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We provide evidence to support the contention that many aspects of Autistic Spectrum

Disorder (ASD) are related to interregional brain functional disconnectivity associated

with maturational delays in the development of brain networks. We think a delay in

brain maturation in some networks may result in an increase in cortical maturation

and development in other networks, leading to a developmental asynchrony and an

unevenness of functional skills and symptoms. The paper supports the close relationship

between retained primitive reflexes and cognitive and motor function in general and

in ASD in particular provided to indicate that the inhibition of RPRs can effect positive

change in ASD.

Keywords: top-down processing, bottom-up processing, neuronal synchrony, maturational delay, autism

spectrum disorders, retained primitive reflexes

INTRODUCTION

What Are Retained Primitive Reflexes and What Is the
Controversy?
The term “primitive reflex” was first used by Buckley (1). Primitive or infantile reflexes are
sensory/motor reflexes that are present at birth. Most of these reflexes are present in the womb
(2), and one of their functions is to help the child “birth itself.” The primary function of primitive
reflexes is to allow the infant to move and react to their environment leading to the maturation of
the motor system (3, 4). Children need to move, feed, protect, and orient to engage their senses
and muscles and create sensory and motor feedback that will activate genes allowing the brain to
be built from the bottom up (3–5). The control of these reflexes arises from multiple brainstem
regions. The lower reflexes in the medulla are thought to be active first, followed by reflex control
associated with the pons and mesencephalon (6–10).

Nevertheless, if there is a delay or disruption to this bottom-up projection known as “bottom-
up interference,” then the later, more advanced areas of the brain may be delayed in development.
This could then delay or prevent the top-down maturational processes that ultimately inhibit these
reflexes (11–13). Babinski also noted that not only the response delay of the downward toes in
the plantar reflex but also the asymmetry of this response had clinical significance. Asymmetry
of the Babinski sign is significant and may relate to a functional maturational dysfunction of the
corticospinal tract (14–16).
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Several authors have emphasized that frontal lobe
development eventually leads to top-down control and inhibition
of primitive reflexes. If there is degeneration or damage to the
frontal lobe or corticospinal tract later in life, these reflexes can
return. They are considered to be frontal release signs (17–20).

The controversy surrounding RPRs is not whether they exist
or not. Although not typically part of the current pediatric
examination, primitive reflex testing was previously included as
part of a routine pediatric neurology examination. They are,
however, a well-accepted part of the evaluation of effective child
development (3, 7, 21–23), whose normal temporal trajectory
is reported in Figures 1, 2. The controversy surrounds the
inhibition of these reflexes. In mainstream pediatrics, it is
assumed that primitive reflexes are completely inhibited by the
end of the infant’s first year postpartum. However, many studies
have indicated that in a certain percentage of the population,
primitive reflexes are not inhibited in the first year of life and
persist into middle childhood and even into adulthood (24, 25).

It has also been documented that in children, adolescents,
and adults with RPRs, a neurobehavioral disorder or “learning
disability” coexists (4, 26, 27). Individuals with ADHD,
(25) autism, (28) Tourette’s, (29) dyslexia (30), or other
neurobehavioral disorders, frequently demonstrate RPRs that are
thought to be related to maturational delay in the nervous system
(3, 31–34).

Movement allows us to interact with the environment in
more sophisticated ways and can help improve our chances
of survivability. Interacting with the environment purposefully
and beneficially requires the development of sensory organs

FIGURE 1 | Development of postural reflexes. The diminishing of primitive

reflexes and the growing importance of postural reactions indicate the

development of requisite conditions for the development of the purposeful

movement. The collective time course of primitive reflexes under normal

circumstances is compared with the time course of the maintenance of static

deep tendon reflexes and postural reactions. Reproduced with permission

Pedroso FS. Reflexes. In: Haith MM, Benson JB, editors. Encyclopedia of

Infant and Early Childhood Development. San Diego, CA: Academic Press

(2008). p. 11–23.

that supply the individual with information about our location,
potential danger, and satisfaction, allowing one to negotiate the
surroundings and develop a sensory-motor map of the world that
we can use for prediction and goal-directed adaptive behavior
(35, 36).

Organisms developed brains because they moved, and as they
moved, they interacted with their environment in increasingly
complex ways, leading to the development of a more complex
brain (37, 38). Bipedalism is the most complex of movement
strategies that have evolved in any organism, and it is, for
the most part, unique to hominids. The relatively large brains
of humans support the distinctive erect bodily position and
cognitive abilities driven by bipedalism (39). Upright bipedalism
permits less flexibility of the human pelvis’s anatomy and size
and structure in the human pelvis compared with quadrupeds
(40). Relatively large-headed infants are born to mothers with
relatively small birth canals. The infant’s skull and brain cannot
be fully developed at birth for the mother and neonate to survive
the birth process unscathed (41, 42).

