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Objective: Mutations in the TARDBP gene are a rare cause of genetic motor

neuron disease (MND). Morphologic MRI characteristics of MND patients

carrying this mutation have been poorly described. Our objective was to

investigate distinctive clinical and MRI features of a relatively large sample of

MND patients carrying TARDBP mutations.

Methods: Eleven MND patients carrying a TARDBP mutation were enrolled.

Eleven patients with sporadic MND (sMND) and no genetic mutations were

also selected and individually matched by age, sex, clinical presentation and

disease severity, along with 22 healthy controls. Patients underwent clinical

and cognitive evaluations, as well as 3D T1-weighted and di�usion tensor (DT)

MRI on a 3 Tesla scanner. Gray matter (GM) atrophy was first investigated at a

whole-brain level using voxel-basedmorphometry (VBM). GM volumes and DT

MRI metrics of the main white matter (WM) tracts were also obtained. Clinical,

cognitive and MRI features were compared between groups.

Results: MNDwith TARDBPmutations was associated with all possible clinical

phenotypes, including isolated upper/lower motor neuron involvement, with

no predilection for bulbar or limb involvement at presentation. Greater

impairment at naming tasks was found in TARDBPmutation carriers compared

with sMND. VBM analysis showed significant atrophy of the right lateral

parietal cortex in TARDBP patients, compared with controls. A distinctive

reduction of GM volumes was found in the left precuneus and right angular

gyrus of TARDBP patients compared to controls. WM microstructural damage

of the corticospinal tract (CST) and inferior longitudinal fasciculi (ILF) was
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found in both sMND and TARDBP patients, compared with controls, although

decreased fractional anisotropy of the right CST and increased axial di�usivity

of the left ILF (p = 0.017) was detected only in TARDBP mutation carriers.

Conclusions: TARDBP patients showed a distinctive parietal pattern of cortical

atrophy and greater damage of motor and extra-motor WM tracts compared

with controls, which sMND patients matched for disease severity and clinical

presentation were lacking. Our findings suggest that TDP-43 pathology due

to TARDBP mutations may cause deeper morphologic alterations in both GM

and WM.

KEYWORDS

motor neuron disease (MND), amyotrophic lateral sclerosis (ALS), transactive response

(TAR) DNA binding protein 43 (TARDBP), magnetic resonance imaging (MRI), voxel-

based morphometry (VBM)

Introduction

Motor neuron disease (MND) refers to a group of adult-

onset neurodegenerative conditions leading to the degeneration

of upper and/or lower motor neurons. MND clinically manifests

as a progressive loss of motor function, which ultimately leads

to death due to the involvement of respiratory muscles (1).

Amyotrophic lateral sclerosis (ALS) is the classic form of MND

and is characterized by a combination of signs and symptoms

of upper and lower motor neuron involvement. However, pure

lower motor neuron [i.e., primary muscular atrophy (PMA)]

or upper motor neuron [i.e., primary lateral sclerosis (PLS)]

involvement can also be appreciated in a minority of cases (2).

One out of ten ALS patients has a familial form, the

remaining cases being sporadic (3, 4). Mutations of more than

20 genes have been found to cause MND (5), the most common

being chromosome 9 open reading frame 72 (C9Orf72) (33%

of familial ALS) and superoxidase dismutase 1 (SOD1) (14%

of familial ALS) (6). The third genetic cause of ALS in terms

of frequency is the mutation in the transactive response (TAR)

DNA binding protein 43 (TARDBP) gene (4.2% of familial

cases) (6–9), which encodes the TDP-43 protein. In normal

conditions, TDP-43 is ubiquitously expressed at the nuclear

level, where it has a role in regulating transcription, messenger

RNA (mRNA) spicing and transport, as well as in scaffolding

nuclear bodies during interaction with the survival motor

neuron protein (10, 11). In the central nervous system of

MND patients, an abnormal accumulation of toxic aggregates

of hyperphosphorylated TDP-43 is typically observed in the

cytoplasm of motor neurons (12). TARDBPmutations have been

described in a few cases of ALS, frontotemporal dementia (FTD),

or combined presentations thereof (13–22), and are thought

to facilitate or accelerate such neuropathological alterations.

