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With therapeutic trials on the horizon for Charcot-Marie-Tooth type 1A (CMT1A),

reliable, valid, and responsive clinical outcome assessments and biomarkers are

essential. Accelerate Clinical Trials in CMT (ACT-CMT) is an international study

designed to address important gaps in CMT1A clinical trial readiness including the

lack of a validated, responsive functional outcome measure for adults, and a lack

of validated biomarkers for multicenter application in clinical trials in CMT1A. The

primary aims of ACT-CMT include validation of the Charcot-Marie-Tooth Functional

Outcome Measure, magnetic resonance imaging of intramuscular fat accumulation

as a lower limb motor biomarker, and in-vivo reflectance confocal microscopy of

Meissner corpuscle sensory receptor density, a sensory biomarker. Initial studies have

indicated that these measures are feasible, reliable and valid. A large prospective,

multi-site study is necessary to fully validate and examine the responsiveness of

these outcome measures in relation to existing outcomes for use in future clinical

trials involving individuals with CMT1A. Two hundred 15 adults with CMT1A are being

recruited to participate in this prospective, international, multi-center study. Serial

assessments, up to 3 years, are performed and include the CMT-FOM, CMT Exam

Score-Rasch, Overall Neuropathy Limitations Scale, CMT-Health Index, as well as

nerve conduction studies, and magnetic resonance imaging and Meissner corpuscle

biomarkers. Correlations using baseline data will be examined for validity. Longitudinal

analyses will document the changes in function, intramuscular fat accumulation,

Meissner corpuscle sensory receptor density. Lastly, we will use anchor-based and

other statistical methods to determine the minimally clinically important change

for these clinical outcome assessments and biomarkers in CMT1A. Reliable, and

responsive clinical outcome assessments of function and disease progression

biomarkers are urgently needed for application in early and late phase clinical trials in
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CMT1A. The ACT-CMT study protocol will address this need through the prospective,

longitudinal, multicenter examination in unprecedented detail of novel and existing clinical

outcome assessments and motor and sensory biomarkers, and enhance international

clinical trial infrastructure, training and preparedness for future therapeutic trials in CMT

and related neuropathies.

Keywords: Charcot-Marie-Tooth disease (CMT), clinical trials, protocol, clinical outcome assessments,

biomarkers

INTRODUCTION

Charcot-Marie-Tooth disease (CMT) is a family of rare inherited
peripheral neuropathies affecting ∼1:2,500 individuals. CMT1A
accounts for 50% of all people with CMT and is caused by an
intrachromosomal duplication in chromosome 17 that results in
the overexpression of peripheral myelin protein 22 kDa (PMP22)
(1, 2). CMT1A is characterized by progressive weakness,
imbalance, sensory loss, foot drop, and gait abnormalities
resulting in reduced health-related quality of life (HRQoL) (3,
4). In the absence of pharmacologic interventions, treatment
mainly consists of symptom management rehabilitation and
surgical strategies. Research efforts, most recently, focus on
disease modifying treatments including targeting correcting
PMP22 overexpression using antisense oligonucleotides, small
interfering RNA or small molecules as candidate therapies (5).
Other therapeutic targets that have demonstrated preclinical
or early clinical promise include inhibition of P2X7 receptor
overexpression (6), neurotrophin 3 administration via gene
therapy (7), and PP1R15A inhibition (to prolong unfolded
protein response and reduce cell stress) (8). Most recently, a trial
of a myostatin inhibitor did not demonstrate efficacy in regards
to functional improvements (9).