To stimulate the growth and development of the brain, an
infant needs to move and interact with its environment (43–
45). Movement can be impeded by a brain and nervous system
that is not sufficiently mature at birth. What makes some
volitional movement possible are the infantile primitive reflexes
already intact at birth that allow for reflexogenic movement
and interaction with the environment in fundamental ways that
help increase the chances of survival. These reflexes appear
prenatally and are thought to aid in the birth process. Most of
these reflexes are present at birth and then become inhibited
within the first few months, with the longest (the plantar reflex)
remaining until the end of the first year postnatally. These
reflexes allow for basic reflexogenic movement contributing to
early motor milestones such as rolling over, creeping, crawling,
grasping, sucking, and eventually crawling and walking (43, 44).
Postural reflexes that allow for more sophisticated individualized
movements are replaced with voluntary movement in most cases.
Primitive reflexes allow for basic movements, which allow for
simple interaction with the environment and form the basis of
the early movement as well as in the stimulation of sensory
organs and receptors. This increase in sensory feedback and
stimulation is thought to result in the expression of genes related
to protein synthesis and the building of functional connections
(46). The stimulation of glial cell proliferation increases the
size and connectivity of neurons (47). As neurons grow in
size, density, and connectivity, they will eventually inhibit,
through propriospinal projections, lower or more primitive areas
of the brain. They will stimulate the growth and activation
of higher, more sophisticated regions of the brainstem and
neocortex. While primitive reflexes eventually become inhibited
or integrated, they are never entirely eliminated (48). Ultimately,
all reflexes seem to come under the control of the frontal lobe
(17, 18, 49–51).

In individuals with frontal lobe damage, dysfunction, or
degeneration, the reappearance of primitive reflexes known as
frontal release signs is oftentimes manifested (17, 18, 34, 49–56).

Upper motor lesions also do not infrequently result in the
reappearance of primitive reflexes such as the Babinski reflex or
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FIGURE 2 | Example of the circuitry of reflex responses to hand compression stimulation.

plantar reflex (57). This is thought to be associated with the loss
of the descending inhibitory connections from the cortical spinal
tract, which reflects thematuration and growth of the frontal lobe
and the sensory-motor cortex.

It has also been noted (58) that the presence of RPRs is a
common feature of children with Autism Spectrum Disorder
(ASD) (28, 58–60). In most of these disorders, there is no
visible damage, injury, lesion, or degeneration as a basis for
hypothesizing that the RPRs reflect a maturational delay of brain
areas that would typically inhibit these reflexes, especially those
in feedback with the frontal lobes (61–63).

The absence or reduction of environmental influences
that would generally promote growth and development, and
neuroplasticity within higher brain regions, would typically lead
to the inhibition of primitive reflexes and the expression of
postural reflexes (3, 64) according to the timeline represented
in Figure 1 and in Table 1. The persistence of these primitive
reflexes can reflect a maturational lag. The RPRs, especially with
asymmetric persistence, will reflect not only a maturational delay
of the brain but may also indicate, depending on the timing,
abnormal asymmetrical development of the hemispheres (64, 65).
In children with cerebral palsy, an injury on one side of the brain
can lead to asymmetric retention or lack of development of PRs
(28, 66, 67).

According to our current understanding, the prevalence of
RPRs is considered variable, and there is disagreement about the
pathological significance of these reflexes in both aging and child
development. However, evidence from large data sets indicates a

significant relationship between RPRs, maturation, and cognitive
function (3, 25), and the description of these reflexes is presented
in Table 1.

Retained Primitive Reflexes vs. Returned
Primitive Reflexes
The relationship between cognitive deficits and RPRs has
been controversial. Some authors consider these reflexes
predictive of diffuse cerebral dysfunction as these signs are
significantly correlated with cognitive deficits in a wide
age range of individuals (68–73). It is therefore important
to differentiate “retained primitive reflexes” from “returned
primitive reflex” (RtPR). Recently, RtPRs have been described
in dementia and Parkinson’s Disease (74–78). While primitive
reflexes are considered adaptive responses that are present
in the neonate and disappear or are inhibited as the brain
matures, RtPRs can reappear in childhood, adolescence, and
adulthood (78) and when they do so, they are reportedly
invariably associated with cognitive effects (74, 78). Some
authors consider that RtPRs (in particular the Babinski and
grasp reflex) are indicative of diffuse cerebral dysfunction
as there exists a significant correlation between these signs
and cognitive dysfunction in a wide age range of individuals
(69–73). Regarding RtPRs, some authors reported that in
individuals with Alzheimer’s disease, no relation existed
between cerebral atrophy based on psychometric testing (e.g.,
Wechsler Memory Scale) or CT-scan and grasp, snout, or
glabellar reflexes.
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TABLE 1 | Primitive reflex development and integration timetable.
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Retained primitive reflexes indicate cortico-subcortical
neuronal network impairment or possibly neuronal
developmental delay. Some authors have stated that RPRs
are evidenced in neurotypical populations. The palomental
reflex, for example, was found in 6–27% of individuals aged
between 20 and 50 years, and 28–60% of those above 60 years
(64), snouting in 13% of individuals between 40 and 57 years
(64); 22–33% of those above 60 years of age (64), and the
sucking reflex, which some authors associate with “frontal lobe
disease” (79), and Tarawneh and Galvin (80) had noted that in
neurotypical individuals between 73 and 93 years of age, the
palmomental reflex was evidenced in six percent them.

The Babinski sign (i.e., plantar response) and grasp reflex are
two reflexes that are clinically accepted as indicators of central
nervous system disease or disorder. Some of the arguments may
be accounted for by differences in opinion and interpretation
of the reflexes, which can vary significantly from clinician to
clinician (4, 26, 81–83).

