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Impairment of balanced activity between dopamine D1 and D2 receptor

functions in the striatum, particularly in striatal functional subdivisions (i.e.,

striosome and matrix compartments), has been proposed to underlie dystonia

genesis. This study was undertaken to examine the therapeutic e�ect of

dual dopaminergic modulation with L-3,4-dihydroxyphenylalanine (L-DOPA)

and chlorpromazine (CPZ) in patients with blepharospasm, a focal dystonia.

For this purpose, Dopacol tabletsTM (L-DOPA 50mg plus carbidopa 5mg)

and WinterminTM (CPZ phenolphthalinate 180 mg/g) were used. Clinical

evaluations were performed before and after an 8-week drug treatment

interval using the Visual Analog Scale (VAS), Blepharospasm Disability Index

(BSDI), modified VAS (mVAS), and Jankovic Rating Scale (JRS). The data were

analyzed using non-parametric statistics. Results showed that in patients

(n = 7) with blepharospasm, dystonia symptoms were significantly alleviated

by the administration of both Dopacol tabletsTM (one tablet × 3/day) and CPZ

(5mg× 3/day), as determined using the VAS, BSDI, mVAS, and JRS. In contrast,

there was no improvement of dystonia symptoms in patients (n = 7) who

ingested Dopacol tabletsTM (one tablet × 3/day) alone, nor in those (n = 7)

who ingested CPZ (5mg × 3/day) alone. Thus, dual pharmacotherapy with

L-DOPA and CPZ can exert a therapeutic e�ect on blepharospasm, suggesting
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that dystonia symptoms can be attenuated through dopaminergic modulation

with inducing an increase in striatal D1-signals. Since dopamine D1 receptors

are heavily enriched in the striosome compartment in the “human” striatum,

our results also suggest that striosomal loss of D1-signaling may be important

in the pathogenesis of dystonia.

KEYWORDS

blepharospasm, dystonia, L-DOPA, chlorpromazine, dopamine D1 receptor, striatum,

striosome compartment, patients

Introduction

Blepharospasm is the most frequent phenotype of focal

dystonia in adults and manifests as excessive blinking and

spasms of the eyes (1–3). The reported prevalence of

blepharospasm ranges from 20 to 133 cases per million

individuals (4).

The symptoms of blepharospasm are often severe enough

to result in functional blindness (5–7). Botulinum toxin (BTX)

injection into the orbicularis oculi muscles is now considered

as the first-line treatment for blepharospasm (8); however, it

often produces unsatisfactory results (9, 10). Administration

of anticholinergics, benzodiazepines, baclofen, or tetrabenazine

can also be therapeutic options (11), but these frequently cause

serious side effects as well as failure of therapy (12, 13). The

currently available oral pharmacotherapy can be limited by the

common occurrence of adverse effects, which contribute to a

decrease in compliance or discontinuation even before benefits

are evident (11). Therefore, the development of alternative or

adjunct pharmacotherapy for the treatment of blepharospasm is

required (3, 11).

Impairment of balanced activity between dopamine D1-

and D2-like receptor (D1R and D2R) functions in the

striatum, which consists of two functional subdivisions called

the striosome (patch) and matrix compartments (14), has

been proposed to underlie dystonia genesis (15–18). The

striosome and matrix dopamine systems play central roles

in cortico-thalamo-basal ganglia circuits and are thought to

underlie the genesis of multiple movement and behavioral

disorders (18–20). A recent modular computational model of

the basal ganglia network suggested that striosomal dysfunction

Abbreviations: L-DOPA, L-3,4-dihydroxyphenylalanine; CPZ,

Chlorpromazine; VAS, Visual Analog Scale; BSDI, Blepharospasm

Disability Index; mVAS, Modified Visual Analog Scale; JRS, Jankovic

Rating Scale; BTX, Botulinum Toxin; D1R, dopamine D1 like receptor;

Gαolf, olfactory type G-protein α subunit; MSNs, Medium Spiny Neurons;

cAMP, 3′,5′-cyclic AMP; D1Rs and D2Rs, dopamine D1- and D2-like

receptors; DOPACOL, Dopacol tablets L50 TM (50mg of L-DOPA plus

5mg of carbidopa; Nichi-Iko Pharmaceutical Co., Ltd. Toyama, Japan);

D2R, dopamine D2 like receptor.