Previously, ascorbic acid was thoroughly evaluated in
individuals with CMT1A, with no benefit detected in multiple
clinical trials (10–12). The primary outcome measure for the
trials of ascorbic acid, the CMT Neuropathy Total Score
(CMNTS), did not show significant change over a 2 year period in
adults. These studies highlighted the need for additional natural
history data as well as the development of reliable, responsive and
clinically meaningful outcome assessments (COAs) in order for
the CMT community to demonstrate clinical trial readiness (13).
The Inherited Neuropathy Consortium (INC) has since done
much work developing outcome measures and collecting natural
history on the many different sub-types of CMT. As part of this
work, the CMTNS was revised as a measure of disease severity to
the CMTNS Version 2 (CMTNSv2) and then underwent Rasch
analysis (CMTNSv2-R) (14, 15). Functional scales including
the CMT Pediatric Scale (CMTPedS) and CMT Infant Scale
(CMTInfS), have been developed and validated (16, 17). Using
data from the INC, the CMTPedS detected disease progression
in children with CMT1A over a 2 year period (18). Lastly,
patient reported outcomes (PROs) to elucidate the individual’s
perspective of their disease have been developed and validated
(19). Despite these achievements, there are still gaps in COAs
for measuring the impact that CMT has on function. To address
this limitation, we have developed and piloted the CMT-FOM

(CMT-FOM), a measure for adults with CMT, modeled on the
validated CMTPedS (20, 21). The CMT-FOM assesses physical
function, including hand function, leg function/mobility and
balance, areas that have been identified as having an impact on
quality of life in individuals with CMT (22). This measure, once
validated, will fulfill a critical need for future clinical trials in
CMT as well as address a key element identified by the FDA for
regulatory approval.

Beyond the need for COAs that are responsive to change,
there is also a need for complementary biomarkers including
target engagement measures and measures of treatment response
that can be used in early phase clinical trials. Specifically,
magnetic resonance imaging (MRI) to measure intramuscular fat
accumulations (IMFA) in the calf (Figure 1) (23, 24) has, in pilot
studies, detected disease progression in CMT1A over 12 months,
the most responsive assessment to date in this disorder. Sensory
dysfunction contributes significantly to functional impairment
and reduced quality of life in CMT1A, yet objective measures of
sensory dysfunction are lacking in CMT1A, with sensory nerve
action potentials often unelicitable. In vivo reflectance confocal
microscopy is non-invasive, and painless and has detected
reductions of Meissner corpuscle density (RCM of MC density)
in CMT1A that correlate with elevations of touch pressure
sensory thresholds and clinical severity (25, 26). These motor and
sensory biomarkers require longitudinal, multicenter validation
prior to application in CMT1A clinical trials.

Therefore, the goal of the Accelerate Clinical Trials in CMT
study (ACT-CMT) is to validate COAs and biomarkers for use
in clinical trials involving adults with CMT1A. Specifically, we
will evaluate the reliability, examine the construct and convergent
validity, and document responsiveness to disease progression of
the CMT-FOM. Similarly, using quantitative three-point Dixon
MRI, we will examine the reliability, convergent validity and
responsiveness to change of IMFA as measured by muscle fat
fraction (FF) to validated it as a biomarker of calf-level muscle
involvement, and last, we will assess the reliability, construct and
convergent validity and ability to detect change of RCM of MC
density to validate it as a sensory disease progression biomarker
for use in multi-site CMT1A trials. We also aim to increase the
efficiency of trial design by using data to refine eligibility criteria.

METHODS

Study Description
The ACT-CMT study is a prospective, international, multi-center
study of 215 individuals over a 3-year period. The University of
Rochester, University of Iowa, and University of Pennsylvania
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FIGURE 1 | Example T1-weighted MRI images, and three-point Dixon

MRI-obtained quantitative fat-fraction maps, from a healthy volunteer (top

images), and a person with CMT1A (bottom images).

are the enrolling sites in the United States and the European
sites are University College London, UK and Fondazione IRCCS
Istituto Neurologico Carlo Besta in Milan, Italy. The University
of Rochester is the overall coordinating center for the study,
providing training and quality assurance for all COAs, and is
serving as the central training, quality assurance and reading core
for blinded quantitation of MC densities from RCM image sets.
The University College of London (UCL) MRC Neuromuscular
Disease Centre is the central site for training, quality assurance
and analysis of MRI of IMFA. The University of South Florida
is the Data Management Center, and the University of Sydney
will provide expertise in COA training and Rasch modeling for
the CMT-FOM.