Consistent with this hypothesis, TARDBP mutations have been

associated with increased TDP-43 intracellular aggregation,

aberrant cytoplasmic localization, altered protein stability,

resistance to protease action or modified interactions with other

proteins (11, 13, 23–26). Furthermore, the level of TDP-43 that

accumulates in granules, as well as the size or number of granules

appear to be bigger in some forms of genetic ALS compared

to sporadic cases (27, 28). Different mutations associated with

familial ALS have been demonstrated to increase half-life and

improve stability of the TDP-43 protein product compared to

the wild-type form (29). This could be a potential mechanism

for the accelerated disease onset of familial ALS (30, 31).

On magnetic resonance imaging (MRI), no typical pattern

of atrophy has emerged in TARDBP patients, probably due to

the limited number of cases described. Patterns of atrophy were

mostly consistent with the individual clinical presentation, since

cases of behavioral and linguistic variants of FTD associated

with TARDBP mutations have shown variable combinations

of temporal and/or frontal lobe involvement (14, 16, 18,

21), whereas cases of ALS associated with TARDBP mutation

reported in literature presented either a normal MRI (15, 17, 32,

33) or mild bilateral temporal atrophy (33). One reported case

of behavioral variant of FTD presented also with mesencephalic

and caudate nuclei atrophy (19) in the presence of supranuclear

gaze palsy and chorea. This far, no study has analyzed TARDBP

mutated patients with advanced MRI techniques. The aim

of this work was to investigate distinctive clinical and MRI

features of a relatively large sample of 11 MND patients carrying

TARDBPmutations.

Materials and methods

Participants

A total of 379 patients with a confirmed diagnosis of MND

were referred to IRCCS San Raffaele Scientific Institute in

Milan between October 2007 and November 2021 to perform
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an MRI scan on a 3 Tesla scanner. Their diagnoses included

ALS (34–36), PMA (34–36) and PLS (34–36). Patients were

screened for known pathogenic mutations on the C9Orf72,

GRN, MAPT, FUS, TARDBP, SOD1, TBK1, TREM2, OPTN, or

VCP genes. As a result of the screening process, 11 TARDBP

mutation carriers were identified, all presenting a pure MND

phenotype (ALS, n = 7; PMA, n = 3; PLS, n = 1). As a

control group, we included 11 MND patients [sporadic MND

(sMND); ALS, n = 8; PMA, n = 3) who proved negative

for known pathogenic mutations or variants of unknown

significance on the evaluated MND-related genes, and were

matched by age, sex, clinical presentation, and disease severity

as measured by the ALS Functional Rating Scale Revised

(ALSFRS-r) (37), as best as possible on a one-to-one basis. All

patients underwent a thorough neurological examination and

brain MRI at study entry, as well as a comprehensive, multi-

domain clinical, cognitive and behavioral assessment. Twenty-

two healthy controls matched for age, sex, andMRI scanner type

were recruited among spouses of patients and by word of mouth.

Healthy controls were included if the following criteria were

satisfied: normal neurological assessment; MMSE score ≥28;

no family history of neurodegenerative diseases. All included

subjects (i.e., ALS patients and healthy controls) were right-

handed, Caucasian, native Italian speakers. Exclusion criteria for

all subjects were: significant medical illnesses or substance abuse

that could interfere with cognitive functioning; any (other)

major systemic, psychiatric, or neurological illnesses; and other

causes of focal or diffuse brain damage, including lacunae and

extensive cerebrovascular disorders at routine MRI.

Local ethical standards committee on human

experimentation approved the study protocol and all

participants provided written informed consent.

Genetic analysis

Blood samples were collected from all patients. The coding

sequences and intron/exon boundaries of TARDBP gene were

amplified by PCR using optimized protocols and analyzed using

Sanger sequencing, looking for known pathogenic mutations

(38). Furthermore, the presence of GGGGCC hexanucleotide

expansion in the first intron of C9Orf72 was assessed using a

repeat-primed polymerase chain reaction (PCR) assay (39). The

coding sequences and intron/exon boundaries of GRN, MAPT,

SOD1, FUS, TBK1, TREM2, OPTN, and VCP genes were also

evaluated by Sanger sequencing (38).

Clinical evaluation

Clinical evaluation was performed by experienced

neurologists blinded to genetic status and MRI results,

recording disease duration and site of disease onset. Disease

severity was assessed using the ALSFRS-r (37). The rate of

disease progression was defined according to the following

formula: (48–ALSFRS-r score)/time from symptom onset.

Muscular strength was assessed by manual muscle testing based

on the Medical Research Council (MRC) scale.