may induce inappropriate “motor action selection” and promote

specific repetitive, stereotyped behaviors, including dystonia

symptoms (21). This hypothesis is supported by the functional

anatomy observed in several human disease models. For

instance, mutations in the GNAL gene, which encodes the

stimulatory α subunit of the G-protein (Gαolf), cause primary

torsion dystonia (22), known as DYT25 dystonia (Figure 1,

DYT25). Gαolf is highly expressed in the striatum (23, 24),

where it couples D1Rs in direct pathway medium spiny neurons

(MSNs) and adenosine A2A receptors in indirect pathway

MSNs to increase 3′,5′-cyclic AMP (cAMP) through activation

of adenylyl cyclase type 5 (23, 24). This indicates that in

DYT25, loss of Gαolf function induces a decrease in the cAMP

level in both the D1-direct and D2-indirect pathway MSNs,

leading to the reduced activity of D1Rs in direct pathway

MSNs and enhanced activity of D2Rs in indirect pathway

MSNs. Given that both D1Rs and Gαolf are highly concentrated

in striosomes (18, 25), DYT25 dystonia also represents a

loss of striosomal D1-signal activity. Furthermore, in patients

with X-linked dystonia-parkinsonism, also known as DYT3

(Figure 1, DYT3), postmortem analyses revealed a predominant

loss of D1R-expressing MSNs in the striosomes relative to the

matrix compartment in the early disease phase when dystonia

symptoms occur (15, 17). Thus, loss of D1-signaling in the

striosome compartment may cause dystonia symptoms, at least

in part, in dystonia syndrome.

This study was undertaken to examine whether dystonia

symptoms can be attenuated through dopaminergicmodulation,

which induces an increase in striosomal D1-signaling. In line

with our immunohistochemical studies on human autopsied

brains, we have shown that in the neostriatum, D1R proteins

are heavily enriched in striosomes, while these are modestly

distributed in the matrix compartment (26). This indicates that

when D1 agonists are administered orally, they preferentially

act on the striosome compartment in the “human” striatum.

Here, we sought to determine whether dual dopaminergic

therapy with L-3,4-dihydroxyphenylalanine (L-DOPA)

and chlorpromazine (CPZ) exerts a therapeutic effect on

blepharospasm. L-DOPA is the direct precursor of dopamine

(27), the full agonist of both D1Rs and D2Rs, whereas CPZ is an

effective antagonist of D2Rs (28).
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FIGURE 1

Hypothetical functional anatomy of the basal ganglia in DYT25 and DYT3. A schematic representation of the basal ganglia circuit is presented.

Black and red arrows indicate inhibitory and excitatory striatal output projections, respectively. The striatum consists of two functional

subdivisions: striosome (S) and matrix (M) compartments. Three major pathways are emphasized: the direct pathway originating from medium

spiny striatal projection neurons (MSNs) possessing D1-receptors (D1), the indirect pathway from MSNs possessing D2-receptors (D2), and the

striosomal pathway from the striosome (S) compartment, which is heavily enriched in D1-receptors. In DYT 25, mutations in the GNAL gene

cause a loss of function of Gαolf, leading to reduced activity of D1-receptors in striosomal pathway MSNs. In DYT3, severe degeneration of

striosomal MSNs that possess D1-receptors is found in the early disease phase when dystonia symptoms occur (dystonia phase). M, matrix

compartment; S, striosome compartment; GPe, globus pallidus externa; STN, subthalamic nucleus; SNc, substantia nigra pars compacta; GPi,

globus pallidus internus; SNr, substantia nigra pars reticulata.

Subjects and methods

This randomized clinical trial was approved by the

Institutional Ethics Committee. The study was registered

with the International Committee of Medical Journal Editors

recognized registry, the UMIN Clinical Trials Registry (number:

UMIN00027430; date of permission: May 21, 2017).

Subjects

This study enrolled 21 patients with blepharospasms

(six men and fifteen women) with an age range of 51–79

years (mean age average, 68.7 ± 7.8 years). Blepharospasm

was diagnosed according to the criteria of Albanese et al.