Training and Quality Assurance
Principal investigators (PIs), study coordinators and clinical
evaluators (CEs) attended an Investigators Meeting prior
to the initiation of the study and participant enrollment.
Study personnel received detailed procedure manuals for all
assessments. Standardization and training in the administration
and scoring of the CMTNSv2 was performed with the PIs
and CEs. Following the meeting, the CEs participated in a

hands-on training for administering the CMT-FOM. Following
this training, evaluators assessed 10 individuals over 2 days to
examine reliability (27). In addition to the training for the MRI
assessments, the central MRI Reading Center (UCL) approved
inter–scan reproducibility of control subjects at each site prior
to beginning MRI assessments. MRIs are reviewed for image
quality by the UCL MRI core with ongoing feedback to sites, and
remedial steps as needed to rapidly address any data quality issue.

For RCM imaging, the University of Rochester RCM Core
provided initial training for procurement of RCM image sets at
the in-person meeting. Additional study personnel were trained
by peers and remotely with real time feedback by RCM reading
center staff using the microscope’s TeamViewer application.
Image sets are uploaded to the RCMCore and reviewed for image
quality with ongoing feedback to sites (Figure 2).

Recruitment of Participants
Subjects with CMT1A are primarily being recruited through
the hereditary neuropathy and neuromuscular clinics led by
the investigator at each site. Additionally, CMT1A subjects
participating in the INC Rare Disease Clinical Research Network
(RDCRN) studies at these sites are also given the opportunity
to participate in the ACT-CMT study. An Institutional Review
Board approved letter may also be sent to the participants of
the INC RDCRN contact registry to inform them of the study
and lastly, information about the study is posted on the websites
of patient advocacy groups including CMT Association and the
Hereditary Neuropathies Foundation. Control participants for
this study are being recruited via postings in common areas at
the sites that are accessible to a variety of individuals who travel
through those areas. Control participants undergoMRI and RCM
assessments only.

Study Population
Individuals between the ages of 18 and 75 years with mild to
moderate CMT1A will be recruited to participate in this study.
This age range was selected as it is the age range that mirrors what
is anticipated to be used in future adult CMT1A treatment trials.

In addition, all study participants are required to be
ambulatory (assistive devices allowed) and have clinical and
electrophysiological features of CMT1A, with a documented
PMP22 gene duplication in the participant, or in an affected
first degree relative, with documented nerve conduction slowing
consistent with a diagnosis of CMT1A. The individuals are
required to be able to participate in the informed consent process
and document their consent. They must also be able to speak
and read English (or Italian for the Italian site). Individuals are
excluded from participation if they have other neuromuscular
disorders, diabetes, exposure to peripheral neurotoxic agents,
or other conditions known to predispose them to peripheral
neuropathy. They are also excluded if foot or ankle surgery is
planned or done within the 9 months preceding the screening, or
have a medical condition that in the opinion of the investigator
precludes participation in the CMT-FOM data collection. For
the MRI study procedures, individuals are additionally excluded
from participation if there is a contraindication for non-
contrast MRI.
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FIGURE 2 | Test-retest fat-fraction map images from an example healthy volunteer for the calculation of reproducibility metrics. Images were acquired at two time

points, 2 weeks apart. The fat fraction map was calculated from three-point Dixon acquisitions using the MRI study protocol, and shown with the placement of the

whole muscle ROIs overlaid on the slice. All images were windowed to the same range for display (0–100%).

TABLE 1 | Schedule of activities.

Study visit Screen 1 2 3 4 5 6

Timeframe (months) 0 0 6 12 24 30 36

Activities for all participants Informed Consent x

Demographics x

Medical history x x x x x x

Concomitant medications x x x x x x

CMTES x x x x x x x

CMTNSv2-R (CMTES + tadial SNAP and ulnar CMAP)* x x x x

Peroneal [tibialis anterior (TA)] CMAP amplitude x x x x

CMT-FOM (up to 10 subjects will also perform CMT-FOM reliability testing) x x x x x x

PROs: CMTHI, ONLS, PGIC x x x x x x

Adverse Events x x x x x x x

Blood draw for Biomarkers x x x x x x

Additional AIM 2 items MRI thigh and calf muscle IMFA x x x

Additional AIM 3 items RCM MC density digit V and thenar eminence x x x x x x

Monofilament touch sensation threshold testing x x x x x x

SNAP, sensory nerve action potential; CMAP, compound muscle action potential.