Another study examined the relationship between cognitive
functioning and RPRs in individuals with dementia and without
in order to determine the most predictive elements of cognitive
testing or the neurological examination for brain dysfunction
(84). Using the Cognitive Abilities Screening Instrument-Short
Form (CASI-S), Gellis (85) concluded that in those with
dementia, individuals with the highest primitive reflex (PR)
scores tended to be associated with the lowermost cognitive
scores and, in particular, to SPECT scan configurations.
Therefore, these researchers concluded that the existence
of numerous PRs and cognitive scores could be effective
in predicting diffuse cerebral dysfunction. In particular, the
presence of the Babinski and grasp responses, or the combination
of the snout, suck, paratonia, and palmomental reflexes, are
effective indicators of diffuse brain dysfunction, in particular
when RtPRs are evidenced and complemented by deficits in
cognitive testing scores.

The presence of multiple primitive reflexes is an indicator
of diffuse brain dysfunction in elderly populations. Their
persistence and presence in children and adolescents may
indicate diffuse cortical maturational delay and correlate with
cognitive and executive developmental absence or delay. If
developmental milestones are not appropriately achieved, we
hypothesize that synchronicity, optimization, the efficiency
of behavioral-environmental interaction, coordination of
movement, and synchronization of the overlapping brain will all
be affected (25, 27, 43, 44, 86).

PRIMITIVE REFLEXES, NEURONAL
SYNCHRONY IN CORTICAL
DEVELOPMENT IN ASD, ADHD, AND
OTHER NEUROBEHAVIORAL DISORDERS

Maturational Delays and Lateralization
One of the unique features of the human brain is its
degree of lateralization or asymmetry. Humans have the most
asymmetrical and lateralized brains of any species. This is
thought to be another factor that leads to the significant

differences in intelligence between humans and other species. A
more lateralized brain allows for the development of a greater
variety of centers that can individually process and control
numerous functions, combining these individual centers into
various networks leading to the unique cognitive abilities shared
by humans. This lateralization develops with increasing age,
brain, and nervous system development (87–93).

A small child does not have the same degree of lateral
asymmetry as an adult. Laterality is a product of the maturity of
the brain and especially of the neocortex and the frontal lobes
(43, 89). The development of laterality and asymmetric control
of functions increases the cognitive potential and requires greater
coordination and synchronization of cortical networks (94, 95).
For various functions to bind together, all associated brain
regions that control complex functions and their networks must
be activated simultaneously. This coordination is a byproduct of
maturity (4, 21, 43).

As the brain grows and as neurons become interconnected,
the speed and coordination of inter- and intra-hemispheric
cortical networks increases, allowing for synchronization and
integration of a significantly greater number of functions. The
two hemispheres of the brain do not develop simultaneously;
the right hemisphere is thought to develop more rapidly and
earlier than the left, with the most significant development
being prenatal and for the first 2–3 years of life (96, 97). Then
the left hemisphere is significantly more greatly emphasized in
development for the next 2–3 years of life. Once the differences
and advantages are established during the first 6 years of life, this
forms the basis of hemispheric specialization and lateralization
that will increase throughout development (87, 90–93, 97).

Asymmetric Development Can Lead to
Underconnectivity, Desynchronization, and
Functional Disconnection
Where neural connections (anatomic and functional) are
not adequately developed in infancy and early childhood,
asynchronicity, the inefficiency of behavioral-environmental
interaction, coordination of movement, and synchronization of
brain networks may be evidenced (40, 98–104).

A global immaturity of the function of cortical networks
in childhood can be associated with a reduction in motor
activity (3), spatial exploration (105), experience-dependent
plasticity (106), RPRs and delayed postural reflexes (107, 108).
A more specific dysfunctionality would be expected if there was
asymmetric development of RPRs. If there existed unilateral
RPRs and, in particular, unilateral delay of postural reflexes, we
would expect an asymmetric maturity and growth of the brain
since this would be associated with an asymmetry of tone, in turn
altering sensory and muscle feedback, potentially impairing the
main driving factors to brain development (109).

Futagi et al. examined the relationship between plantar
grasp response asymmetry during infancy and neurological
outcome. They, during a follow-up period of between 2.8
and 11.9 years, reviewed the neurologic consequences of 61
children having demonstrated, during infancy, asymmetric
plantar grasp responses. All children demonstrated neurological
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signs or perinatal risk factors during infancy. Futagi and
colleagues reported intellectual disabilities in three, borderline
intelligence in nine individuals, cerebral palsy in 38, delayed
motor development in six, and neurotypical function in five.
The majority exhibited a relationship between the side of the
retained plantar grasp response, the side of the motor function
deficits, and the side of the abnormal CT results (6). These
findings were supported in a systematic review by Hamer and
Hadders-Algra (110).

The asymmetry that Futagi et al. (1995) observed in the
plantar grasp response strongly suggested brain dysfunction
(6, 111, 112). Their studies showed an association between the
persistence of motor abnormalities related to the same body side
and the asymmetric development of primitive reflexes (113). The
plantar response is one of the reflexes most related to brain
dysfunction, whether due to injury or functional developmental
delays (108, 114). This type of asymmetrical development of
the developing brain has been commonly noted in almost all
neurobehavioral disorders, especially ASD (115, 116). Along
with anatomical asymmetries, there have also been functional
asymmetries noted with a characteristic “unevenness” of skills
observable in all of these disorders, to varying degrees (25).

