even death (11) and cause decreased blood flow

velocity (16). Considering that severe stenosis can progress

to vascular occlusion and weaken the compensatory ability of

the cerebral vasculature, its potential harm cannot be ignored.

Therefore, the pathogenesis and predictors of ISS should be

studied to improve long-term outcomes.

Previous retrospective studies have shown that balloon

angioplasty (17), current smoking (18), prior cerebrovascular

stenosis (18), dual antiplatelet therapy non-compliance (13),

and anterior circulation location (13) are risk factors for ISS.

Increasing year of treatment within the study period was also

a risk factor in one study (17). Protective factors include

increasing age (17), previous endovascular treatment (17), and

statin use (11). However, a comprehensive ISS prediction model

has not been developed for patients undergoing PED placement.

This study aimed to establish a feasible, effective, and reliable

ISS prediction model based on patient clinical and imaging

characteristics using machine learning methods. Application of

such a model can identify patients at high risk for ISS and enable

close follow-up, which should improve long-term outcomes.

Materials and methods

Study population

Data for patients treated with flow diverters in the

Department of Interventional Neuroradiology, Beijing Tiantan

Hospital between January 2015 and October 2020 were

retrospectively collected. Only patients treated using the PED

who had at least one angiographic follow-up were eligible

for study inclusion. In our center, patients scheduled for

implantation of PED was administered with aspirin (100mg)

and clopidogrel (75mg) for at least 5 days prior to the procedure.

And the duration of dual antiplatelet therapy ranged from 3

to >6 months after procedure, and a combination of aspirin

(100 mg/day) and clopidogrel (75 mg/day) was the most

common antiplatelet regimen. We excluded patients who had

experienced subarachnoid hemorrhage within 1 month prior

to PED placement and those whose imaging studies before or

after treatment were not available. Institutional review board

approval was obtained. The requirement for informed consent

was waived because the study was retrospective in nature and all

data were deidentified. A study flow chart of patient selection is

illustrated in Figure 1.

Data collection

We collected and recorded clinical and laboratory

data from the electronic medical records and reviewed

imaging studies (digital subtraction angiography, computed

tomography angiography, magnetic resonance angiography)

performed before and after treatment. Perioperative laboratory

data included data from 14 days before to 14 days after

treatment. Imaging follow up was performed 6 and 12

months after treatment and every year thereafter for 5

years. If a laboratory parameter had multiple recordings,

the mean value was recorded. Aneurysm morphological

parameters, including maximum diameter, neck diameter,

maximum height, perpendicular height, aneurysm width,

aspect ratio, size ratio, height/width ratio, neck ratio, and

bottleneck factor, were manually measured by three experienced

neurointerventionalists according to previously published

studies (19, 20) (Supplementary Table 1). Parent artery

diameter, proximal parent artery diameter, and distal parent

artery diameter (defined as the minimum diameter of the parent

artery at the aneurysm neck, 1.5 × parent artery diameter

upstream from the neck, and 1.5 × parent artery diameter

downstream from the neck, respectively) were measured

manually at the same point in the imaging studies before and

after treatment (21). Stenosis rate was calculated according to

the formula:

Stenosis Rate (SR) =

1 −
parent artery diameter at certain follow up (Dx)

intraopeartive parent artery diameter (D0)

ISS was defined as stenosis rate >50% within the PED. ISS

was graded as mild (50–74%), severe (75–99%), or occlusion

(100%). Aneurysm occlusion was graded according to the

O’Kelly-Marotta (OKM) grading scale (22), which is based on

the degree of aneurysmal filling: Total filling, subtotal filling,

entry remnant, or no filling.
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FIGURE 1

Study flow chart of patient selection and establishment of the machine learning model. RFE, recursive feature elimination; SHAP, Shapley

additive explanation.

Data preprocessing

Among the 122 variables recorded, 92 were included for

analysis after excluding those in which >30% of values were

missing (Supplementary Table 2). Missing values were imputed

using the random forest method in the missingpy package

(version 0.2.0). Continuous variables were standardized using

z-score transformation. Categorical variables were binarized.

Multicategorical variables were converted into binary variables

using one-hot encoding.

The processed dataset was randomly stratified into training

(80%) and test (20%) sets. A bias toward negative cases was

present because of the scarcity of patients with ISS. Therefore,

borderline-SMOTE was applied to the training set using the

imblearn package (version 0.8.0). This technique can generate

synthetic data from the minority class (patients with ISS)

to achieve balance of negative and positive cases (23). After

application of borderline-SMOTE, the training set was expanded

to 614 cases (307 stenosis cases).