*Nerve conduction studies will be conducted at 30 month visit when end of study for that subject.

Subjects will have either visit 5 (30 months) or visit 6 (36 months) depending on when they enroll. They will not have both. Subjects will be informed at time of enrollment whether they

will have a 30 or 36 month visit.

Healthy controls of the same age range participating in the
MRI and/or RCM assessments are required to be able to provide
written informed consent. They must also be able to speak
and read English (or Italian for Italian site). Healthy control
participants are required to meet the same exclusion criteria
outlined above for participants with CMT1A. Additionally,
individuals are excluded from participation if they have a family
history of a known hereditary neuropathy, unless previously been
shown to be negative for PMP22 gene duplication/deletion.

MEASURES

To address the objectives of this study, participants complete
assessments at baseline, and every 6 months for up to 36

months. Depending on the time of enrollment, participants will

complete either a 30- or a 36-month end of study visit, but

not both. Participants will be asked to complete the CMT-FOM,

MRI and RCM assessments (Table 1). In addition, measures of
disease severity and burden, sensory assessments, the fibular
distal compound muscle action potential (CMAP) recording
from the tibialis anterior muscle, and blood specimens will be
collected. Participants will also complete a global impression of
change questionnaire.

Charcot-Marie-Tooth Functional Outcome
Measure
The CMT-FOM is a 13-item performance-based physical
functioning measure. The items of the CMT-FOM assess upper
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FIGURE 3 | (A) On the left, single plane image from in vivo reflectance confocal microscopy of digit V. (B) In the middle, the MCs are identified by yellow circles in a

healthy control. (C) On the right, MCs are identified by yellow circles in an individual with CMT 1A.

and lower limb physical functioning, gait, mobility and balance.
These items include the nine-hole peg test, functional dexterity
test, grip dynamometry, 6-minute walk test (6MWT), 10-meter
(10m) walk/run test, time to climb 4 stairs, 30 second chair
stand test, Timed Up and Go test (TUG), dynamometry for ankle
dorsiflexion and plantarflexion, and balance items (standing feet
apart on a line, eyes open, standing feet apart on a line, eyes
closed, standing on one leg, eyes closed) (20, 21). Similar to
the CMTPedS (16) and CMTInfS (17), items are scored by
converting the raw data to a z-score based on normative data.
The z-scores are then categorized as normal = 0, very mild
= 1, mild = 2, moderate = 3 or severe = 4, based on the
amount of deviation from normal, to generate a total score of
0–52 (21). The CMT-FOM takes ∼35 mins to complete. Our
initial study of the CMT-FOM demonstrated good test-retest
reliability and an association with the CMTES, consisting of the
clinical items of the CMTNSv2, providing evidence to support
validity (21). As part of this validation study, inter-rater reliability
was established following the initial evaluator training at the
pre-study investigator meeting (27).

MRI Assessment for Intramuscular Fat
Accumulation
Initial pilot studies examined the utility of MRI to assess changes
in muscle and identified fat fraction as a potential biomarker for
studies in CMT1A. FF was found to correlate with the CMTES
and demonstrated sensitivity to disease progression over a 12-
month period (23). To validate this measure for multi-site use in
future clinical trials, MRImuscle imaging of the lower extremities
will be done using three-point Dixon MRI to assess the %FF of
the bilateral thigh and calf muscles. Participants will be imaged
feet-first supine with surface matrix coils for lower limb signal
reception. Prior to participant enrolment, MRI studies of non-
affected individuals will be performed and sent to a central
site (UCL) for quality control and analysis (24). MRI scans for
participants with CMT1A will also be sent to a central site
for analysis.