A significant feature of those with ASD is the “unevenness”
of cognitive function (117). We have proposed (43) that
the diverse aberrant behaviors noted in ASD and in other
neurobehavioral disorders can be understood better by viewing
ASD in the context of functional brain disconnectivity, of the
kind that has been noted in minimally conscious states (118,
119) and even in sleep (120), or as reported in people with
dyslexia (121, 122). Functional asymmetry within widespread
cortical networks could decrease temporal coherence in certain
functional networks and enhance temporal coherence in others
(123). Recent research has suggested that increased functional
ability or intelligence is related to augmented activity in specific
networks (124). It is also possible that an increase in the
complexity and integration of functional networksmay be related
to increased temporal coherence that may impart a selective
advantage in particular regions of the brain (125, 126). This could
explain how certain talents and abilities seem to be inherited and
run in families (127).

As optimized brain function implies more efficient neural
processing than non-optimized, one might expect optimized
execution of motor tasks to be related to greater degrees
of activity. However, the converse appears to be the case
in the cerebral cortex where increased task effectiveness
has been reported that has included: figural, numeric, and
spatial reasoning (128) and verbal ability (129) is associated
with reduced energy consumption in various cortical
regions. This phenomenon has additionally been examined
electrophysiologically. When examining resting-state activity
[event-related desynchronization (ERD)] during cognitive
tasks, there is a reported decrease in background power (7.5–
12.5Hz) decreases which has been reported to be related to
the activity recorded in those with higher scores on IQ tests
(130, 131), or with significantly greater performance after
practice, that in turn is related to a more effective cognitive
processing strategy (132, 133). Yet, the issues should include

not only the expenditure of energy but also the nature of
the functional connectivities between brain regions (94).
Smaller regions of activity have been consistently evidenced
in brain areas in those with ASD. These diminished areas of
activity appear to be developmentally delayed brain regions as
opposed to being reflective of pathological processes or damage
(94, 95).

Individuals with ASD and other neurobehavioral disorders
have also evidenced a reduction of interregional brain
connectivity (25, 27, 43, 44, 94, 95, 102, 134–139). The
corpus callosum appears to be the brain area associated
with the reduced cortical connectivity found in individuals
with ASD (140). This implies that the most frequently
evidenced functional disconnectivity observed in childhood
involves hemispheric interaction. This is a notable reported
characteristic difference between ASD and normally developing
toddlers (141).

We think that reduced inter-hemisphere coherence is
associated with a reduction in the several sensory, motor,
and cognitive functions coordinated by the ipsilateral
brain hemisphere, and the higher proficiencies are
sometimes related to enhanced within-hemisphere coherence
(43, 94, 95). We have also described diminished coherence
and connectivity in longer inter-hemispheric connections
with augmented coherence and connectivity with shorter
intra-hemispheric connections (94, 95) that we have
hypothesized to be associated with enhanced performance
abilities such as those that have been observed in forms of
savantism (142).

RETAINED PRIMITIVE REFLEXES, MOTOR
FUNCTION, AND NEUROBEHAVIORAL
DISORDERS

Retained primitive reflexes have been noted in several
neurobehavioral disorders, including ADHD and ASD and
are understood to be associated with or absent or delayed
developmental milestones in these (25, 27, 28, 44, 143–148).
RPRs have been reportedly associated with the presence of
clumsiness (25, 27, 43, 149, 150) incoordination (149), awkward
posture (151), gait (152–154), and other motor disturbances
(25, 155, 156). Most neurobehavioral disorders seem to be
associated with motor incoordination and cognitive dysfunction
(25, 27, 43, 44, 157, 158).

Teitelbaum et al. (159) theorized that in infants with
movement disturbances, reflexes may have “gone astray” and
may be early markers of ASD. They observed that some infants
demonstrated RPRs that continued far beyond long infancy in
the children they examined, whereas other primitive reflexes first
appeared in infancy significantly later than though ought. The
asymmetric tonic neck reflex, they thought, might be retained in
ASD. The verticalization of the head as a consequence of body tilt,
was reportedly absent in a subgroup of “autistic-to-be” infants,
according to Teitelbaum and colleagues. They suggested that
these reflexes might serve as a marker for ASD, and pediatricians
could use them to screen for neurological dysfunction (160). In
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their earlier work, Teitelbaum et al. (161) showed that infants
with a tendency to ASD demonstrated a distinctive constellation
of disturbances in patterns of movement as early as 4–6 months
of age, measured by Teitelbaum and colleagues in conjunction
with laser disc still-frame analysis. Eshkol and Wachman (162)
had earlier reported similar findings.

The Galant and Moro reflexes are among the most critical
postnatal primitive reflexes that diminish later in development.
At the same time, there exists no definitive evidence that these
reflexes play a role in ADHD. Konicova and Bob studied school-
aged ADHD children between 8–11 years who demonstrated
Galant and Moro RPRs compared to an age-matched control
group (72, 163). They found that ADHD children demonstrated
a significantly greater occurrence of Moro and Galant reflexes
than did the control group, indicating that ADHD symptoms
may compensate for an immature brain.

Callcott (164) reported that children’s learning difficulties
relate to reduced movement proficiency, including school-
readiness. Calcott investigated the prevalence and severity of
the Asymmetrical Tonic Neck Reflex (ATNR) and studied
the proficiency of movement in preprimary-aged Western
Australian indigenous children. She found that 65% of those
tested demonstrated moderate to high ATNR levels that were
significantly related to academic achievement (164).

The findings of the Millennium Cohort Study in the
United Kingdom (165) supported a relationship between the
delayed achievements of motor milestones at 9 months of age
and significantly lower cognitive development at age five (165).
The Australian Early Development Index reported that nearly a
fourth of school-aged are “at risk” in their physical and cognitive
development (166). Williams and Holley (167) offered support
for these findings linking motor development and cognition
by addressing the influence that infant motor experiences in
infancy and early childhood may have on higher-level cognitive
abilities required for academic achievement in school. As we
have already noted, motor function and gesture development
typically require the effective inhibition of mouth and hand-
related primitive reflexes (167). ASD children not infrequently
demonstrate difficulty in executing skilled movements and
possess as well as exhibit a poor gesture repertoire (168).