Feature selection and model training

We applied and compared five popular machine learning

models: elastic net (ENT), support vector machine (SVM),

Xgboost (XGB), Gaussian Naïve Bayes (GNB), and random

forest (RF) with traditional logistics regression (LR) using

the open-source machine learning library scikit-learn (version

0.24.1). Before model training, genetic algorithm (GA) and

recursive feature elimination (RFE) were each applied to the

training set to identify the best combination of features. Then,

10-fold cross validation and grid search were used in model

training to determine the optimal hyperparameters of each

model. The performance of the machine learning models was

evaluated using sensitivity, specificity, and area under the

receiver operating characteristic curve (AUC-ROC) in the test

set. The flow chart for model training and testing is shown in

Figure 1.

After model training and testing, we applied Monte Carlo

cross-validation (MCCV) to verify the efficacy of the machine

learning model again. The dataset was randomly divided into

test and training sets and the training and testing were repeated

100 times. Sensitivity, specificity, AUC-ROC, maximumYouden

index, and threshold at maximum Youden index in each loop

were recorded. Mean sensitivity, mean specificity, and mean

AUC-ROC were calculated to determine model performance.

Mean value of maximum Youden index in each loop was

calculated and determined as the optimal threshold.

Model explanation

The Shapley additive explanation (SHAP) algorithm

(version 0.39.0) was used to address interpretability problems

associated withmachine learningmodels. Based on game theory,

SHAP connects optimal credit allocation with local explanations
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using the classic Shapley values. SHAP can simultaneously

provide local and global model interpretation (24).

Statistical methods

Statistical analyses were performed using Python (version

3.8.8). Categorical variables are expressed as numbers with

percentage. Continuous variables with normal distribution are

expressed as means ± standard deviation; those with skewed

distribution are expressed as medians with interquartile range

(IQR). Normality was tested using the Shapiro–Wilk test. One-

way analysis of variance was used to compare Monte Carlo

cross-validation between the machine learning models. The post

hoc Tukey honestly significant difference (HSD) test was applied

to identify where the differences lay. The highest Youden’s index

was used to define the optimal cut-off value. The mean value of

the optimal cut-off value was used to differentiate low and high

stenosis risk. The association between stenosis risk and time after

procedure was assessed using Cox regression. The log-rank test

was then used to compare Kaplan–Meier curves. Two-tailed P≤

0.05 was considered significant.

Results

Study population and stratified random
sampling

Based on our inclusion criteria, 435 patients were finally

enrolled. Two hundred and eighty-nine (66.4%) were female.

Median age was 54 years (IQR, 47–61). Average body mass

index (BMI) was 24.9 (IQR, 22.7–26.7). Sixty-seven patients

had BMI >28. One hundred and eighty-four patients (42.3%)

had a history of hypertension; 19 (4.4%) had a history of

subarachnoid hemorrhage. Seventy-one patients were current

or former smokers. Ninety-three aneurysms were non-saccular.

Aneurysm location was ICA in 335, vertebral artery in 86,

basilar artery 12, middle cerebral artery in 10, and other in 10.

Average aneurysm size and neck width were 12.97 ± 8.17mm

and 8.98 ± 6.24mm, respectively. As of July 2021, 69 ISS

cases (15.2%) had been identified; follow-up was available in

66. Among these, 20 (30.3%) were symptomatic. Symptoms

included moderate to severe headache (9/20), dizziness or

vertigo (5/20), contralateral limb movement disorder (3/20),

visual impairment (2/20), neurological deficit (1/20), visual field

defect (1/20), and cognitive impairment (1/20). Poor outcome

(modified Rankin scale score ≥3) was experienced by five

patients (7.6%): one ocular motility disorder, two ISS-related

deaths, and two deaths unrelated to ISS (one aneurysm rupture

and one acute myocardial infarction).

Random stratification of the cohort resulted in placement of

614 patients (307 stenosis cases) in the training set and 91 (14

stenosis cases) in the test set.

Feature selection

To find the best combination of characteristics, a GA-

based program was developed and used; three iterations were

performed over the 92 variables in the training set to yield

nine predictors (age, obesity, balloon angioplasty, operation

duration, size ratio, neck ratio, ICA location, platelet-large

cell ratio, and red cell volume distribution width [RDW-

CV]). Then we applied the RFE algorithm to the training

set and identified 12 predictors (age, height, weight, BMI,

obesity, recurrent aneurysm, balloon angioplasty, aneurysm

morphology, bifurcation location, ICA location, neck ratio,

RDW-CV). Finally, we used the six common features (age,

obesity, balloon angioplasty, ICA location, neck ratio, and

RDW-CV) in GA and RFE to train the model.