(2). Blepharospasm are characterized by focal involuntary

contractions that interfere with physiological opening or

closing of the eyelids, and those are caused by dystonic

contractions of the orbicularis oculi often accompanied by

contractions of the procerus and corrugator muscles. Onset is

usually insidious, with eye irritation or dryness followed by

excessive blinking, especially in bright light. All participants

were examined by a single qualified neurologist, movement

disorder specialist (S.M.) who performed general physical

and neurological examinations to confirm the absence of

neurological abnormalities other than blepharospasm. We

carefully excluded the patients with dementia or apparent

psychiatric disorders and/or those who taking medications that

might affect dopamine signaling.

Brain magnetic resonance imaging and laboratory

and genetic tests were performed to exclude hereditary

and secondary dystonia. For genetic tests, we screened

for pathogenic variants in known dystonia genes using

whole-exome sequencing (OMIM Phenotypic Series PS128100).

All patients who had received BTX type A (BTX-A)

treatment were instructed to undergo a 3-month washout period

from the last BTX-A injection until the start of this clinical trial.

In all of them, themedications except for L-DOPA andCPZwere

unchanged from 3 months prior to the start of the clinical trial

to the end of it. Video analyses were performed before and after

the drug challenge tests (Figure 2).

Drugs

We used Dopacol tablets L50TM (DOPACOL) (50mg of

L-DOPA plus 5mg of carbidopa; Nichi-Iko Pharmaceutical Co.,

Ltd. Toyama, Japan) and Wintermin fine granules (10%; 180mg
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FIGURE 2

Timetable for the drug challenge tests with Dopacol tablets L50TM (DOPACOL) (A), chlorpromazine (CPZ) (B), and DOPACOL + CPZ (C). T, tablet.

Clinical evaluations and video recordings were performed 1 day before (pre-treatment) and 8 weeks after (post-treatment) the initial

administration of the drugs.

of chlorpromazine phenolphthalinate per gram; Shionogi & Co.,

Ltd. Osaka, Japan).

Patient sorting and drug administration

There were 415 patients with blepharospasm who attended

our hospital by the end of 2021. All of them had received

BTX-A injection into the orbicularis oculi muscles as a first-

line treatment, but some of them were refractory. Several studies

have reported that some patients have not responded to BTX-

A therapy (29–32), categorized as primary non-responders (33).

In one study, 9.1 and 7.5% of patients were thought to have

“primary resistance” and “secondary resistance,” respectively

(30). Patients who poorly responded to BTX-A treatment were

randomly assigned to the following three groups (L-DOPA,

CPZ, and L-DOPA + CPZ groups) in the order of consent.

In a double-blind fashion, participants and evaluators were not

informed of the identification of each group.

Although we happened to have had unequal sex distribution

among the groups after randomized patient sorting (Table 1), it

is well documented that blepharospasm shows a female-to-male

preponderance in prevalence, with a reported male-to-female

ratio between 1:2 and 1:8 (4, 34, 35).

L-DOPA group

This group included seven patients with blepharospasms

(three men and four women) who ingested DOPACOL alone

(Figure 2A, Table 1). Their age range was 51–79 years (age

average, 66.0± 10.1 years), and their mean disease duration was

10.7 ± 9.5 years. We prescribed DOPACOL (one tablet per day)

for the first 2 weeks, DOPACOL (one tablet × 2/day) for the

next 2 weeks, and DOPACOL (one tablet × 3/day) for the last

4 weeks.

CPZ group

This group included seven patients with blepharospasm

(one man and six women) who ingested CPZ alone (Figure 2B,

Table 1). Their age range was 60–72 years (age average,

66.4± 3.9 years), and their mean disease duration was 8.4± 5.9

years. We prescribed CPZ (5 mg/day) for the first 2 weeks, CPZ

(5mg × 2/day) for the next 2 weeks, and CPZ (5mg × 3/day)

for the last 4 weeks.

L-DOPA + CPZ group

This group included seven patients with blepharospasms

(two men and five women) who ingested both DOPACOL and

CPZ (Figure 2C, Table 1). Their age range was 66–78 years (age

average, 73.5 ± 5.9 years), and their mean disease duration was

8.0± 7.6 years. We prescribed DOPACOL (one tablet/day) with

CPZ (5 mg/day) for the first 2 weeks, DOPACOL (one tablet

× 2/day) with CPZ (5mg × 2/day) for the next 2 weeks, and

DOPACOL (one tablet × 3/day) with CPZ (5mg × 3/day) for

the last 4 weeks.
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TABLE 1 Assessments of blepharospasm symptoms by VAS, BSDI, mVAS and JRS.

