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Parkinson’s disease (PD) is the second most common neurodegenerative disease after

Alzheimer’s disease (AD). Both diseases share common clinical and pathological features:

the gradual progression of neurological and psychiatric symptoms caused by neuronal

dysfunction and neuronal cell death due to the accumulation of misfolded and neurotoxic

proteins. Furthermore, both of them are multifactorial diseases in which both genetic

and non-genetic factors contribute to the disease course. Non-genetic factors are of

particular interest for the development of preventive and therapeutic approaches for

these diseases because they are modifiable; of these, sleep is a particularly intriguing

factor. Sleep disturbances are highly prevalent among both patients with AD and PD. To

date, research has suggested that sleep disturbances are a consequence as well as a

risk factor for the onset and progression of AD, which implies a bidirectional relationship

between sleep and AD. Whether such a relationship exists in PD is less certain, albeit

highly plausible given the shared pathomechanisms. This review examines the current

evidence for the bidirectional relationship between sleep and PD. It includes research in

both humans and animal models, followed by a discussion of the current understanding

of the mechanisms underlying this relationship. Finally, potential avenues of research

toward achieving disease modification to treat or prevent PD are proposed. Although

further efforts are crucial for preventing the onset and slowing the progress of PD, it is

evident that sleep is a valuable candidate target for future interventions to improve the

outcomes of PD patients.

Keywords: Parkinson’s disease, α-synuclein, sleep disturbances, insomnia, sleep fragmentation, bidirectional

relationship

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease (AD) (1). The core clinical features of PD are a gradual progression of motor symptoms,
such as bradykinesia, rest tremor, rigidity, and postural instability. In addition, most patients
experience a variety of non-motor symptoms, such as sleep dysfunction, autonomic dysfunction,
and psychiatric dysfunction (2), which affect their quality of life (3). Despite a global prevalence
of more than 6 million individuals and a 2.5-times increase in PD prevalence over the past 30
years (1, 4), current treatments for PD remain limited to symptomatic therapies, such as dopamine
replacement, and there is a continued unmet clinical need for disease modification for PD (5).
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PD and AD share common clinical and pathological
features of neurodegenerative diseases: the slow progression of
neurological and psychiatric symptoms caused by the progressive
degeneration of neurons in selective central nervous system
regions that are characteristic of each disease (6). Furthermore,
a common core mechanism underlying both diseases is the
accumulation of misfolded and aggregation-prone neurotoxic
proteins, such as α-synuclein (α-syn) in PD and amyloid β (Aβ)
and tau in AD (6).

PD and AD are multifactorial diseases in which various
genetic and non-genetic factors contribute to the disease course
(5, 7). Although genetic factors are difficult to modify following
birth, non-genetic factors are modifiable and may serve as
preventive or therapeutic targets. Of such non-genetic disease-
modifiable factors, sleep has attracted attention as a particularly
strong candidate for PD and AD (8).

Sleep disturbances are highly prevalent among patients with
PD and AD and often appears from the early or prodromal
stages of both diseases (8, 9). Sleep disturbances among patients
with AD are primarily attributed to AD pathology in brain
regions that regulate the sleep-wake or circadian rhythm,
such as galaninergic neurons in the intermediate nucleus of
the hypothalamus (10), the cholinergic neuronal network that
comprises the brainstem, thalamus, basal forebrain, and cerebral
cortex (11), and the hypothalamic suprachiasmatic nucleus (12–
14). Recently, a novel concept of a bidirectional relationship
between AD and sleep disturbances has emerged; in addition to
the conventional concept that sleep disturbance is a consequence
of AD pathology, epidemiological and experimental evidence
has suggested that sleep disturbances are a risk factor for the
onset and progression of AD (15). In light of this, alongside
the shared pathomechanisms of AD and PD, epidemiological
and experimental explorations on whether such a bidirectional
relationship exists between PD and impaired sleep are now
being conducted.

This review first provides an overview of sleep disturbances
in patients with PD and summarizes recent studies that have
suggested a bidirectional relationship between PD and sleep
disturbances. The potential mechanisms underlying the link
between sleep disturbances and PD are then described. Finally,
future research directions that could aid in the development of
novel therapeutic and preventive methods to alter the disease
course of PD by targeting sleep are discussed.