Chinello et al. (144) examined the association between three
RPRs, motor behavior, and parental autistic-like traits, in infants
aged between 12 and 17 months of age. Independent of age,
RPRs were associated with infants’ deficient motor skills and were
highly correlated with parental autistic-like characteristics.

Numerous authors have reported on an association between
clumsiness and incoordination, particularly in gait and posture,
and ASD, ADHD, and other neurobehavioral disorders of
childhood (163, 169, 170). The kind of gait and motor
dysfunction has been mainly thought to possess either basal
ganglia or cerebellar origins (25, 27, 40, 43, 171). Developmental
Coordination Disorder (DCD), or more simply put, motor
incoordination or “clumsiness,” is also usually of the same type,
primarily involving the muscles that control gait and posture or
gross motor activity (172, 173).

Sometimes, we observe that fine motor coordination can
also be affected (21, 174, 175). Several authors have noted

both differences and similarities between ASD and DCD.
DCD individuals demonstrated greater fine and gross motor
coordination, theory of mind, and emotional perception than
did the ASD individuals, but evidenced comparable difficulties
with response inhibition. These authors observed that based on
symptom severity, children with ASD who were measured to
be “more able” did not diverge on any measured skills from
DCD children, in contradistinction to children classified as “less
able.” The authors wondered whether DCD and ASD vary more
in the range of symptom severity than in a singular behavioral
domain (174).

Similar comorbidities have been found in children with
ADHD (72, 163, 176–180) and those with developmental dyslexia
(4, 181–186).

Sumner et al. (187) also found numerous overlapping
features in verbal expression, speech, gaze, and face-processing,
expression, in ASD and DCD individuals. These findings suggest
that children with DCD may also demonstrate difficulties in
processing social information. However, when examined with
measures of socialization, the DCD individuals scored at an
intermediate level in two other socialization measures. The
authors concluded that socialization in DCD may not be as
manifest as in individuals with ASD (187).

The greatest similarity between ASD and DCD in Sumner
and colleagues’ review was a paucity of significant effects of
cognitive intervention. Concerning treatment, no significant
improvement effects were noted in both DCD and ASD groups
of individuals (174) or in IQ (188). The ability to train and
improve in various domains, especially cognitive, is similar for
both conditions. Additionally, no significant disparities were
found in a qualitative study examining transitions from primary
to secondary school, possibly because the main variables of the
study’s interest concerned the children’s motor behaviors. On
the other hand, cognitive intervention has been reported to be
effective in reducing symptoms of ADHD (189).

It might seem somewhat confusing initially to observe that
fine motor skills seem to be disrupted at almost equal levels as
a gross motor. The literature supports the notion that manual
dexterity is less effective for high functioning ASD individuals,
but only for the non-dominant hand. This suggests a lateralized
difference (190, 191). This would show that although fine motor
coordinative skill is decreased in those with ASD and fine
motor skill is primarily decreased in the left hand, associated
with right hemisphere function. This is consistent with a deficit
in effective coherence between the right and left hemispheres.
Perhaps a parallel situation exists in ADHD individuals and
in individuals with other neurobehavioral disorders (192–
196).

Variations in the manifestations of ASD and DCD may be
associated with differences in the maturation of asymmetries
as a consequence of different maturational rates of the left
and right hemispheres (197–199). Asymmetric RPRs may also
be an early marker of developmental brain immaturity. This
aberrant configuration of hemispheric asymmetry may be related
to underconnectivity and desynchronization, and eventually to
functional disconnectivity between lower brain regions and the
neocortex (197–200).
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Retained Primitive Reflexes in ASD
Autistic Spectrum Disorder is a neurobehavioral disorder
identifiable by dysfunction of communication, behavioral
flexibility, eye contact, and social interaction as well as deficits
in language, and executive function (201–204). Although there
is a consensus about the symptoms that comprise ASD, there
exist controversies regarding the precise definitions of ASD
and the boundaries between manifestations of related disorders.
Researchers have increasingly recognized that motor ability can
have a significant effect on other developmental functions, such
as language and social cognition (28, 205–209).

Retained primitive reflexes can disturb the natural course of
development and create difficulties in social and educational
functions in children (21, 210) as well as impact psychomotor
development (211). Mature responses in a child’s psychomotor
behavior can only occur if the central nervous system has
reached the appropriate level of maturity (21, 210, 212). The
process consists of the transition from brainstem reflex response
represented in Figure 2 to cortically controlled responses (213).

It has been argued that independent of a child’s age, RPRs
are significantly related to an infant’s ability to interact with
objects (i.e., agency) (4, 21, 144, 156, 210) as well as with others
(i.e., copying gestures) (22), meaning that high scores in the
assessment of primitive reflexes, is associated with an increased
likelihood of RPRs, which, in turn, are also associated with
low scores in motor responsivity, independent of the age of
the infant.

As previously indicated, children with ASD demonstrate
impediments in the performance of skilled movements and
gestures. Numerous investigators have noted that delays in
the maturation of motor function during the early years of
development foretell the primary dysfunctions characteristic of
individuals with ASD (214–216).