Cross validation and hyperparameter
tuning

After 10-fold cross validation and hyperparameter tuning,

the best hyperparameters were identified. Model performance

is illustrated in Figures 2A,B. In the training set, the XGB

model had the highest mean AUC-ROC (0.899; 95% confidence

interval [CI], 0.897–0.902), followed by the RF model (0.870;

95% CI, 0.868–0.871), SVMmodel (0.778; 95% CI, 0.775–0.780),

ENT model (0.773; 95% CI, 0.769–0.776), and GNB model

(0.772; 95% CI, 0.768–0.775). In the validation set, the XGB

model also had the best mean AUC-ROC (0.881; 95% CI, 0.861–

0.900), followed by the RF model (0.852; 95% CI, 0.831–0.874),

SVM model (0.769; 0.742–0.797), ENT model (0.761; 95% CI,

0.733–0.790), and GNB model (0.761; 95% CI, 0.736–0.785).

Then, we tested the models in the test set (Figure 2C). We also

tested the performance of logistics regression (LR) (Figure 2D).

Though the performance was inferior in cross validation, the

ENT model had the highest AUC-ROC in the test set (0.740),

followed by the RF model (0.709), SVM model (0.664), XGB

model (0.630) and GNB model (0.582). LR had an AUC-ROC

of 0.697, which was lower than ENT and RF. The confusion

matrix was shown in Table 1. ENT model is a combination

of lasso regression and ridge regression, which add regular

terms to logistics regression to avoid overfitting. Given that, we

believed that ENTmodel is better than LR and can represent the

performance of LR.

To exclude the influence of randomness in the process

of assigning patients to the training and test sets, we applied

Monte Carlo cross-validation and recorded the AUC-ROC,

best Youden index, thresholds at best Youden index, and
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FIGURE 2

Evaluation of machine learning model performance in the training, validation, and test sets. (A) Comparison of the area under the receiver

operating curve of di�erent models in the training set. (B) Comparison of the area under the receiver operating curve of di�erent models in the

validation set. (C) Comparison of the area under the receiver operating curve of di�erent models in the test set. (D) The receiver operating curve

of logistics regression. (E) Box plot of model area under the receiver operating curves in each loop. *Tukey honestly significant di�erence (HSD)

test p < 0.05 between the models; ***Tukey HSD test p < 0.005 between the models; nsTukey HSD test p > 0.05 between the models. (F)

Kaplan–Meier curves of in-stent stenosis rates for high-risk patients (predicted value > optimal threshold) and low-risk patients (predicted value

< optimal threshold). ENT, elastic net; SVM, support vector machine; XGB, Xgboost; GNB, Gaussian Naïve Bayes; RF, random forest; LR, logistics

regression.
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corresponding sensitivity and specificity in each loop. The ENT

model remained the optimal model (0.709; 95%CI, 0.697–0.721)

with a mean sensitivity of 77.9% (95% CI, 75.1%−80.6%) and

specificity of 63.4% (95% CI, 60.8%−65.9%), followed by the

RF model (0.687; 95% CI, 0.674–0.700), XGB model (0.680;

95% CI, 0.668–0.693), GNBmodel (0.675; 95% CI, 0.661–0.689),

and SVM model (0.670; 95% CI, 0.657–0.683; Table 2). One-

way analysis of variance and Tukey HSD multiple comparison

showed that the ENT model’s mean AUC-ROC significantly

outperformed the SVM model, XGB model, and GNB model

(p = 0.001, p = 0.018, p = 0.003, respectively); however, the

mean AUC-ROC did not significantly differ between the ENT

and RF models (p= 0.131; Figure 2E).

Model explanation

Spearman correlation testing showed a significant positive

correlation between the predicted scores and degree of stenosis

(r = 0.418, p < 0.001). The ENT model was applied to all

patients to obtain predicted scores. All patients were grouped

according to risk (low-risk and high-risk groups) according

to the optimal threshold determined in Monte Carlo cross-

validation of Cox regression analysis. Cox regression showed

that ISS risk was significantly higher in the high-risk group than

the low-risk group (hazard ratio 3.41; 95% CI, 2.03–5.73, p <

0.001; Figure 2F).

Next, we used SHAP analysis to interpret the ENT model.

Figure 3A shows the importance of the different variables. ICA

location had the greatest influence on the model, followed by

balloon angioplasty, neck ratio, obesity, RDW-CV, and age.

