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Influence of methadone on the
anticonvulsant e�cacy of
valproate sodium gabapentin
against maximal electroshock
seizure in mice by regulation of
brain MDA TNF-α

Ali Moradi Jafari and Majid Hassanpourezatti*

Department of Biology, Basic Sciences School, Shahed University, Tehran, Iran

Methadone is the most frequently used opioid therapy worldwide, with

controversial e�ects on oxidative stress homeostasis. This study investigated

the e�ects of intraperitoneal (i.p.) co-administration of methadone (0.1, 0.3,

1, and 3 mg/kg) and valproate sodium (300 mg/kg) or gabapentin (50 mg/kg)

in the mice maximal electroshock (MES)-induced seizure model. The adverse

e�ect of drugs was assessed using the chimney test. The levels of tumor

necrosis factor-alpha (TNF-α) and malondialdehyde (MDA) contents were

measured in mice brains after a single seizure. Administration of methadone

alone resulted in a significant reduction in the duration of hind limb extension

(HLE) than that in the control group. Methadone pretreatment at doses of

0.1 and 0.3 mg/kg i.p. decreased, and at doses of 1 and 3 mg/kg i.p. had an

increasing e�ect on anticonvulsant e�cacy of gabapentin. Pretreatment with

all doses of methadone significantly decreased the valproate anticonvulsive

e�cacy. At doses of 1 and 3 mg/kg i.p. methadone per se increased brain MDA

levels after MES-induced seizure. Administration of methadone (0.3 mg/kg i.p.)

enhanced and at 3 mg/kg decreased gabapentin e�ect on brain MDA level,

but their co-treatment did not lead to further increase in MDA. Methadone

at 0.3–3 mg/kg enhanced the e�ect of sodium valproate on MDA levels in

the brain, but at all doses significantly potentiated its e�ect on brain TNF-α

levels. The drugs did not produce any side e�ects on motor coordination in

experimental animals. In conclusion, methadone showed di�erent e�ects on

anticonvulsant actions of gabapentin and valproate through regulation of brain

levels of MDA and TNF-α.
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Introduction

Despite acceptable progress, complete seizure control

is not achieved in >30% of patients with epilepsy (1).

Polytherapy is a promising approach recently proposed to

treat resistant epilepsy and the actual prevention of the

disease (2). Animal models were used to preselect suitable

combinations of drugs with anticonvulsants that could finally

be evaluated in clinics. Targeting endogenous opioid systems

due to their anticonvulsant and neuroprotective properties

has been proposed as a new therapeutic approach for

epilepsy treatment (3). The literature review indicated that

opioid drugs, either directly or in combination with other

anticonvulsant medications, might lead to contradictory results

in terms of seizure control (4–6). It was suggested that the

accumulation of cytokines and lipid peroxidation products in

the brain might lead to abnormal and excessive simultaneous

firing in a group of neurons and epilepsy (7). Therefore,

exploring the role of lipid peroxidation and cytokines in the

regulation epilepsy-related processes may help us understand

the molecular mechanisms behind epilepsy and also predict

the success of this combination therapy in the treatment of

epilepsy (8).

Previously, the combination of opioids and gabapentin

prescription was used to treat pain beyond the usual medical

condition treatment, and valproate was used as an analgesic

adjuvant to reduce the development of morphine side effects

(9, 10). The opioid agonists have been recognized for having

potential for both proconvulsant and anticonvulsant effects

in experimental models of epilepsy (11–14). Methadone is a

synthetic mu receptors agonist used for opioid maintenance

therapy. Furthermore, it has several pharmacological activities

in addition to opioid activity, such as the antitumor, anti-

inflammatory, and antioxidant activities (15, 16). This

compound, as a neuromodulator, can suppress intrinsic nerve

excitability (17, 18). It has also shown inhibitory effects on

both T- and L-type calcium channels in neuroblastoma cells

(19, 20). In addition, prenatal exposure of neonate rats with

methadone caused a reduction in the levels of GABA proteins

in the brain, reversible inhibitory effect on NMDA receptors

(21), and acts as a regulator of excitation/inhibition balance

in neuronal networks (22–25). GABA proteins are proteins

that are directly connected through the intracellular domain to

GABA-A receptors and regulate the membrane traffic of these

receptors (26).