This hypothesis has been examined in the infant siblings of
ASD children, who purportedly have an increased probability of
developing ASD. In longitudinal studies of 3- to 6-month-old
infants’ motor development of high-risk (HR) infants, over 70%
of infants with motor delay later demonstrated communication
impairment. Motor development is associated with a normally
automatic progression in which infant maturation inhibits more
primitive motor responses (217–219).

Assessing RPRs in autism is essential for at least multiple
purposes. Firstly, RPRs may be an encouraging early sign of
ASD that, along with the early signs of difficulty in eye contact,
attentional deficits, as well as other elements, might assist in
characterizing the developmental trajectory of the wider ASD
phenotype during infancy. Consistent with this thinking, it
has been stated that slight disparities in initial periods of the
brain’s development (e.g., the persistence of primitive reflexes)
can produce an adverse progressive effect not just on motor
skills that develop later but also on a range of other behaviors
(i.e., communicative and social behaviors as well as in object
exploration) (144, 220, 221). Secondly, the ability to identify
motor abnormalities early in life might also be encouraging for
the differential diagnosis of ASD. The proportion of children
with ASD and concomitantly with developmental motor and

coordination dysfunction varies widely. The variability in these
deficits in ASD is likely a result of the heterogeneity of ASD. That
heterogeneity, on the other hand, allows us a unique opportunity
to classify subtypes of ASD (101, 194, 195).

Retained primitive reflexes have the ability to disturb the
normal maturation processes decreasing the ability of the brain
to effectively process sensory information. RPRs then that are
still present (beyond the average age of 12 months postpartum)
can impede the subsequent development and maturation
as well as serve as a potential biomarker of neurological
dysfunction (144).

Do RPRs Indicate a Dysfunctional
Neurological System in ASD?
In supporting the cognitive effects of primitive reflexes and
cognitive function, some authors consider the palmomental
reflex (PMR) as being related to dementia. The PMR is
a polysynaptic reflex that can be evoked by nociceptive
stimulation of the thenar eminence, resulting in an ipsilateral
involuntary mentalis muscle contraction (19). The extant
PMR is found in infants up to ∼12 months of age and
then wanes and disappears, largely due to the frontal lobe
maturation (19, 222). Consequentially, its recurrence in aged
individuals with the pathology of the frontal lobe is thought
of as a “cortical release” or “frontal lobe” sign, with a
presumption of a lack of frontal inhibition on subcortical motor
networks (223–225).

Anatomic (AC) and functional connectivity (FC) studies
of linking the PMR with dysfunction of interrelating loops
connecting the thalamus and basal ganglia with the motor,
premotor, and prefrontal cortices, are consistent with our
hypothesis (95, 190, 226–229).

Neuroimaging studies of individuals with ASD have also
detected brain areas with atypical lateralization of motor
function, with the capacity to detect subtle neuroendocrine
phenotypes. Most studies agree that ASD individuals
demonstrate an amplified rightward asymmetry that
incorporates cerebral cortex volume, corpus callosum, premotor
cortex, the sensorimotor resting network, and the inferior
parietal lobule (190, 227, 228, 230, 231).

Floris et al. (190), in studying intra-hemispheric connectivity
in ASD, demonstrated that high-functioning ASD children
aged between 8 and 12 years demonstrated strong rightward
lateralization in their motor circuitry’s connectivity which was
found to be necessary for effective motor responsivity. Notably,
motor connectivity’s rightward lateralization relates to effective
motor response (e.g., gait and balance, as well as any timed
sequential or movements) (190, 231).

Machado et al. (94) reported that qEEG changes in coherence
and spectral analysis could be associated with a visual-auditory
sensory integration impairment, which in ASD children is
lateralized to the right hemisphere (94, 232, 233). Hence, several
authors have affirmed that RPRs reflect anatomic and functional
connectivity abnormalities in brain networks (190, 227, 228, 230,
231).
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Do RPRs Reflect Motor Impairment in
ASD?
Several authors have suggested that RPRs correlate with motor
function independent of the age of the infant, and significantly
more so among infants whose parents demonstrated subclinical
autistic characteristics. Hence, the RPRs might modify the
developmental trajectory of the infant’s motor function, and as a
result, their assessment could serve as an early marker of atypical
development (144, 156).

There exists a consensus that besides the principal features of
ASD, delays, and abnormalities in motor development are key
components of ASD regardless of multiple etiology and subtypes
of the condition (25, 27, 44, 144, 156).

The anomalous frontostriatal cortex in AD individuals with
RtPRs variously affects the motor pathways that suppress
primitive reflexes. This notion is coherent with findings that
ASD impacts various cognitive functions in the same way that
dementia is related to dysfunction of the frontal lobes and/or
basal ganglia (i.e., frontotemporal dementia or Parkinson’s
disease dementia). These findings in dementia have suggested
functional and anatomic connectivity impairment in ASD and
other neurodevelopmental disorders (19, 224).

RETAINED PRIMITIVE REFLEXES CAN BE
BIOMARKERS AND A TARGET FOR
TREATMENT

Retained primitive reflexes may be one of the earliest markers
of abnormal or delayed cortical maturation and by extension,
of ASD and other neurobehavioral disorders (231, 234). The
rooting and sucking reflexes and many other primitive reflexes
are present at birth (43). The inability of an infant to attach
to its mother and breastfeed, often seen in children with
developmental delays and delays or asymmetry of rolling over
at 3–5 months of age, may be the early indicators of ASD
(3, 77, 235). Therapists have recommended exercises that
stimulate or reproduce primitive reflexes to remediate various
neurobehavioral disorders (26, 149, 236).