SLEEP DISTURBANCES IN PD

Sleep disturbances are one of the most common non-motor
symptoms of PD and affect 60–98% of patients with PD (16).
Patients with PD experience a broad range of sleep disorders,
such as insomnia, excessive daytime somnolence (EDS), sleep-
related breathing disorders (SBD), circadian disorders, sleep-
related movement disorders [e.g., restless legs syndrome (RLS)
and periodic leg movements of sleep (PLMS)], and parasomnia
[e.g., rapid eye movement (REM) sleep behavior disorder (RBD)]
(16). Among these, insomnia is the most common and affects up
to 80% of all PD patients (17). Symptoms of insomnia comprise

difficulties initiating sleep, difficulties maintaining sleep, or
waking up earlier than desired. Patients with PD usually do not
experience significant difficulties in initiating sleep but are unable
to maintain sleep (18, 19). Indeed, 81.54% [95% confidence
interval (CI) 78.5–84.4] of PD patients reported difficulty in
maintaining sleep, whereas 18.0% (95% CI 15.1–20.9) reported
difficulty in initiating sleep (17). Thus, sleep fragmentation, a key
indicator of sleep maintenance insomnia, is the most common
sleep complaint among patients with PD (20).

Insomnia is also one of the most common sleep disturbances
among older adults without PD (21). Similar to patients with PD,
difficulty in maintaining sleep is the most prevalent symptom
among insomnia patients without PD (∼50–70%) (22). Although
advanced age is a significant risk factor for both PD and insomnia
(5, 23), the prevalence of insomnia in patients with PD is higher
than that in otherwise healthy older adults (17, 22).

Sleep disturbances are assessed using subjective measures,
such as self-report questionnaires, or objective measures, such
as polysomnography (PSG) or actigraphy. PSG is useful for
distinguishing two major components of sleep, namely REM
sleep and non-REM (NREM) sleep, and also distinguishing
NREM sleep stages, namely stages N1, N2, and N3 (24). Stage
N3, the deepest NREM sleep stage, is defined as a sleep
epoch containing 20% or more high-voltage slow waves with
a frequency of 0.5–2Hz and peak-to-peak amplitude > 75
µV as measured by electroencephalogram and is thus referred
to as slow-wave sleep (SWS) (25). A recent meta-analysis of
PSG studies in patients with PD revealed significant reductions
in total sleep time, sleep efficiency, proportion of stage N2
sleep, SWS, and REM sleep in PD patients compared with
controls (26). Significant increases in wake time after sleep onset
(WASO), proportion of stage N1 sleep, and REM latency have
also been observed in patients with PD (26). Intriguingly, a
supplementary meta-analysis revealed no significant differences
in PSG parameters that directly measure sleep architecture
related to sleep maintenance, such as WASO, sleep efficiency,
and N1, N2, and SWS percentages, between PD patients with
and without RBD, which is a major sleep disorder experienced by
patients with prodromal PD (26). However, this analysis found
differences in arousal index, PLMS index, and REM percentages,
which could affect the sleep architecture (26).

Sleep disturbances are often under-reported by patients
with PD and under-diagnosed by health professionals (27).
One reason for this under-recognition may be the occasional
discrepancy between the subjective complaints of sleep problems
and the objective abnormality of sleep structure measured using
PSG (28, 29). Notably, although objective sleep abnormalities
may be subtle in otherwise healthy people with subjective
sleep disturbances, there are often significant objective sleep
abnormalities in addition to subjective sleep disturbances in
patients with PD (30). A recent study found that, despite
a significant association between subjective sleep quality and
health-related quality of life (HRQoL), the associations between
objective measurements of PSG and HRQoL were negligible,
indicating that objective sleep abnormalities may not be
perceived as sleep disturbances in patients with PD (31). Such
discrepancies that are characteristic of patients with PD could
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contribute to the under-recognition of sleep disturbances despite
their high prevalence and severity.