It prolonged the inactivation period of the neuronal sodium

channel and suppressed the action potential firing in peripheral

nerves (26, 27). It can be expected that the drug will also

be able to influence the anticonvulsant activity of these

drugs. So, studying the effect of methadone in combination

with gabapentin or valproate in experimental model could

significantly increase our knowledge about the mechanisms

underlying seizure control in the brain.

Although the pathogenesis of epilepsy has not been fully

clarified, the activation of neuroinflammatory and oxidative

stress is an important perpetuating factor for epileptogenesis in

drug-resistant patients (28). Tumor necrosis factor-alpha (TNF-

α), one of the inflammatory markers, is produced and released

from epileptic neurons (29). It induces a rapid and persistent

decrease in inhibitory synaptic strength and downregulates

GABA receptors in mature mouse hippocampal neurons (30).

Several lines of evidence suggest that TNF-α potentiates

excitatory transmission in both physiological and pathological

conditions (31). Indeed, TNF-α plays an essential role in the

maximal electroshock (MES)-induced seizure model (32). It was

shown that lipid peroxidation products, together with TNF-α,

lead to the development of epilepsy by induction of irreversible

damage to phospholipids in neuronal cells (33). It has been

shown that malondialdehyde (MDA), a lipid peroxidation

product, can modify neuronal excitability by regulating the

balance between excitatory and inhibitory neurotransmitters

in the brain (34). Thus, there is a need for more in-depth

knowledge about oxidative stress and inflammatory factors in

the pathogenesis of seizures. Further analysis of these factors

may better address the effects of anticonvulsant drugs on

preventing seizure.

Accordingly, we hypothesized that methadone

administration might improve the response to anticonvulsant

therapy. We also examine the possible role of brain MDA and

TNF-α in these interactions. The effects of treatments on motor

coordination were also investigated using the chimney test.

Materials and methods

Experimental procedures

Drugs

Methadone hydrochloride was purchased from TEMAD

Company, Tehran, Iran. Sodium valproate and methadone

were received as gifts from Raha Daru and Meher Daru

pharmaceutical companies, Tehran, Iran, respectively. Drugs

were dissolved in phosphate-buffered saline (PBS) and serially

diluted to require doses. Methadone, sodium valproate, and

gabapentin were injected intraperitoneally (i.p.) 30, 45, and

60min, respectively, before the MES-induced seizures based on

previous data in the literature (35–37).

Animals

Adult male NMRI mice, procured from the Animal House

of Shahed University, were used. The animals were housed

four per cage in standard cages under environmental conditions

with temperature: 22 ± 1◦C; humidity: 60 ± 5%; reversed

12-h light/dark cycle with lights turned on at 19:00, and free

access to food palate and water ad libitum. Mice were only

used once in each experiment, and a new group of mice was
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used for each dose and drug tested. The experiments were

performed from 08:00 to 14:00. All experiments were performed

in accordance with the NIH Guide for the Care and Use of

Laboratory Animals (NIH, 1996). The research protocol was

approved by the local ethical committee of Shahed University

with the code number IR.SHAHED.REC.1400.072. An effort was

made to reduce animal numbers and suffering.

Behavioral evaluations

MES-induced seizure model

Electroconvulsions were generated by alternating

current (10Hz, 37.2mA, and 0.2 s) delivered via ear-clip

electrodes connected to a stimulator apparatus (Borj Sanat Co.

Tehran-Iran) as described by Jahani et al. (38). Electrodes were

moistened with saline solution before each application, and

the mice were observed in the duration of hind limb extension

(HLE) in mice. The reduction in HLE duration was an index

of anticonvulsant success. The percentages of protection were

calculated according to the following formula:

Protection % = 100–(number of mice showing HLE/total

number of mice in each group)× 100 (35).