Methods that have indicated some promise in the treatment
of various neurodevelopmental disorders including ASD are
ostensibly founded on the theory that attributes the difficulties
to RPRs that affect the child’s normal growth and development as
well as academic and cognitive skills (25, 237–239).

Although limited, some studies indicate a
neurodevelopmental basis for a range of difficulties associated
with maturation and motor development that manifest in
cognitive and social difficulties. The collective research in this
area demonstrates that the existence of RPRs has implications
for skills such as balance and coordination as well as learning
and cognition. The work of Goddard Blythe (240–243) has
concentrated on children between 7 and 9 years of age and
supports the case for early interventions to improve and develop
coordination and balance, especially when such neurological
dysfunction may be contributing to cognitive and motor delays
or effects. Brown’s (244) intervention study appears to support
this line of research as does Melillo et al. (25). She found that

with children between 4 and 5 years of age, practicing particular
movements facilitated their performance of the fine motor
activity and academic performance by inhibiting RPRs. Similar
findings were reported by McPhillips and Mulhern [(239), cited
in (245), p. 69] who indicated the relation between children with
reading problems and motor control and balance. Chambers and
Sugden’s (246) found ineffectiveness in motor skill performance
was highly associated with academic performance. Activities
of daily living were found to be successfully facilitated by
intervention programs that supported fine and gross motor
skills thus being significant factors in early childhood learning
[(247), p. 50]. The evidence indicates that physical development
is fundamental to the development of a child’s cognitive abilities.

Programs, based on perceptual-motor interventions have
suggested that relatively simtime have not ple training is
capable of moderating the facilitation of learning and brain
structure (248, 249). In short, the difficulty is that the majority
of current programs of this sort at the present time have
not undergone rigorous evaluation and scrutiny. These types
of interventional strategies invariably employ specific motor
activities and exercises. Some of the advocated tasks are adjusted
to the individual’s needs (250), while others may be generic (251–
253). These types of interventions often integrate actions, such as
throwing and catching, ostensibly improving vestibular function,
fine and gross motor skills, and academic accomplishment.

While some programs have promoted exercises that imitate
the actions of fetuses and infants, it has been noted that
rehearsing the activities of the early stages of development can
inhibit the perseverance of RPRs. This has oftentimes been
used as a justification for programs that advocate exercises that
simulate fetal and infant activity and infants (238, 239, 254).
Claims have been made that movements following primitive
reflex patterns will inhibit those reflexes and improve cognitive
function and the ability to acquire academic skills (239).

Grzywniak (255) studies the effectiveness of exercises aimed at
supporting the development of children with learning difficulties
and RPRs. Their symptoms included visual-motor coordination
and attentional deficits, hyperactivity, and reduced visual and
auditory analysis and synthesis.

While not many studies have thoroughly examined the
effects of reducing RPRs on clinical outcomes in developmental
disabilities in general and in ASD in particular, of note are
Pimentel (256) and Anderson (143, 257), who discussed the
connections between RPRs and developmental delays. The
comparative studies scrutinized groups with developmental
delays and RPRs (144, 160, 164, 238, 258). McPhillips and
Mulhern (239) performed a double-blind study of the cognitive
effects of reducing the presence of RPRs. A regression analysis
study was conducted by de Bildt et al. (259). Melillo (260)
and Hyatt et al. (252) produced meta-analyses. While at least
eight systematic review articles examined, RPRs alone, or meta-
analyses of RPRs in development, none explored the evidence
surrounding reflex-based interventions (108, 159, 241, 252, 260–
263). Expert review studies over many years included those
by Rider (264), Endler (265), Ottenbacher (262), Smith et al.
(266), and Mailloux et al. (267). The studies analyzed RPRs of
individuals with reflex delays, developmental disabilities, and
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difficulties with sensory integration skills, but none provided
evidence for effectiveness in the treatment of developmental
disabilities of any kind by RPR reduction.

Barret et al. (268) identified three best evidence reviews
(144, 238, 242). Goddard Blythe (242) provided a summary of
independent studies that examined academic performance
associated with developmental exercise programs that
demonstrated positive effects on academic performance.
Jordan-Black (238) conducted a nonrandomized control study
to establish evidence for the effectiveness of reflex-based
interventions in improving academic performance, from which
she indicated that her system reduces RPRs in particular the
asymmetrical tonic neck reflex, and has a significant effect
on reading and mathematics abilities of children who had
undergone her intervention. Chinello et al. (144) found that the
parents of infants demonstrating subclinical traits of ASD were
more likely to demonstrate RPRs and were more susceptible to
developing ASD later. The study did not measure the outcome of
therapeutic intervention. Collectively, these papers demonstrate
the best evidence and relevance to RPR reduction and its effect
on cognitive function. reflex integration. Only Goddard Blythe
(242) and Chinello et al. (144), examined the effects of RPRs in
developmental disorders in general and to some extent in ASD.
Jordan-Black’s (238) study did not address children with ASD.

Although the mechanism of how these exercises can
inhibit primitive reflexes and affect or improve neurobehavioral
disorders has not been previously described to our knowledge.
We speculate that utilizing these exercises can increase the
sensory stimulation and feedback to the nervous system that
stimulates synaptogenesis and neuroplasticity of more rostral
and complex areas of the brain (269–271). We conjecture that
this may be associated with inhibition through descending
propriospinal connections that inhibit these reflexes that
would, under normal circumstances, lead to more complex
individualized volitional control of movement that will stimulate
growth and cortical maturity. Ultimately, this can lead to the
release of “bottom-up interference” that can delay the cortex’s
maturation and prevent appropriate top-down regulation that
will ultimately inhibit primitive reflexes (25, 27, 44, 94).