Figure 3B shows the influence of feature values on model

prediction. The X-axis represents the influence on the model

(SHAP value), the right of the X-axis represents the positive

influence, and the left of the X-axis represents the negative

influence. The color of the point represents the value of the

feature: red represents high feature value and blue represents

low feature value. Therefore, balloon angioplasty and increasing

neck ratio are risk factors for ISS, while ICA location, obesity,

increasing RDW-CV, and increasing age are protective factors.

Figure 3C shows the interpretation of SHAP analysis for two

individual patients. Case 1 is a patient without ISS in whom the

model correctly predicted no stenosis. The influence of various

factors on model prediction is shown in the figure. Case 2 is a

patient with ISS in whom the model correctly predicted stenosis.

Discussion

We developed a machine learning-based prediction

model that can predict ISS in intracranial aneurysm patients

who undergo PED placement. Six factors predict ISS: ICA T
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location, balloon angioplasty, neck ratio, obesity, RDW-

CV, and age. Among the five machine learning models,

the ENT model had best performance as measured by

AUC-ROC, sensitivity, and specificity. Moreover, the result

of Monte Carlo cross-validation strongly demonstrated

the efficacy and robustness of the machine learning

model. We also found a positive correlation between

predicted scores and ISS grade. Using the optimum

threshold from Monte Carlo cross-validation, we stratified

patients according to risk of ISS and showed that the

model’s risk stratification was accurate. Finally, we utilized

SHAP analysis to perform explanations for the machine

learning model.

To our knowledge, this is the first prediction model to

predict ISS in patients with intracranial aneurysms treated using

a flow diverter. ISS is a common complication of flow diverter

placement. Sweid et al. reported a 6.3% incidence and noted

that ISS was the most common complication (17). A meta-

analysis reported an 8.8% incidence (8). In our study, ISS caused

symptoms in 30.3% of affected patients and 7.6% experienced a

poor outcome. However, most had a good outcome and most

patients with ISS were asymptomatic. In addition, ISS in most

patients remain stable or even improved. These findings are

consistent with previous studies (8–14). Reversible stenosis may

be associated with thrombosis (25). Flores-Milan et al. reported

an ISS-related death from a stroke secondary to cerebral artery

occlusion (11). It remains unclear whether delayed thrombosis,

ISS, and patient symptoms are related.

In view of the high incidence and potential harms of ISS,

predicting its occurrence, identifying risk factors, and stratifying

patients according to risk are necessary to enable better patient

care and prevent complications. The ability to predict ISS

would enable preoperative evaluation of postoperative risk,

which would assist treatment decision making. Furthermore,

in patients with low risk of ISS, unnecessary follow-up

could be avoided, while high-risk patients would be closely

observed and treated appropriately to reduce the risk of acute

ischemic complications.

In contrast with the traditional and regular machine-

learning based prediction models, our model has several

advantages, namely identification of six ISS predictors, use

of Borderline-SMOTE in model training, and use of feature

selection. We identified six predictors of ISS: ICA location,

obesity, increasing RDW-CV, and increasing age were protective

factors, while balloon angioplasty and increasing neck ratio

were risk factors. Predictors found in previous studies are

consistent with ours. Brinjikji et al. (26) found a trend toward

higher ISS rates among younger patients; all ISS cases in their

study occurred in patients under 50 years of age (2/793).

Sweid et al. (17) reported that increasing age is negatively

associated with ISS (odds ratio 0.9; p = 0.02). Higher rates of

ISS in younger individuals have also been reported in stent-

assisted coiling and coronary artery stenting studies (27–29);
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FIGURE 3

Shapley additive explanation (SHAP) analysis of the elastic net (ENT) model. (A) Association between the SHAP value and feature value. (B)

Feature importance (mean |SHAP value|) of each predictor. (C) Two ENT model prediction examples. ICA, internal carotid artery; NR, neck ratio;

RDWCV, coe�cient of variation of red cell volume distribution width.

these higher rates have been attributed to more intense intimal

hyperplasia within the device in younger individuals. Sweid

et al. (17) also reported balloon angioplasty as an ISS predictor

(odds ratio 4.2; p = 0.03). John et al. (9) found a higher

rate of balloon angioplasty in ISS patients (40 vs. 2%), but

they did not conduct statistical inference because of the small

number of cases. Balloon angioplasty may result in endothelial

damage that induces intimal hyperplasia. This hyperplasia may

then progress and eventually cause ISS. In our study, ICA

position was negatively associated with ISS, which contradicts

the results of Chalouhi et al. (13). The inconsistency may be

due to confounding factors. In our cohort, aneurysms in the

posterior circulation were mostly fusiform, and those located

on the ICA were saccular. Therefore, confounding of location

and morphology may have been present. Notedly, Potts et al.