The chimney test

Acute adverse effects produced by the drugs alone and

in combination were assessed using the chimney (motor

performance) test (37). In this test, mice had to climb back up

a vertical cylinder (30 cm in length and 3 cm in diameter) with

a rough surface inside. The inability of the mouse to climb the

cylinder in 60 s was considered as impaired locomotor capacity.

Treatment plan

In experiment 1, the duration of HLE was assessed after the

administration of different doses of methadone (0.1, 0.3, 1, and

3 mg/kg i.p.), and its vehicles after MES. The methadone doses

were chosen according to a previous report (22).

In experiment 2, the duration of HLE was assessed after the

administration of saline (5ml/kg i.p.), valproate (300mg/kg i.p.),

and gabapentin (50 mg/kg i.p.) alone, after MES.

In experiment 3, the duration of HLE was determined

after the administration of methadone + valproate sodium and

methadone + gabapentin. Mice were first treated with saline

or methadone before administration of valproate or gabapentin,

and MES (22, 36).

Each animal was individually placed in the center of the

plexiglass chamber during each trial.

TABLE 1 E�ect of methadone, gabapentin, and sodium valproate, and

their combination pretreatment on MES-induced seizures in mice.

Treatment

(mg/kg)

Duration (Mean ± SEM)

of tonic hind limb

extension (s)

Percent of

protection

Cont. 14.65± 0.3 0

GBP (50) 8.05± 0.57*** 45

Val (300) 6.9± 0.61*** 53

Met (0.1) 15.51± 0.31 0

Met (0.3) 11.13± 0.16*** 24

Met (1) 15.7± 0.11 0

Met (3) 12.7± 0.5* 13.3

Met (0.1)+ GBP (50) 18.73± 0.84**## 0

Met (0.3)+ GBP (50) 13.64± 1.5## 6.8

Met (1)+ GBP (50) 6.3± 0.12**## 56.9

Met (3)+ GBP (50) 6.35± 0.19**## 56.9

Met (0.1)+ Val (300) 13.86± 1.87$$ 0

Met (0.3)+ Val (300) 15.19± 2$$ 24

Met (1)+ Val (300) 18.67± 2.1$$ 0

Met (3)+ Val (300) 16.25± 3$$ 13.3

Methadone (0.1, 0.3, 1, and 3 mg/kg i.p.), valproate sodium (300 mg/kg i.p.), and

gabapentin (50 mg/kg i.p.) were injected before MES-induced seizure. Values are

expressed as mean ± SEM; statistically significant test for comparison was done by

ANOVA, followed by t-test (n = 10). Con, control; GBP, gabapentin; MES, maximal

electroshock seizure; Met, methadone; Val, valproate sodium.
*p < 0.05, **p < 0.01, ***p < 0.001 compared to the saline-treated control group. ##p <

0.001 compared to the MES group using one-way ANOVA followed by Tukey’s test as a

post-ANOVA test.

Biochemical measurements

At the end of the experiments, animals were sacrificed

by decapitation under deep anesthesia. Next, the brain was

immediately removed, weighed, and washed with 50mM (pH

7.4) ice-cold PBS solution. Then, it was placed in 1/5 (w/v)

PBS containing a protease inhibitor cocktail and homogenized

for 30 s with 20-s intervals using an ultrasonic homogenizer

(Hielscher, UP200H, Germany). The samples were centrifuged

at 10,000 rpm for 10min at 4◦C (38), and supernatants were

used to determine MDA, TNF levels, and protein contents.