DISCUSSION

The incidence of ASD has been increasing at epidemic levels,
and we think that the driving force behind this increase is a
combination of genetic and environmental factors, emphasizing
environmental determinants. We think that epigenetic factors
related to lifestyle changes over the past two decades, especially
reduction of early motor activity and spatial exploration of
children, have led, in part, to the significant rise in the incidence
of ASD. We surmise that the reduction in the activation
of activity and experience-dependent genes that stimulate
synaptogenesis and neuronal plasticity of central neurons and
glial cells can help increase the size and complexity of the
brain during the first 3 years of life. We think that this is
the basis of both the maturational cortical delay identified in
almost all neurobehavioral disorders, including ASD, and their
associated RPRs (272–276). After the first few months of life,
the feedback created by primitive reflex-generated movement

can lead ultimately to the inhibition of these reflexes and the
activation of more complex subsequent postural reflexes (64,
211, 277) resulting in a more complex interaction with the
environment, that in turn leads to greater sensory feedback
thereby activating genes that allow for the creation of integration
and coordination between various cortical networks [for a more
detailed analysis cf. (44)]. As these cortical networks become
more connected and integrated, they increase the speed of their
interaction, and their synchronization improves, allowing more
areas to be activated simultaneously (24, 39, 278–282).

Delayed cortical maturity and motor coordination may occur
due to the abnormal persistence of primitive reflexes. In that case,
the brain will not continue to grow and develop at a normal rate
and sequence. As the brain’s hemispheres develop at different
rates and times (283, 284), with the abnormal, asymmetric
persistence of primitive reflexes, a maturational dysfunction in
between hemisphere coherence can be produced where one
hemispheremaymature at an average rate and the other not (231,
285–288). This can be associated with significant synchronization
and temporal coherence dysfunction, decreasing large cortical
networks between the two hemispheres from binding temporally
and spatially. This can result in a functional disconnection
syndrome (88, 102, 135, 137, 279, 289, 290).

We can conclude based on our current understanding that
if there is any delay in maturation of the pyramidal tracts, the
brainstem, or the frontal lobe, it is reasonable to assume that
there might be a delay in the disappearance of the Babinski sign
and other primitive reflexes. Many neurologists and pediatricians
assume that the Babinski sign and other primitive reflexes that
are present at birth and sustained for the first year of life will
automatically disappear after that initial period unless brain
damage is present (25, 27, 40, 94, 95, 233, 291).

Therefore, primitive reflexes are the tools that can be
employed early in neonatal and infant development to evaluate
the integrity of the central nervous system. They are brainstem-
mediated, automatic movement patterns present in full-term
infants at birth. With the maturation of the central nervous
system, these primitive reflexes become more challenging to
evoke after the first year postpartum when the infant becomes
capable of voluntary motor activity. RPRs are not infrequently
present in children with ASD, ADHD, or cerebral palsy, and may
be early indicators of brain-based deficits (3, 4, 22, 148, 292–295).

CONCLUSIONS

Retained primitive reflexes may occur in the absence of any
injury. They could be used as a clinical sign of a maturational
delay in cortical development that is thought by many to
be highly associated with abnormal functional connectivity
seen in many neurobehavioral disorders such as ASD. We
have also demonstrated that the Babinski sign may reappear
later in life is grossly intact in older individuals without any
physical damage but is highly related to cognitive decline.
This may be a functional degeneration or loss of frontal
lobe function, and we can observe this with “frontal release
signs.” Therefore, the presence of the Babinski’s sign in a
healthy aged population may be a “returned” reflex which
may be an early clinical sign of frontal lobe dysfunction or
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degeneration, or it may represent that the Babinski reflex has
been present in an individual throughout his or her lifetime.
Even though they may be grossly healthy, these individuals may
have struggled with neurobehavioral symptoms. This maturation
process commences from the bottom of the brainstem and the
primitive reflexes. They help promote bottom-up development,
which then promotes growth and maturation of the brain and
frontal lobes, which then, in top-down feedback, regulates the
brainstem nuclei, coherent with Huglings Jackson, the Principles
of Dissolution.

In conclusion, we hypothesize that RPRs in ASD are, in part,
associated with maturational delays and imbalances and not
necessarily a result of actual structural damage or pathology.
They are, in part, a result of environmental influences and are
therefore amenable to remediation.We think that the presence of
RPRs and the developmental milestones that might be delayed or
absent as a result may be the earliest markers of developmentally
delayed children, in general, and those with ASDs in particular.
Assessing RPRs in ASD then is essential for multiple reasons.
Firstly, RPRs may be a possible biomarker for ASD that, jointly
with early signs of attentional deficit, eye contact, and other
factors, might aid in characterizing the developmental trajectory

of the character of ASD in infancy. In line with this approach,
it has been stated that slight disparities in motor behavior in
early development (i.e., RPRs) might exert an adverse cascading
effect on the subsequent development of motor skills and also
in numerous other domains (i.e., communication and social
behavior and /or object exploration). Secondly, the detection of
early motor abnormalities could also be an encouraging avenue
for the delineation of subtypes of ASD.
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