Group Total

number

(female)

Age

(years)

Disease

duration

(years)

VAS BSDI mVAS JRS

Before After Before After Before After Before After

LDOPA n= 7 (4) 66.0± 10.1 10.7± 9.5 63.4± 18.4 74.3± 22.8 11.6± 4.0 12.3± 3.7 141.3± 8.4 178.8± 24.3** 4.8± 1.3 5.1± 1.8

CPZ n= 7 (6) 66.4± 3.9 8.4± 5.9 57.3± 16.1 57.6± 23.0 11.3± 4.2 10.7± 4.1 167.4± 20.9 175.4± 33.7 4.7± 1.5 4.7± 1.3

LDOPA+ CPZ n= 7 (5) 73.5± 5.9 8.0± 7.6 67.1± 14.6 44.8± 27.5* 15.1± 6.6 10.6± 6.7** 148.0± 17.4 116.5± 14.5** 5.9± 2.2 3.0± 2.3**

The severity of blepharospasm was evaluated by VAS, BSDI, mVAS and JRS before and after the drug administration in each group.

*P < 0.05, ** P < 0.01 (Wilcoxon signed-rank test) as compared to before the treatment.

VAS; visual analog scale, BSDI; blepharospasm disability index, mVAS; modified visual analog scale, JRS; Jankovic rating score, LDOPA; levodopa carbidopa hydrate, CPZ;

chlorpromazine phenolphthalinate.

Clinical assessments and measures

As shown in Figure 2, clinical evaluations and video

recordings were performed 1 day before (pre-treatment) and

8 weeks after (post-treatment) the initial administration of the

drugs. The severity of blepharospasm was evaluated using the

Visual Analog Scale (VAS) (36), Blepharospasm Disability Index

(BSDI) (37), modified VAS (mVAS) (38), and Jankovic Rating

Scale (JRS) (37, 39). The VAS and BSDI were used for subjective

signs, and the mVAS and JRS were used for objective signs.

Pre-treatment period symptom severities
and participant backgrounds

Comparison of gender, age and disease duration at the

pre-treatment period revealed no significant group differences

among three treatment groups (P > 0.05, Kruskal–Wallis test).

Comparison of subjective (VAS and BSDI) and objective

(mVAS and JRS) measures at the pre-treatment period revealed

significant group differences only in mVAS (P < 0.05,

Kruskal–Wallis test). Therefor we performed Mann–Whitney

U-test on mVAS between each two groups, and it showed a

significant difference between “LDOPA” and “CPZ” groups (P

< 0.05), but neither between “LDOPA” and “LDOPA + CPZ”

groups (P > 0.05) nor between “CPZ” and “LDOPA + CPZ”

groups (P > 0.05). Thus, no apparent differences were found

between the “LDOPA + CPZ” group and the other two groups.

This indicates that there is no problem in determining the

therapeutic efficacy in “LDOPA+ CPZ” group.

Statistical analyses

All values are expressed as mean ± SD. Statistical

significance was evaluated using the non-parametric methods

that include Wilcoxon signed-rank, Kruskal–Wallis, and

Mann-Whitney U-tests. Statistical significance was set at P <

0.05. Statistical analyses were performed using SPSS statistical

software (version 11.0; IMB Corp., Armonk, NY, USA).

Results

In the L-DOPA group (Figure 3; top), symptom severity was

significantly increased after the drug trial, as determined by the

mVAS (P < 0.05, r = 0.59), but not by the VAS, BSDI, and

JRS (Table 1). In the CPZ group (Figure 3; middle), there was

no apparent change in symptom severity after the drug trial, as

determined by the VAS, BSDI, mVAS, and JRS (Table 1). In the

L-DOPA+CPZ group (Figure 3; bottom), symptom severity was

significantly decreased by administration of L-DOPA with CPZ

in all subjective and objective signs, as determined by the VAS

(P < 0.05, r= 0.53), BSDI (P < 0.05, r= 0.64), mVAS (P < 0.05,

r = 0.59), and JRS (P < 0.05, r = 0.64) (Table 1).