Measurement of brain tissue MDA and
TNF-α

The tissue level of MDA and TNF-α contents was measured

in the brain homogenates of mice after a single seizure with

commercial kits (Karmania Pars Gene Company, Kerman,

Iran), as previously described (29, 39). The concentrations

of MDA and TNF-α were measured in brain homogenates

that were prepared immediately after MES seizure. Protein

concentration in brain homogenates was determined using

Bradford’s method (Karmania Pars Gene Company, Kerman,
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Iran). MDA concentration is expressed as nmol/mg protein

tissue, and brain TNF-α levels are expressed as pg/mg protein.

Statistical analysis

Results are expressed as HLE and percentage protection and

mean ± SEM where applicable. The data were analyzed by

one-way ANOVA and Tukey’s post-hoc test (p ≤ 0.05) using

GraphPad Prism 5.0. Results obtained with the chimney test are

presented as the percentage of impaired mice in groups of 10

animals and were compared with Fisher’s exact probability test.

Statistical significance for biochemical assays was determined

using two-way ANOVA for multigroup comparisons.

Results

E�ect of methadone on MES-induced
seizures in mice

Table 1 shows the significant effects of methadone (0.1,

0.3, 1, and 3 mg/kg i.p.), valproate sodium (300 mg/kg

i.p.), and gabapentin (50 mg/kg i.p.) acute administration on

MES-induced seizure (one-way ANOVA; F6, 63 = 0.8806,

p < 0.0001). Tukey’s multiple-comparisons post-hoc analysis

showed that the duration of HLE was significantly (p < 0.001)

reduced by administration of methadone (0.3 and 3 mg/kg

i.p.) with protection percentage of 24 and 13.3, respectively.

Treatment with sodium valproate (300 mg/kg) and gabapentin

(50 mg/kg) alone decreased duration of HLE, and provided 53

and 45% protection against MES-induced seizure in mice.

E�ect of methadone in combination with
gabapentin or valproate on MES-induced
seizures

Effects of methadone on anticonvulsant effects of gabapentin

are shown in Table 1. Two-way ANOVA, including methadone

(0.1, 0.3, 1, and 3 mg/kg) and gabapentin (50 mg/kg),

revealed a significant effect (factor methadone, F4, 90 =19.36,

p < 0.001; factor gabapentin; F1, 90 = 31.91, p < 0.001;

factor methadone× gabapentin, F4, 90 = 19.3, p = 0.0001.

Post-hoc analyses showed that methadone at doses of 0.1 and

0.3 mg/kg significantly (p < 0.001) decreased the effect of

gabapentin on HLE duration, while at doses of 1 and 3 mg/kg

it caused increased anticonvulsant effect of the gabapentin

significantly (p < 0.001) with protection percentage of 56.9 and

56.9% (Table 1).

Moreover, the results (Table 1) showed a significant

interaction between methadone (0.1, 0.3, 1, and 3 mg/kg) and

valproate sodium (300 mg/kg) on MES (two-way ANOVA;

TABLE 2 E�ect of methadone, gabapentin, and valproate sodium

pretreatment per se, and combined therapy on motor coordination of

mice in the chimney test.

Treatments (mg/kg) Time (s) ± SEM

Con (Saline) 26.3± 1.73

GBP (50) 24+ 2.8

Val (300) 26± 2

Met (0.1) 22± 3

Met (0.3) 24± 1.9

Met (1) 25± 2.5

Met (3) 27± 3.2

Met (0.1)+ GBP (50) 35± 5

Met (0.3)+ GBP (50) 38± 5.2

Met (1)+ GBP (50) 35± 6

Met (3)+ GBP (50) 40± 4

Met (0.1)+ Val (300) 29± 3

Met (0.3)+ Val (300) 28± 3

Met (1)+ Val (300) 25± 3

Met (3)+ Val (300) 24± 3

Each value represents the mean ± SEM obtained from 10 mice. Statistical analysis:

Student’s t-test. The compounds and the vehicle were administered i.p. 60min before

the assay. Con, control; GBP, gabapentin; MES, maximal electroshock seizure; Met,

methadone; Val, valproate sodium.

factor methadone, F4, 90 = 4.98, p <0.001; factor valproate

sodium, F1, 90 = 5.69, p < 0.001, factor methadone ×

valproate sodium, F4, 90 = 6.2, p = 0.0002). Further analyses

showed that methadone at all doses significantly (p < 0.05)

reduced the duration of the convulsions and protection

percentage of valproate sodium (300 mg/kg) against the

MES-induced convulsions.