BIDIRECTIONAL RELATIONSHIP
BETWEEN SLEEP AND PD

Sleep disturbance in PD is multifactorial (32) in contrast
with that in AD, which is mainly due to the AD pathology
affecting the brain regions regulating sleep-wake or circadian
rhythm (8, 10–14). Both dopaminergic and various non-
dopaminergic degeneration in PD alters the regulation of
sleep-wake and circadian rhythm (33). Furthermore, numerous
other factors contribute to insomnia in PD patients, often in
combination: nocturnal motor symptoms such as hypokinesia
or dystonia, non-motor symptoms such as nocturia or pain,
mental comorbidities such as depression or anxiety, and sleep
problems other than insomnia such as SBD, RLS, and PLMS (33).
Moreover, dopaminergic medication for PD can induce sleep
disturbances, such as insomnia and EDS (34), although long-
acting dopamine agonists modestly improve insomnia symptoms
possibly via reducing nocturnal motor and some non-motor
symptoms (35–37).

These observations suggest that sleep disturbances are
a consequence of PD progression (Figure 1; upper arrow).
However, recent studies have investigated the impact of
sleep disturbances on the susceptibility to developing or the
progression of PD. A retrospective longitudinal cohort study
conducted in Taiwan using a nationwide database revealed that
non-apnea sleep disorders, especially insomnia, are associated
with a significantly higher risk of future development of PD
(38). In a cohort of 91,273 adult patients with non-apnea
sleep disorders without PD and a control cohort, non-apnea
sleep disorders were found to be an independent risk factor
for future development of PD after multivariate adjustment
(adjusted hazard ratio: 1.18, 95% CI: 1.11–1.26, p < 0.001)
(34). Importantly, among the various non-apnea sleep disorders,
patients with chronic insomnia lasting for more than 3 months
have the greatest risk for future development of PD (adjusted
hazard ratio: 1.37, 95% CI: 1.21–1.55, p < 0.001) (38). Another
large prospective longitudinal population-based study with over
64,855 person-years and 13 years of follow-up used subjective
sleep assessment and demonstrated that subjectively poorer
sleep quality and shorter sleep duration are associated with an
increased risk of incident Parkinsonism within the first 2 years
of follow-up, which attenuated during follow-up (39). This is
in line with a large registry-based study that showed increases
in insomnia diagnoses 2 years but not 5 and 10 years before
diagnosis of PD (40). Although these two studies suggest that
sleep disturbances are prodromal or early symptoms of PD,
they do not exclude the possibility that sleep disturbances may
simultaneously accelerate the underlying PD pathology.

In addition, greater sleep fragmentation measured by
actigraphy in older adults without a clinical diagnosis of PD
is associated with higher odds of subclinical PD pathology,
such as the presence of Lewy bodies [LBs; odds ratio (OR):
1.40, 95% CI: 1.05–1.86, p = 0.02] and substantia nigra

FIGURE 1 | Bidirectional relationship between sleep disturbances and

Parkinson’s disease (PD). Sleep disturbances, especially insomnia, are one of

the most common non-motor symptoms in patients with PD and otherwise

healthy older adults. The conventional understanding is that PD pathology and

various PD-related motor or non-motor symptoms induce sleep disturbances

in patients with PD (upper arrow). In contrast, recent epidemiological and

experimental studies have suggested that sleep disturbances impact the

susceptibility to developing or the progression of PD (lower arrow). These are

not mutually exclusive and could form a vicious cycle in which sleep

disturbances caused by PD pathology in turn accelerate the PD pathology.

neuronal loss (OR: 1.43, 95% CI: 1.10–1.88, p = 0.008), and a
pathological diagnosis of PD (OR: 2.04, 95% CI: 1.34–3.16, p =

0.0009) (41). Importantly, these associations were independent
of various medical and psychiatric comorbidities, including
cognitive impairment and AD pathology (41). Furthermore,
in a retrospective longitudinal study in 129 patients with PD
who underwent PSG followed by a regular clinical assessment
including the Unified Parkinson’s Disease Rating Scale Part III for
at least 2 years, lower accumulated power of SWS was shown to
be associated with faster motor symptom progression, especially
axial motor symptoms, over an average follow-up period of
4.6± 2.3 years (42).