No apparent neuropsychiatric and neurobehavioral adverse

effects were found in the L-DOPA, CPZ, and L-DOPA + CPZ

groups and no patients dropped out during the drug challenge

tests. Thus, the dual use of DOPACOL (one tablet × 3/day) and

CPZ (5mg × 3/day), but not the administration of DOPACOL

(one tablet× 3/day) alone or CPZ (5mg× 3/day) alone, can give

rise to a therapeutic effect on blepharospasm (for a reference see

Supplementary Video 1).

Discussion

The present study showed that the symptoms of

blepharospasm, a type of focal dystonia, could be alleviated by

dual dopaminergic therapy using both L-DOPA and CPZ, with

dosages lower than the usual in clinical practice. In this study,

we used CPZ phenolphthalinate (15 mg/day) and L-DOPA (150

mg/day) with carbidopa (15 mg/day). In contrast, the usual

dosage of CPZ in adults is 30–100 mg/day, and, for psychiatric

use, 50–450 mg/day (40, 41), while the standard maintenance

dose of L-DOPA with carbidopa for advanced Parkinson’s

disease is∼600–750 mg/day (42).
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FIGURE 3

Measurements of blepharospasm severities before and after the drug challenge test. Symptom severities were determined by using visual analog

scale (VAS), Blepharospasm Disability Index (BSDI), modified VAS (mVAS), and Jankovic Rating Scale (JRS). Line plots (upper graphs) and average

plots (lower graphs) are shown in the “L-DOPA group (n = 7)” (top panel), “CPZ group (n = 7)” (middle panel), and “L-DOPA + CPZ group (n = 7)”

(bottom panel). *P < 0.05, **P < 0.01 (“before” vs. “after”, Wilcoxon signed-rank test).
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Since L-DOPA is the prodrug of dopamine while CPZ is a

D2-antagonist, our results suggest that dystonia symptoms could

be attenuated through dopaminergic modulation, which induces

an increase in striatal D1-signaling. Based on the evidence that

D1Rs are highly concentrated in the striosome compartment

in the “human” striatum (26), we also suggest that striosomal

loss of D1 signaling may be important in the pathogenesis of

dystonias (15, 16, 18, 21).

According to the classical D1-direct/D2-indirect pathway

model (the so called “Matrix Model”; for reference, see Figure 1

“M, Matrix”), both matrix D1Rs and D2Rs are influenced

by excessive dopamine signaling, causing abnormalities in

individual firing rates and/or firing patterns in downstream

structures (43–46). It is hypothesized that excessive dopamine

signals could cause the activated D1-direct pathway and

inhibited D2-indirect pathway to induce disinhibition and

hyperexcitation of the thalamus and primary motor cortex,

respectively, both of which result in hyperkinetic disorders such

as dystonia (47, 48). Based on the classical matrix model, a

D2-antagonist may improve dystonia symptoms via the D2-

indirect pathway. However, the present study showed that the

administration of CPZ (5mg × 3/day) alone had no effect on

blepharospasm symptoms. This is likely because the dose of CPZ

used here was not high enough to affect dystonia symptoms.

One may say that even with the low dosage used here,

administration of CPZ has a potential risk of causing tardive

dystonia due to its D2-antagonistic action (49, 50). Because

L-DOPA is a prodrug for dopamine that acts as both a D1 and

D2 agonist (27), we consider that in dual therapy with L-DOPA

and CPZ, simultaneous administration of L-DOPA can also

dampen the D2-antagonism caused by CPZ and reduce the risk

of tardive dystonia.

In conclusion, dual dopaminergic therapy with L-DOPA

and CPZ can exert a therapeutic effect on blepharospasm,

which is a focal dystonia. Our results suggest that dopaminergic

modulation inducing an increase in striatal D1-signaling may

attenuate dystonia symptoms, which is in accordance with

the hypothesis that a loss of D1-signaling in the striosome

compartment may underlie dystonia. Since the present study

had a relatively small sample size, independent replications with

a larger sample size may be warranted. It would be necessary to

determine the optimal dosages for the most effective treatment

of blepharospasm, because we have done this first clinical

trial with relatively low doses of “L-DOPA and CPZ.” It is

also necessary to determine if the dual dopaminergic therapy

used here could give rise to long-term and sustained benefits

in patients with dystonias. It is currently under investigation

to assess its therapeutic effects on the various types of focal

dystonias (e.g. cervical dystonia, writer’s cramp and other

occupational dystonias), and the other types of idiopathic and/or

secondary dystonias of which involves segmental or generalized

body parts.
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