E�ects of di�erent doses of methadone
alone or in combination with valproate or
gabapentin on motor coordination of
mice after application of MES

The influence of the investigated compounds on motor

coordination in mice is presented in Table 2. Our results showed

that treatments of methadone both alone and combined with

anticonvulsants had no impact on motor coordination in mice.

Influence of pretreatment with di�erent
doses of methadone, gabapentin, and
valproate per se on the brain MDA level in
the mice after MES-induced seizure

There were significant differences in the mean brain MDA

levels between different groups (p < 0.05). The results showed

that brain MDA levels increased significantly (p < 0.001) after
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FIGURE 1

Changes of MDA (nmol/mg protein) in the brain of mice in di�erent treatment groups: (A) changes of brain MDA level in the saline-treated

control, 50 mg/kg i.p. gabapentin (GBP) and 300 mg/kg i.p. valproate (Val)-treated groups after MES-induced seizure; (B) changes of brain MDA

level of mice after treatment with (0.1, 0.3, 1, and 3 mg/kg i.p.) Met and MES-induced seizure; (C) changes of brain MDA level treated with GBP

(50 mg/kg i.p.) per se and di�erent doses of Met plus GBP before MES; (D) changes of brain MDA level treated with valproate (Val) (300 mg/kg

i.p.) per se and di�erent doses of Met plus Val before MES. Data are expressed as mean ± SEM. N = 10. **p < 0.01compared with the normal

group, $$p < 0.01 treatments vs. vehicle + MES, and ##p < 0.001 compared with the saline + MES group using one-way ANOVA followed by

Tukey’s test as a post-ANOVA test. Cont, control; GBP, gabapentin; Met, methadone; Val, valproate sodium; MES, maximal electroshock seizure.

MES challenge compared to the control group. Pretreatment

with gabapentin (50 mg/kg i.p.) or valproate sodium (300

mg/kg i.p.) per se significantly reduced brain level of MDA

after MES administration (Figure 1A). Brain MDA content was

significantly (p< 0.01) decreased following injection of all doses

of methadone compared to vehicle-treatedMES-induced seizure

animals (Figure 1B).

Influence of combined therapy with
methadone and gabapentin or valproate
on the brain MDA level in the mice after
MES-induced seizures

Methadone at doses of 0.1 and 0.3 mg/kg i.p. decreased the

reducing effect of gabapentin onMES-induced increase of MDA

levels. But at higher doses it increased the suppressive effect of

gabapentin on the increase in MDA level induced by MES in the

brain (Figure 1C). Methadone at doses of 0.3, 1, and 3 mg/kg

i.p. significantly increased the suppression of brain MDA levels

produced by valproate after MES-induced seizures (Figure 1D).

Influence of treatment with di�erent
doses of methadone, gabapentin, and
valproate per se on the brain TNF-α level
in MES-induced seizure in mice

MES-induced seizures increased TNF-α levels significantly

(p < 0.001) in mice brains compared to the control group.

Treatment with both gabapentin (50 mg/kg i.p.) and valproate

sodium (300 mg/kg i.p.) per se significantly (p < 0.01) prevented

MES-induced TNF-α increase in the brain (Figure 2A).

Treatment with all doses of methadone before MES-induced

seizures suppressed the increase in the TNF-α levels in brain

tissue (Figure 2B).