All of the abovementioned clinical studies have demonstrated
the association between impaired sleep and increased risk
of PD onset or progression and thus suggest a bidirectional
relationship between sleep disturbances and PD (Figure 1). One
interpretation of these results is that sleep disturbances are a
prodromal symptom of PD caused by early PD pathology that
affects the sleep regulatory circuit or circadian rhythm, which is
well established in the case of RBD and also likely in the case of
insomnia based on the clinicoepidemiological studies described
above. An alternative explanation is that sleep disturbances
accelerate the onset and progression of PD. The subtype(s) of
sleep disturbances or the component(s) of sleep that could affect
PD pathology needs to be determined in future studies. These two
mechanisms are not mutually exclusive and could form a vicious
cycle in which sleep disturbances caused by PD pathology in turn
accelerate the PD pathology.

Further investigation of this bidirectional relationship
between sleep disturbances and PD, especially the precise
causal relationship, is vital to determine whether treating sleep
disturbances in the general population and patients with PD
would help prevent or delay the onset and progression of PD.
Various animal models of PD, especially mouse models, are
useful for examining the causal relationship between sleep and
PD because the core mechanisms underlying the sleep-wake
cycle and its regulation are shared between humans and mice
(43). A recent study demonstrated in mouse models of PD
that the administration of sodium oxybate enhanced SWS and
reduced the accumulation of aggregated α-syn in the brain,
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although no major symptomatic effects were observed (44).
Further investigations of the causal relationship between sleep
disturbances and PD with a particular focus on PD symptoms
and pathology are needed.

POSSIBLE MECHANISMS UNDERLYING
THE BIDIRECTIONAL RELATIONSHIP
BETWEEN SLEEP AND PD

Homeostatic regulation of protein quality, referred to as
proteostasis, is indispensable for human health (45). Proteostasis
is maintained via the coordination of multiple intra- and
extracellular systems that regulate protein synthesis, folding,
disaggregation, and degradation or elimination (45). Impaired
proteostasis and the resulting accumulation of misfolded and
aggregation-prone neurotoxic proteins, including α-syn in PD
and Aβ and tau in AD, are common pathomechanisms that
underlie neurodegenerative diseases (6). Various studies have
demonstrated that sleep contributes to the dynamics of these
neurotoxic proteins, although studies on α-syn dynamics in
relation to sleep are still in their infancy (46).

In AD mice, the two pathological hallmarks of AD, namely
extracellular senile plaques composed mainly of Aβ and
intracellular neurofibrillary tangles (NFTs) composed mainly
of phosphorylated tau, increase with sleep restriction or sleep
fragmentation (47–51). An increase in neuronal activity, such
as chemical or optogenetic stimulation in mice or sustained
wakefulness due to sleep restriction in both mice and humans,
raises the extracellular secretion of soluble Aβ (52–56), which
leads to the extracellular accumulation of aggregated insoluble
Aβ (as demonstrated in mice) (47, 48, 57) because Aβ has a high
propensity to aggregate in a concentration-dependent manner
(58). Moreover, an increase in neuronal activity, including
sustained wakefulness, increases extracellular tau and modifies
its phosphorylation in vivo (49, 59–62). However, exactly how
this extracellular secretion of tau relates to intracellular tau
accumulation and NFT formation remains to be elucidated.
One plausible mechanism is the cell-to-cell propagation of
tau pathology, which is the spreading of tau pathology via
extracellular tau secretion followed by the uptake of tau by
adjacent cells (63).

In addition to the increased secretion of Aβ and tau due to
increased neuronal activity, a decrease in clearance efficiency of
extracellular metabolites due to poor sleep may contribute to
Aβ and tau accumulation. The glymphatic system is a recently
proposed mechanism that removes extracellular metabolites,
including Aβ, via the interchanging convective flow of interstitial
fluid (ISF) and cerebrospinal fluid (CSF) in the brain (64).
Aquaporin 4, a water-specific channel protein expressed on the
astrocytic endfeet, is considered a key molecule that enables this
convective flow (64). The clearance efficiency of extracellular
metabolites, including Aβ, via the glymphatic system has been
reported to increase in mice by 60% during natural sleep (65).
Thus, Nedergaard and colleagues proposed that the physiological
restorative function of sleep is the removal of extracellular waste
produced during wakefulness (65). However, the existence of the

glymphatic system and its relationship with impaired sleep and
neurodegenerative diseases remains controversial (66–68).