In vivo Reflectance Confocal Microscopy
of Meissner’s Corpuscles
In vivo RCM of MC has been identified as a novel approach
to measure sensory neuropathy (25, 26, 28). MC density of the
fingertip of digit V was found to be lower than that of healthy
controls and was associated with overall CMT disease severity.
In this study, a portable in vivo confocal reflectance microscope
(Vivascope 3000, Caliber Imaging and Diagnostics Inc.) will be
used to assessMC density. In vivoRCMofMCs will be performed
on the palmar surface of the distal phalanx of digit V and the
thenar eminence of the hand. The non-dominant side will be
used, unless there is a history of focal trauma, or entrapment
neuropathy, that will confound or preclude imaging. In that
instance, RCM and touch pressure sensation threshold testing
will be done on the dominant side. The in-vivo RCM procedure
involves applying a few drops of bio-compatible index matching
fluid to the skin site, touching the window of the lens to the
surface of the skin and obtaining a standardized set of images
using the system’s operating software (Figure 3).

Additional Assessments
The CMTNS is a composite measure of disease severity that
was developed for use in clinical trials (29). It includes items
assessing sensory and motor symptoms, sensation (vibration and
pinprick), distal limb strength and limited nerve conduction
studies. Following the studies of ascorbic acid in CMT1A,
(11, 12) it was modified to improve sensitivity and minimize
floor and ceiling effects (CMTNSv2) (14). Most recently, Rasch
analysis was applied resulting in the CMTNSv2-R (15). The CMT
Exam score (CMTES-R) removes the ulnar motor (CMAP) and
radial sensory action potentials (SNAP) amplitudes from the
CMTNSv2-R and has been found to be more responsive than the
CMTES (30).

Monofilament touch sensation threshold testing will be
performed in all participants at the skin sites of in vivo RCM
of MCs at the hand (digit V and the thenar eminence). Testing
will be performed using a 2 Alternative Forced-Choice Stepping
Algorithm (31) with a Logarithmic Filament Set. This filament set
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consists of a series of 9 monofilaments producing magnitudes of
force of−3 to 5 in grams in natural log increments at 5/6 of their
extended lengths. The nine levels of stimulus forces are available
to define 19 threshold levels (32).

The Overall Neuropathy Limitation Scale (ONLS) is a
clinician-administered assessment where participants are asked
a series of questions about their symptoms and their ability
to perform certain tasks and movements. This activity-level
measure is designed to distinguish between limitations of upper
and lower limbs in individuals with peripheral neuropathies (33).

The CMT Health Index (CMT-HI) is a patient-reported,
disease-specific measure of disease burden that was developed for
use in clinical trials involving adults with CMT (34). It has been
shown to be reliable and valid and has been translated into Italian
for multi-site clinical trial use (35).

The Patient Global Impression of Change (PGIC)
questionnaire inquires about total health and health related to
the symptomatic themes assessed in the CMT-FOM. Participants
will be given the option to state that, compared to baseline, their
health is: “1—a lot worse”; “2—a little worse”; “3—the same”;
“4—a little better”; or “5—a lot better.” The PGIC will be used as
an anchor to determine minimal clinically important change for
the CMT-FOM.

SAMPLE SIZE

We are recruiting 215 individuals with CMT1A to participate
in this study. This baseline sample will provide >90% power to
detect correlations between the CMT-FOM and existing COAs
and PROs as small as 0.22. We anticipate that 180 participants
will complete the assessments at the 30-month visit (accounting
for up to a 15% dropout). This sample size will provide >80%
power to detect significance of a mean change of 0.21 standard
deviation units (effect size) using a paired t-test. This effect
size was selected as one that is larger than those of existing
adult scales such as the CMTNS (0.13) and the CMTES-R (0.20)
(36, 37).