Influence of combination therapy with
methadone and gabapentin or valproate
sodium on brain TNF-α level in mice
following MES-induced seizure

Treatment with methadone significantly (p < 0.01)

increased the suppressive effect of gabapentin on TNF-α level in
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FIGURE 2

Changes of TNF-α (pg/mg protein) in the brain of mice in di�erent treatment groups: (A) changes of brain TNF-α level in the saline-treated

control, 50 mg/kg i.p. gabapentin (GBP) and 300 mg/kg i.p. valproate (Val)-treated groups after MES-induced seizure; (B) changes of brain TNF-α

level of mice after treatment with (0.1, 0.3, 1, and 3 mg/k i.p.) Met and MES-induced seizure; (C) changes of brain TNF-α level treated with GBP

(50 mg/kg i.p.) per se and di�erent doses of Met plus GBP before MES; (D) changes of brain TNF-α level treated with valproate (Val) (300 mg/kg

i.p.) per se and di�erent doses of Met plus Val before MES. Data are expressed as mean ± SEM. N = 10. **p < 0.01compared with the normal

group, $$p < 0.01 treatments vs. vehicle + MES, and ##p < 0.001 compared with the saline + MES group using two-way ANOVA followed by

Tukey’s test as a post-ANOVA test. Cont, control; GBP, gabapentin; Met, methadone; Val, valproate sodium; MES, maximal electroshock seizure.

the brain only at the dose 1 mg/kg (Figure 2C), while methadone

at all doses increased the suppressive effect of valproate on the

TNF-α level in the brain of mice receiving MES (Figure 2D).

Discussion

Methadone is a drug used to treat morphine dependence

that has been reported to show additional therapeutic action

on inflammation and oxidative stress (40, 41). It is interesting

that, in addition to opioid receptor agonist properties,

methadone acts as a sodium and potassium channel blocker and

NMDA receptor antagonist (24, 26). Both proconvulsant and

anticonvulsant effects have been reported for NMDA receptor

antagonists and potassium channels (42–44). Therefore, this

study was designed to evaluate the potential impact of

methadone alone or combined with two antiepileptic drugs on

epilepsy andmeasure the amount of a lipid peroxidation product

and cytokines in the brain.

In this study, we showed that pretreatment of mice with

methadone resulted in a dual effect on the duration of the

HLE in MES-induced seizures. Methadone at doses of 0.3

and 3 mg/kg significantly reduces this parameter compared

to the control group. The percentage of seizure inhibition

by methadone is 24 and 13.3% in 0.3 and 3 mg/kg dosage,

respectively, compared to the control group. This effect is

probably pharmacodynamic as there is no evidence that

opioids affect the brain concentration of two antiepileptic

drugs. This shows that methadone induced a U-shaped change

in seizure suppression in comparison to the control group.

These findings are consistent with a previous report that

opioid agonists have a biphasic effect on seizure modulation

(45). Furthermore, this study showed that the suppression of

MES-induced seizures produced by gabapentin and valproate

was affected by pretreatment with methadone. Therefore, we

identified a new way to evaluate the relationship between

opioids and anticonvulsants for either therapeutic purposes or

drug interactions.

Similarly, a previous study has reported a dose-dependent

effect of opioids in pentylenetetrazole (PTZ)-induced seizures,

which supports the idea that methadone, as an opioid agonist,

has a dual effect of inhibiting electrically induced seizures

(46). Some publications are consistent with our results showing

that opioid agonists have controversial dose-dependent effects

on seizure activity in different animal seizure/epilepsy models

(47–50). An earlier study has shown a reduction in the

severity of PTZ-induced seizures after dynorphin treatment in

mice, supporting our finding (51). Available experimental data

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.920107
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Moradi Jafari and Hassanpourezatti 10.3389/fneur.2022.920107

indicated that opioid agonists, regardless of their action on the

seizure threshold, showed potential for changing the effects of

antiepileptic drugs (52).

In contrast, many experiments have shown that the

interaction of opioid agonists with the agents has shown

an anticonvulsant effect (53, 54). Therefore, the association

between opioid receptor agonists and anticonvulsant drugs

is balanced between increasing and decreasing effects on the

seizure threshold. However, only a few studies examined the

interaction between opioid agonists, anticonvulsant drugs, and

possible molecular mechanisms of the disease. Therefore, we

evaluated the effect of methadone treatment on the efficacy of

two anticonvulsant drugs and the possible mechanisms involved

in these conditions.