α-syn is the main component of LBs, the pathological
hallmark of PD, and is a neuronal protein that is predominantly
found as soluble monomers in the cytoplasm (69). α-syn
undergoes conformational changes under specific conditions,
which leads to the formation of soluble yet neurotoxic
oligomers and protofibrils, followed by the formation of insoluble
aggregates found in LBs (70). Similar to Aβ and tau, an increase
in neuronal activity in mice and humans, including sustained
wakefulness due to sleep restriction, raises the extracellular
soluble α-syn in the ISF or CSF (49, 71). In addition, like tau,
the cell-to-cell transmission of α-syn has been demonstrated in
various in vitro and in vivo model systems and is suggested to
contribute to the progression of α-syn pathology in patients with
PD (72). Research on the contribution of extracellular clearance
pathways, including the glymphatic system, to the removal of
extracellular α-syn is emerging. Zou et al. demonstrated in a
mouse model of PD that ligating deep cervical lymph nodes
decreases meningeal lymphatic drainage and aggravates α-syn
pathology and motor impairment (73). More recently, Ding et
al. showed that meningeal lymphatic drainage is significantly
decreased in patients with PD (74). However, it is worth
noting that the decrease in intracellular α-syn degradation, in
addition to the decrease in extracellular α-syn clearance, likely
contributed to the aggravation of α-syn pathology and motor
phenotype in the PD mice subjected to meningeal lymphatic
drainage blockage (73). Additional studies exploring the interplay
between sleep and intra- and extracellular α-syn dynamics are
necessary to better understand the causal relationship between
sleep disturbances and PD.

In addition to the abovementioned potential alterations
in extracellular dynamics of neurotoxic proteins due to
altered sleep, various intra- and extracellular mechanisms may
contribute to impaired proteostasis under sleep disturbances.
Sustained wakefulness activates the unfolded protein response
pathway, which is one of the core mechanisms that protect
cells from the accumulation of neurotoxic proteins (75–78).
Aging impairs this protective response against insufficient sleep
in mice, and the pro-apoptotic signaling pathways are activated
(79). Furthermore, neuroinflammation, blood-brain barrier
disruption, oxidative stress, and neuronal double-strand DNA
breaks, all of which are known to exacerbate neurodegenerative
pathology, are induced by impaired sleep (80–85). Although
all of these mechanisms potentially contribute to the common
pathomechanism of neurodegenerative diseases, understanding
their contribution to α-syn pathology under impaired sleep
requires further research.

DISCUSSION

The number of patients with AD is expected to increase
worldwide, particularly in low- and middle-income countries
(86). Surprisingly, however, in Europe and North America, the
age-specific incidence rate of AD has declined by 13% per decade
over the past 25 years (87). Intriguingly, the decrease in the
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known risk factors of AD during this period does not fully
explain the decrease in the incidence of dementia (88). These
data highlight the importance of identifying novel modifiable
non-genetic factors that could serve as targets for primary
and secondary AD prevention. Sleep disturbances have recently
emerged as a strong candidate for such novel and modifiable risk
factors for AD (8).