A sample of 60 individuals with CMT1A subjects at baseline
will provide > 80% power to detect correlations between muscle
FF and clinical outcome variables as small as 0.35, using a two-
tailed test and a 5% significance level. Anticipating a dropout
of 15%, a sample size of 51 CMT1A subjects at 24 months will
provide 90% power to detect significance of a mean change of
0.46 standard deviation (SD) units (absolute increase in FF of
0.69%) (23) using a paired t-test. Sample sizes of 51 CMT1A
subjects and 21 controls will provide 80% power to detect a
group difference in mean change of 0.65%, assuming standard
deviations of 1.5% in the CMT1A group and 0.4% in controls
(23), using a two-sample t-test. Lastly, for validating RCM
of MC density as a sensory biomarker a sample size of 135
CMT1A subjects at baseline will provide >90% power to detect
correlations between MC density and clinical outcome variables
as small as 0.28. Again, it is anticipated that 115 participants
will complete assessments at 30 months which will provide 90%
power to detect significance of a mean change of 0.31 standard
deviation units using a paired t-test (36).

STATISTICAL CONSIDERATIONS

Validation of the CMT-FOM
Preliminary studies of the CMT-FOM have documented
feasibility, content validity, and concurrent validity (21). This
study will further validate the CMT-FOM by assessing and
documenting inter-rater reliability, performing Rasch analysis,
and examining convergent validity and responsiveness. We will
also determine the minimal clinically important change. We
examined the inter-rater reliability of the CMT-FOM following
the investigator meeting and the results have been reported (27).
Using baseline data, we will document the internal consistency of
the CMT-FOM with Cronbach’s alpha.

Given that the CMT-FOM was based on the extensive
validation of the CMTPedS (16), we hypothesize that it will
be unidimensional and measure the construct of functional
ability. We will examine the dimensionality of the CMT-FOM
using principal component analysis and confirmatory factor
analysis. Misfitting items will be examined and potentially
modified, prioritizing integrity of outcome and concept validity.
Rasch analysis will be performed on the CMT-FOM, including
assessment of the response format, fit of the items, item bias,
unidimensionality, and spread of items across the construct being
measured (37).

Using data from the baseline visit, correlation and regression
analyses will be performed to examine convergent validity.
Specifically, we will examine the associations between the
CMT-FOM and measures of disease severity (CMTNSv2-R,
CMTES-R), patient reported outcomes, such as the CMT-
HI, as well as electrophysiological outcomes. We anticipate
finding correlations between the CMT-FOM and existing
CMT1A measures, but not so strong as to make the CMT-
FOM redundant.

To examine sensitivity to change, longitudinal analyses will
evaluate the CMT-FOM in all affected subjects evaluated at
0 (baseline), 6, 12, 24, 30 and 36 months. The effect size
and standardized response mean (SRM) are the most highly
recommended measures of responsiveness (38). These two
measures will be computed for CMT-FOM change from baseline,
as well as changes in the CMTNSv2-R, CMTES-R, PROs (CMT-
HI, PGIC), and the biomarkers at each time point (38, 39).
The effect sizes and SRM will be compared between measures
using bootstrap resampling (40).Mixedmodel repeatedmeasures
(MMRM) analyses will model mean changes over time in these
outcomes (41).

The minimal clinically important change of the CMT-
FOM will be estimated by anchor-based and distribution-
based methods (42, 43). Anchor-based methods will use the
PGIC questionnaire. Mean changes in the CMT-FOM will be
calculated at 12 and 24 months for subjects in each of the
five categories. Receiver operating characteristic (ROC) curve
analyses will be performed separately for the 12- and 24-
month outcomes to identify the change in CMT-FOM that
best discriminates subjects who stated that their health got “a
little” or “a lot” worse compared to those who did not. The 12,
24, 30 and 36-mo. changes in the CMT-FOM that correspond
to effect sizes ranging from 0.30 to 0.50 standard deviation
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units will be described and compared to the minimal clinically
important change.

For IMFA, muscle FF values for each subject will be combined
into a summary measure for all muscles (left and right limb)
at thigh and at calf level, and for relevant functional groups
(quadriceps, hamstrings, anterior tibial compartment, and triceps
surae) for left and right limbs separately (23). Using baseline data,
cross sectional differences in muscle FF between the CMT1A
group and matched controls will be assessed using analysis of
covariance with group, age, and gender included in the model;
large group differences are expected. Associations between FF
and the COAs will be evaluated using correlation and regression
analyses in CMT1A subjects.