The induction of seizure by MES represents an experimental

model of tonic–clonic seizures with similarities to human

seizures (55, 56). The model has also shown high sensitivity to

compounds affecting opioidergic mechanisms (57). Prolonged

tonic phase of the seizure has been found to affect antioxidant

enzyme activity and increase lipid peroxidation in the

brain (58, 59).

In this study, methadone administration resulted in (1)

reduced duration of HLE; (2) increased percentage of protection

against electroshock-induced seizure; (3) different effects on

the efficacy of gabapentin and valproate; (4) attenuation of the

brain MDA and TNF-α levels; and (5) no adverse effects on

motor coordination.

The findings of this study are in concordance with an

earlier study in which combined treatment with a plant extract

with anti-inflammatory and antioxidant activity and valproate

suppressed the development of seizures more effectively

in patients with epilepsy who were refractory to standard

antiepileptic treatment (60). Similarly, it was reported that a

plant extract containing antioxidants enhanced the antiseizure

effect of carbamazepine in an experimental model of acute

seizures (61).

To explain the observed alteration in the antiseizure effects

of gabapentin and valproate by methadone, one should consider

the molecular mechanisms of action of these drugs on brain

neurotransmitters and neuronal ion channels under modulatory

control of MDA and TNF-α. Many studies have shown that an

increase in lipid peroxidation levels in the brain has a pivotal

role in epilepsy that in turn ignites the neuroinflammation

cascades in the brain (62, 63). Scientific evidence indicates

that success in the treatment of seizure is associated with

the suppression of neuroinflammation, excitotoxicity, and

enhancement of inhibitory neurotransmission in the brain

(64). Also, a reciprocal relationship exists between inhibitory

neurotransmission, reactive oxygen species, and TNF-α levels

in the brain during the seizure (65–67). In this study, the

MES group exhibited significant induction in lipid peroxidation

and TNF-α production in the mice brains. This is in line

with the previously described association between biosynthesis

of cytokines and acute seizures in rodents (68). Methadone

administration was able to impede the elevation of MDA and

TNF-α in the MES-induced seizure in mice brains, suggesting

the probable antioxidative and anti-inflammatory effect of

methadone that may contribute to its protective action toward

seizure and antiepileptic medication. Previous investigations

showed a correlation between plasma levels of cytokine and

methadone maintenance therapy outcomes in patients with

opioid use disorder (69).

Moreover, methadone has demonstrated anti-inflammatory

activity by activating opioid receptors (16). Several publications

have shown a relationship between increased lipid peroxidation

and cytokines levels in the brain and change in the potency

of anticonvulsant drugs (70, 71). Oxidative stress and

inflammation are interrelated mechanisms involved in the

regulation of neural activity, and increasing their levels in the

brain may contribute to hyperexcitability and epilepsy (72).

In addition to its direct effect on GABA receptors, gabapentin

has been shown to have anti-inflammatory effects that may

contribute to its neuroprotective effect against seizure severity

(68, 73). Previous investigations using a neuropathic pain model

showed a synergistic effect between anti-inflammatory agents

and gabapentin (74).

However, valproate exerts its effects by increasing the

concentrations of GABA via inhibiting its metabolism and

increasing its synthesis (75). Therefore, there is still a significant

and positive association between an increase in the oxidative

stress markers and a decrease in the antioxidant levels with the

number of seizures in valproate monotherapy (65).