(14) reported that fusiform morphology is an ISS predictor
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for aneurysms in the anterior circulation. Srinivasan et al. (10)

reported similar findings. The fact that fusiform aneurysms may

need a longer construct or placement of multiple overlapping

devices may explain this, as either may cause more damage to

the vascular endothelium. Moreover, fusiform aneurysms tend

to have a larger neck width, which take longer to completely

endothelialize. Increasing neck ratio was an ISS risk factor in

our study, which is in agreement with the findings of Potts

et al. (14) Interestingly, obesity (BMI>28) was protective against

ISS. In a previous percutaneous coronary intervention meta-

analysis, West et al. (30) reported that lower BMI (p = 0.04)

was associated with restenosis, which is in accordance with our

findings. Although obese patients in our study had larger artery

diameter than patients with BMI < 28, the difference was not

significant (3.90 vs. 3.69mm; p = 0.10, Mann–Whitney U-test).

Future studies should elucidate the reason for this finding and

explore the relationship between BMI, arterial diameter, and

ISS risk. Our study found increasing RDW-CV was a protective

factor, which has not been previously reported. We do not yet

know the exact mechanism linking RDW-CV and ISS; however,

removing RDW-CV from the model will cause a 0.02–0.05

decrease in AUC-ROC. Further work is required to establish the

validity of RDW-CV in ISS prediction.

Datasets in classification of diseases or complications

are often imbalanced between the numbers of negative and

positive cases. Because models based on such datasets may

be inaccurate, balancing methods should be implemented.

The application of Borderline-SMOTE in our study

significantly improved model performance in predicting

positive cases; however, it “forged” some positive cases

in the strive to balance, which could be controversial in

medicine. Therefore, we only used Borderline-SMOTE in the

training set; real test data was used to validate the model in

model testing.

Feature selection is an important process in machine

learning. Selecting the proper combination of features to

achieve a balance between model performance and efficiency is

difficult but of great significance. Classical methods of feature

selection, such as filter-based methods, which include univariate

regression, variance threshold, and maximal information

coefficient, have difficulty solving multicollinearity. Therefore,

we developed a GA-based feature selection program. A GA

simulates the progress of biological evolution. It starts with

some chromosomes and individuals (representing a possible

combination of features), evaluates the fitness of individuals

(AUC-ROC of the validation set), and selects individuals with

better fitness to survive, while others will be mutated or

crossed over. This process continues until fitness improvement

is below the threshold or the maximum number of iterations

is reached. In principle, a GA is a random search algorithm.

It is possible that it finds a solution that is optimal locally

but not globally that is adequate for predicting. We entered

92 variables, iterated over them, and obtained a combination

of nine variables. RFE was further used to validate the genetic

algorithm results. RFE is a greedy algorithm in essence. It

can also achieve a locally optimal solution by removing the

most unimportant features repeatedly until the desired number

of features is reached. After RFE, there were 12 remaining

features, some of which coincided with the GA algorithm,

thus verifying the reliability of the GA algorithm. Finally, we

used six common features of RFE and GA results to train

the model.

Our study has several limitations. First, the study was

retrospective in design and conducted in a single center, which

may limit the generalizability of our model. A multicenter

prospective study is needed in the future for model validation.

Second, our dataset had a relatively low number of ISS patients.

Although we used Borderline-SMOTE to address this problem,

better model performance could be achieved if more ISS cases

were available. Third, stenosis measurement was manual and

based on different angiographic imaging modalities; therefore,

measurement error may have been introduced. However, the

mean values of measurements obtained by three different

neurointerventionalists were used. In the future, application

of deep learning to aneurysm morphology measurement may

reduce such errors. Fourth, because of the large number of

missing values, we removed all variables in which >30% of the

values were missing and used the random forest method to

impute missing values in the remaining variables. Fifth, machine

learning models are difficult to interpret, which limits their

application in medicine. We used SHAP to further illustrate

our results. SHAP analysis can provide an explanation for

every prediction, which can help clinicians understand model

decision making and facilitate application of machine learning

models. Sixth, we did not include the length and the diameter

of PED in the model because of data deficiency. Longer stent

has larger area of contact between the stent and the blood

vessels which may result in more damage to the vascular

endothelium. Seventh, Exclusion of patients with subarachnoid

hemorrhage may weaken the generalization of the results. A

subgroup analysis between ruptured aneurysms and unruptured

ones may help solve the problem, but we did not have

sufficient data.

Conclusion

Our machine learning model can predict ISS after PED

placement for treatment of intracranial aneurysms and has the

potential to improve patient outcomes.
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