Longitudinal analyses will be performed to evaluate
responsiveness to change over time of MRI quantified muscle
FF in the 60 adults with CMT1A. MRI scans will be evaluated
at baseline, 12 and 24 months. Effect sizes and standardized
response means will be computed for muscle FF. MMRM
analyses will be performed to model mean changes over time
in these outcomes (41). We will explore possible predictors of
change over time using these models by adding interaction terms
between covariates (e.g., age, sex, baseline severity) and month
to the models. Mean changes over time, with corresponding
95% confidence intervals and p-values, will be obtained from
these models. The results may suggest targeted eligibility
criteria in future studies that will identify subjects more likely
to change over time and, hence, increase power. Change in
FF will be correlated with changes in the above clinical and
electrophysiologic outcomes in CMT1A subjects to provide
longitudinal validation of the MRI biomarker. This will assess
whether early changes in FF are associated with longer term
functional outcomes.

Reliability of MC density at digit V and the thenar eminence
in participants with CMT1A will be assessed using a sample
of 20 RCM image sets and two reviewers. Intra-rater reliability
will be quantified using intraclass correlation coefficients (ICCs),
estimated using a one-way random effects analysis of variance
model with participant treated as a random effect. Interrater
reliability will be evaluated using ICCs estimated using a two-
way random effects analysis of variance model with participant
and rater treated as random effects. The ICCs should exceed 0.80;
any lower values will motivate us to reevaluate the scoring process
and/or perform further training of the raters.

Baseline associations between MC densities and the touch
sensation thresholds and FF of the calf muscle will be examined
using correlation and regression analyses. Also at baseline,
differences between CMT1A subjects and controls with respect to
mean MC density will be evaluated using analysis of covariance
models that include group as well as age, gender, hand dimension
(if appropriate), and height. For longitudinal data, MMRM
analyses will be performed to model mean changes over time
in the MC density outcomes (41). We will explore possible
predictors of change over time using these models by adding
interaction terms between covariates (e.g., age, sex, baseline
severity) and month to the models. Mean changes over time,
with corresponding 95% confidence intervals and p values, will
be obtained from these models. Changes in MC density will be

correlated with changes in the COAs, touch sensation thresholds,
ONLS and PROs in CMT1A subjects to provide longitudinal
validation of this sensory biomarker.

DISCUSSION

While CMT1A is the most common type of CMT, accounting for
over 50 percent of cases, it is still a rare condition. CMT1A is
slowly progressive; as such, it has proven challenging to measure
disease progression with existing CMT outcome measures in
the context of clinical trials. Multi-site studies are necessary to
recruit sample sizes large enough to validate outcome measures
and inform future clinical trial needs. The ACT-CMT study, has
been designed to address these needs and prepare for future
clinical trials in CMT1A. The eligibility criteria were selected
to reflect the potential criteria for trials involving adults with
CMT1A; however, the data from this study will likely be able to
be leveraged to optimize eligibility criteria.

The CMT-FOM is hypothesized to be a unidimensional
measure that with the CMTInfS and CMTPedS will provide
whole of life CMT functional outcome measures. Initial studies
have documented the reliability and supported the validity of this
COA; however, this study will provide the sample size necessary
for full validation, Rasch analysis, and examination of the ability
of the CMT-FOM to detect disease progression over a time
period that is feasible for the conduct of multi-center trials.
The ACT-CMT protocol will also promote rigorous validation
of existing COAs that have been used in prior trials in CMT
(including the CMTES and the ONLS) for comparison with the
CMT-FOM. Moreover, we have recently developed and reported
cross-sectional validation of a disease specific patient reported
outcome measure (CMT-HI) to capture patient reported disease
burden in CMT (34). The ACT-CMT protocol will permit careful
longitudinal validation of the responsiveness to change of the
CMT-HI. Insight into clinically meaningful change in outcome
measures for hereditary neuropathies is lacking. The current
protocol will rigorously assess the clinically meaningful change
of each COA.