In this study, we observed increased MDA and TNF-α

levels in the brains of mice after MES, suggesting their role

in epileptogenesis, which is in line with the previous studies

where seizure induced excitotoxicity and increase in oxidative

stress and cytokine levels in the brain (76). Our results

also demonstrated that administration of methadone increased

brain tissue content of MDA while decreasing TNF-α levels,

suggesting their role in the development of MES-induced

seizures. Furthermore, the administration of methadone and

the anticonvulsant drugs enhanced their suppressive effect

on the levels of MDA and TNF-α in the brains of mice

at effective anticonvulsant doses. Another study revealed

the improvement of mortality rate in kainic acid-induced

epilepsy by inhibiting the inflammation and oxidant stress (77).

Furthermore, recent evidence has documented that suppression

of oxidative stress/cytokine production contributes to the

antiseizure potency of anticonvulsant drugs (78).

MDA, as the by-product of the peroxidation of

polyunsaturated fatty acids, is toxic to neurons and plays

a crucial role in the induction of neuroinflammation.

An increase in its brain levels leads to the progression of

epilepsy through destabilization of the lipid membrane (79).

There is a positive correlation between plasma MDA level

and seizure severity in patients with epilepsy (80, 81). In
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the pilocarpine-induced seizure model, administration of

antioxidants could protect the neuron’s lipid peroxidation

and nitrite formation-induced damages (82, 83). This is

in line with a previous study that reported that MES-

induced seizures increased oxidative stress, neurotoxicity,

and cognitive impairment (84). The administration of

methadone per se and in combination with antidepressants

was able to suppress lipid peroxidation and inflammation in

the brains of mice receiving MES, suggesting the potential

anti-inflammatory and antioxidant activity of methadone.

Therefore, methadone at specific doses is regarded as

an anticonvulsant adjuvant and protects the brain from

seizure damage.

TNF-α is an endogenous cytokine whose rise in the

brains of rodents is caused by seizure activity and clinical

subjects after seizure activity (85). In the central nervous

system, TNF-α as a pro-inflammatory cytokine has a regulatory

action on neuronal excitability and myelin stability under

physiological conditions (86). TNF-α is both produced by

neurons in physiological conditions (32) and overproduced

by overactive microglia under pathological conditions (87).

Recent studies have shown paradoxical effects of TNF-α

on seizure (88, 89). This finding may partly explain why

methadone administration alone and in adjunctive therapy

with an anticonvulsant regimen failed to completely suppress

seizure responses. Indeed, other factors, such as the regulation

of GABA release, may mediate these effects (90, 91). Today, it is

known that the narrow and different therapeutic dosage range

of antiepileptic compounds can be caused by the differences

in the mechanisms of epilepsy induction in acute and chronic

models or the different methods of drug administration (92,

93).

The data in this study report the controversial effect of

methadone per se and in combination therapy gabapentin

and valproate effects on MES-induced seizures in mice.

Accordingly, this study showed that administration

of methadone with gabapentin and valproate in mice

with MES-induced seizure affected brain MDA and

TNF-α levels, which might be possible mechanisms of

methadone effects on the modulation of anticonvulsant

drugs. Further studies are required to establish the

exact mechanism of action of the opioid agonists on

the modulation of anticonvulsant drugs and warrant

further investigations.

Conclusion and perspectives

The data in this study are the first report of biphasic

anticonvulsant and proconvulsant effects of methadone on

MES-induced seizures. In addition, the data show that

methadone interacts with the anticonvulsive effects of valproate

sodium and gabapentin, which were free from adverse effects

on motor coordination. Specifically, the mix of methadone

as an opioid receptor agonist and gabapentin and valproate

as anticonvulsants display increased and decreased potency,

respectively, in mice with MES-induced seizure. The diverse

effects of methadone pretreatment shown here make it

important for its potential application in human translation

studies and aimed at preventing inappropriate drug therapeutic

interactions in the treatment of epilepsy. Moreover, brain

levels of MDA and TNF-α are shown to serve as viable

candidates for drug interactions efficacy monitoring, hence

facilitating the quest for antiepileptic drug therapies. The

mechanisms responsible for these effects are unclear from

this study but seem to involve changes in brain MDA and

TNF-α levels.
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