Neuropsychological evaluation

Neuropsychological assessment was performed by an

experienced neuropsychologist unaware of genetic status and

MRI results. The following cognitive functions were evaluated:

global cognitive functioning with the MMSE (40); long- and

short-term verbal memory with the Rey Auditory Verbal

Learning Test (41) and the digit span forward (42), respectively;

attentive and executive functions with the digit span backward

(43) and the Ravens colored progressive matrices (44); fluency

with the phonemic and semantic fluency tests (45) and

the relative fluency indices (controlling for individual motor

disabilities) (46); visuospatial abilities with the Rey Figure copy

(47); language with the Italian battery for the assessment of

aphasic disorders (48) and the Token test (49); mood and the

presence of behavioral disturbances with the Frontal Behavioral

Inventory (50). Although most patients here included were

enrolled prior to the revision of Strong criteria (51) and

the validation of the Edinburgh Cognitive and Behavioral

ALS Screen (ECAS) scale (52), for 11 patients (six mutation

carriers and five sMND), sufficient neuropsychological data were

available to make a diagnosis of cognitive and/or behavioral

impairment according to the revised Strong criteria (51).

MRI acquisition

All patients and healthy controls underwent brain MRI on a

3.0 T scanner (PhilipsMedical Systems, Best, the Netherlands) at

IRCSS San Raffaele Scientific Institute between 2007 and 2021.

The original scanner (for brevity, Scanner 1) was substituted

with a different device from the same manufacturer in 2016

(below defined as Scanner 2).

Using Scanner 1, the following brain MRI sequences were

obtained: T2-weighted spin echo (SE) [repetition time (TR) =

3,500ms; echo time (TE) = 85ms; echo train length = 15; flip

angle = 90; 22 contiguous, 5-mm-thick, axial slices; matrix size

= 512 × 512; field of view (FOV) = 230 × 184 mm2]; fluid-

attenuated inversion recovery (TR = 11 s; TE = 120ms; flip

angle = 90; 22 contiguous, 5-mm-thick, axial slices; matrix size

= 512 × 512; FOV = 230 mm2); and 3D T1-weighted fast field

echo (TR= 25ms, TE= 4.6ms, flip angle= 30, 220 contiguous

axial slices with voxel size = 0.89 × 0.89 × 0.8mm, matrix size

= 256 × 256, FOV = 230 × 182 mm2) and pulsed-gradient SE

echo planar with sensitivity encoding (acceleration factor = 2.5,

TR = 8,986ms, TE = 80ms, 55 contiguous, 2.5 mm-thick axial
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slices, number of acquisitions = 2; acquisition matrix 96 × 96,

with an in-plane pixel size of 1.87 × 1.87mm and a FOV = 240

× 240 mm2) and diffusion gradients applied in 32 non-collinear

directions using a gradient scheme which is standard on this

system (gradient over-plus) and optimized to reduce echo time

as much as possible. The b factor used was 1,000 s/mm. Fat

saturation was performed to avoid chemical shift artifacts.

Using Scanner 2, the following brain MRI sequences were

obtained: 3D T2-weighted [FOV = 256 × 256, pixel size = 1.21

× 1.21mm, 192 slices, 1mm thick, matrix = 256 × 256, TR =

5,500ms, TE = 247ms, inversion time (TI) 1–2 = 2,550- echo

train length (ETL) = 173, acquisition time (TA) = 3.45min];

sagittal 3D fluid-attenuation inversion recovery (FOV = 256

× 256, pixel size = 1 × 1mm, 192 slices, 1mm thick, matrix

= 256 × 256, TR = 4,800ms, TE = 270ms, TI = 1,650ms,

ETL = 167, TA = 6.15min); 3D high resolution T1-weighted

turbo field echo. FOV = 256 × 256, pixel size = 1 × 1mm,

204 slices, 1mm thick, matrix = 256 × 256, TR = 7ms, TE =

3.2ms, TI = 1,000ms, FA = 8, ETL = 240, TA = 8.53min);

and a diffusion-weighted sequence. FOV = 240 × 232mm, pix

= 2.14 × 2.69mm, 56 slice, 2.3mm thick, matrix = 112 × 85

TR = 5,900ms, TE = 78ms, 3 shells b-value = 700/1,000/2,855

s/mm2, along 6/30/60 non-collinear directions and 10 b = 0

volumes were acquired.

For acquisitions on both scanners, all slices were positioned

to run parallel to a line that joins the most inferoanterior and

inferoposterior parts of the corpus callosum.