Validated biomarkers of the motor and sensory components
of CMT1A for multicenter trial application has been identified
as a gap in clinical trial readiness. Given the slow progression of
CMT1A, biomarkers that have capacity to demonstrate slowing
of disease progression or improvement, prior to changes in
physical functioning, neurologic impairment or symptoms, will
enable go/no go decisions in early phase clinical trials in CMT1A.
Indeed, data to date for lower extremity MRI of muscle FF,
has suggested that this motor biomarker is highly responsive
to change (standardized response mean >0.8) in CMT1A. The
ACT-CMTprotocol will establish the sensitivity to change ofMRI
of intramuscular FF and RCM of MC density. ACT-CMT will
also determine whether these biomarkers can be implemented
at multiple centers, and in the case of MRI, using MRI scanners
from different manufacturers. This protocol will provide the data
to determine whether changes in calf intramuscular FF and RCM
of MC density predict changes on clinician administered and
patient reported outcome measures in CMT1A. These data will
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support the implementation of these biomarkers in future trials
in CMT1A.

Successful conduct of multicenter, transcontinental clinical
trials in rare disorders such as CMT1A require the establishment
of robust clinical trial site capacity, site training and certification
in the administration of COAs and imaging, and data transfer
procedures that meet data privacy standards. Moreover, efficient
and reliable central image analysis cores are required for
modalities such as MRI of IMFA and quantitation of RCM
of MC densities. The ACT-CMT study will establish the
multicenter capacity, expertise and quality assurance to allow
for seamless transition from the clinical trial readiness study to
implementation of clinical trials in CMT1A. The data that will
emerge from this study will inform participant selection criteria,
outcome measure and biomarker selection, sample size and trial
duration considerations. These data will be made available to the
scientific community and will inform discussions with regulatory
agencies during early stages of drug development. Additionally,
the ACT-CMT study will establish a large cohort of adults with
well characterized CMT1A, which will accelerate recruitment for
future therapeutic trials in CMT1A, and elucidate the natural
history of CMT1A in unprecedented detail using a range of
clinician administered and patient reported outcome assessments
and biomarkers, supporting clinical trial design.

The ACT-CMT study has some potential limitations. This
study is being conducted at sites in the United States, UK
and Italy. The clinician administered and patient reported
outcome measures are currently established for English and
Italian speaking study personnel and participants. If validated,
these COAs will need to be extended to other languages for
utility in global clinical trials. The ACT-CMT protocol focuses
on individuals 18–75 years of age, as the majority of individuals
with symptomatic CMT1A are adults, and critical gaps exist
in outcome measures for adults with CMT1A. However, as
therapeutic effects will potentially be greatest with intervention
prior to development of significant disability, early treatment in
late childhood or adolescence will be critical for CMT1A. The
CMTPedS, on which the CMT-FOM is modeled, has already
been longitudinally validated for children and adolescents with
CMT1A, and studies are proceeding in parallel with ACT-CMT
through the INC to evaluate biomarkers. Additionally, the use
of MRI of calf and foot muscle to evaluate FF in children with
CMT1A is being examined at two of the ACT-CMT sites (London
and Iowa). Therefore, the findings of ACT-CMT will need to
be considered in conjunction with data emerging from these
studies in children when planning future clinical trial programs
in CMT1A.

We anticipate that the ACT-CMT study will fill critical gaps in
the toolkit of outcome measures for early and late stage clinical
trials in CMT1A and accelerate the pathway toward design of
successful clinical trials. CMT1A has overlapping clinical features
with other major forms of CMT including CMT1B, CMTX1 and
other forms. The outcome assessments and motor and sensory
biomarkers incorporated in the ACT-CMT study will likely meet
the needs of clinical trials for other forms of CMT. This study,
therefore, creates a framework that can be used to validate these
and other measures in preparation for clinical trials in other
subtypes of CMT.
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