It is plausible that sleep disturbances may also serve
as a modifiable risk factor for PD (89), given the shared
pathomechanisms between AD and PD as neurodegenerative
diseases and the common sleep-related changes in the dynamics
of neurotoxic proteins involved in AD and PD. On the
basis of the heterogeneous spatial and temporal progression
patterns of PD symptoms and the underlying pathology, several
hypotheses explaining this heterogeneity have been proposed.
The Braak hypothesis originally proposed that PD pathology
originates in the peripheral autonomic nervous system or in
the olfactory bulb and then spreads throughout the brain
in a sequential manner (90). Several alternative hypotheses
were then proposed to delineate PD subtypes that cannot be
explained solely by the Braak hypothesis. For example, Horsager
et al. recently hypothesized that PD comprises two subtypes
based on progression patterns: brain-first PD and body-first
PD (91). In brain-first PD, α-syn pathology arises in the
brain and subsequently descends to the peripheral autonomic
nervous system via the brainstem (91, 92). In body-first PD,
α-syn pathology arises in the peripheral autonomic nervous
system and ascends to the brain via autonomic nerves (91,
92). These hypotheses are consistent with the propensity of
α-syn to transmit intracellularly along the neuronal circuit in
the cellular and animal models of PD and the progression
pattern of PD observed in neuropathological and clinical studies
(93). However, these hypotheses still remain controversial based
on descriptive cliniconeuropathological studies, including an
autopsy-based study reporting no cases exhibiting PD pathology
in the peripheral nervous system but not in the brain (94–
96). Uchihara and Giasson instead proposed a multifocal
PD pathology hypothesis based on the observation that PD
pathology initially appears in multiple neuronal groups without
transsynaptic connections and then spreads into selective but
variable neuroanatomical structures (97). Importantly, sleep
could serve as a preventive target in either pattern or stage of PD
progression, owing to the high prevalence of sleep disturbances
among patients with PD and otherwise healthy older adults. In
the patients with PD pathology in the brain regions regulating
sleep-wake or circadian rhythms, sleep disturbances caused
by PD pathology may accelerate PD progression. In other
patients, sleep disturbances caused by aging may accelerate PD
progression both in the brain and from the peripheral autonomic
nervous system into the brain because sleep disturbances evoke
the systemic immune response and metabolic stress, both
of which are known contributors to PD pathology (98, 99).
Furthermore, in both PD subtypes, sleep disturbances due to
PD, AD, or aging, may aggravate concomitant AD pathology
and/or vascular pathology. Comorbidity of AD pathology is
common in PD and affects the clinical phenotype of patients
(100–102). Moreover, vascular factors contribute to both AD

and PD pathology (58, 103). Consideration of these overlapping
and interacting pathologies during the prodromal stages is
essential for developing disease-modifying therapeutic and/or
preventive methods for PD (104). Sleep is an emerging attractive
candidate for such preventive methods that could affect the
abovementioned pathologies.

Further clarification of the causal relationship between
sleep disturbances and PD in both preclinical and clinical
settings is crucial. Complementary approaches by longitudinal
observational studies in a large prodromal PD cohort with
subjective and objective sleep assessment and by basic studies
using animal models of PD that recapitulate both the symptoms
and the pathological findings through the prodromal to the
motor phase would be helpful. Developing novel methods to
monitor the progression of PD pathology in vivo, such as
α-syn tracer for positron emission tomography, would be a
great addition in these studies. Determining the components
of “good sleep” that delay or prevent PD progression is also
necessary. Transomics analyses of biofluids, such as CSF or
plasma, obtained in the aforementioned longitudinal studies
in combination with analyses of the sleep profiles and clinical
PD progression could help delineate the biological changes
underlying sleep-related PD progression. Furthermore, there is
an urgent need to develop therapeutic methods to achieve “good
sleep.” Non-pharmacological treatments, such as cognitive-
behavioral therapy for insomnia (105), may also benefit patients
with PD. Meanwhile, novel hypnotics with different mechanisms
of action and potentially better safety profiles may offer
more suitable therapeutic opportunities for older adults (106).
Currently, a phase-2 clinical trial is being conducted to test
whether 2-year administration of suvorexant, an orexin receptor
antagonist used to treat insomnia, delays Aβ accumulation
in the older adults who have mild Aβ accumulation without
clinically overt dementia (107). Considering that the number
of orexinergic neurons is decreased in patients with PD (108,
109) and that orexin administration partly ameliorates non-
motor symptoms in a mouse model of PD (110), whether
orexin receptor antagonists as hypnotics are advantageous for
patients with PD needs to be carefully determined in future
studies. Interdisciplinary collaboration between clinicians and
researchers in the various fields described above will contribute
to our understanding of the bidirectional relationship between
sleep and PD and help develop disease modification methods to
overcome the PD pandemic (111, 112).
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