MRI analysis

Voxel-based morphometry

Voxel-based morphometry (VBM) was performed using

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and Diffeomorphic

Anatomical Registration Exponentiated Lie Algebra (DARTEL)

registrationmethod (53) to investigate graymatter (GM) volume

alterations, as described previously (54).

Gray matter volumes

GM maps of patients and healthy controls were parcellated

into 90 Automated Anatomical Labeling (AAL) regions of

interest to obtain regional GM volumes. Specifically, the

AAL atlas was registered to the subjects’ T1-weighted images

using linear and non-linear registrations (FLIRT and FNIRT,

respectively) (55, 56), as implemented in the FMRIB software

library (FSL, http://www.fmrib.ox.ac.uk/fsl). Cortical GM maps

were obtained from the segmentation step of VBM procedure

(as described previously) (54), while maps of the basal

ganglia (i.e., bilateral caudate, globus pallidus, putamen, and

thalamus), hippocampus and amygdala were obtained using

the FIRST tool in FSL (http://www.fmrib.ox.ac.uk/fsl/first/index.

html). GM volumes were multiplied by the normalization factor

derived from SIENAx (part of FSL; http://www.fmrib.ox.ac.uk/

fsl/sienax/index.html) to correct for head size.

White matter tractography

DTMRI analysis was performed using the FMRIB Diffusion

Toolbox in FSL (http://www.fmrib.ox.ac.uk/fsl/fdt/index.html)

and the JIM6 software (Version 6.0, Xinapse Systems, Northants,

UK, http://www.xinapse.com), as described previously (57).

Maps of mean diffusivity (MD), fractional anisotropy (FA),

axial diffusivity (axD) and radial diffusivity (radD) were

obtained. Seeds for tractography of the corpus callosum (CC),

corticospinal tract (CST), cingulate, inferior and superior

longitudinal, and uncinate fasciculi were defined in theMontreal

Neurological Institute (MNI) space on the FA template provided

by FSL, as previously described (57, 58). The CC was segmented

into three portions to identify the callosal fibers linking the

precentral (CC-precentral), lateral premotor (CC-premotor)

and supplementary motor areas (CC-supplementary motor),

as previously described (59). Fiber tracking was performed

in native DT MRI space using a probabilistic tractography

algorithm implemented in FSL (probtrackx) (60). For each tract,

the average MD, FA, axD and radD were calculated in the

native space.

Statistical analysis

Normal distribution assumption was checked by means of

Q–Q plot and Shapiro-Wilks and Kolmogorov-Smirnov tests.

Sociodemographic and clinical features (i.e., age, sex,

education, ALSFRS-r scores, disease duration, and progression

rate) were compared between groups using ANOVA models

or Pearson’s chi square, as appropriate. Neuropsychological

and MRI quantitative features (i.e., GM volumes and DT MRI

metrics) were also compared between groups using separate

ANOVA models, followed by post-hoc pairwise comparisons,

Bonferroni-corrected for multiple comparisons and adjusted for

age, sex, education, and—in the case of MRI variables—MR

scanner. The threshold of statistical significance was set at p <

0.05. The SPSS Statistics 22.0 software was used.

VBMgroup comparisons were tested using ANCOVAmodel

adjusting for total intracranial volume, age, sex, and MRI

scanner type. Results were assessed at p< 0.05 Family-wise error

(FWE)-corrected for multiple comparisons.

Results

Sociodemographic and clinical features

Table 1 summarizes the main sociodemographic and clinical

variables of study groups. TARDBP and sMND patients were

comparable in terms of sex, education, age at MRI and
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TABLE 1 Main clinical and demographic characteristics of subjects.

HC sMND TARDBP p

Age at MRI 58.99± 6.08 [47.63–72.70] 59.07± 7.68 [45.00–68.33] 59.78± 8.17 [44.14–70.95] 0.952

Sex (M/F) 11/11 6/5 6/5 0.958

Scanner type (S1/S2) 18/4 8/3 8/3 0.785

Education (years) 12.19± 3.34 [8–18] 12.73± 3.44 [6–17] 10.33± 3.39 [5–16] 0.265

Disease duration – 63.0± 90.02 [8.00–277.00] 16.93± 17.61 [5.00–67.00] 0.113

ALSFRS-r – 33.90± 6.37 [23–42] 34.18± 8.82 [20–44] 0.935

Disease progression rate – 0.73± 0.74 [0.08–2.11] 1.40± 1.23 [0.16–4.00] 0.135

Values are numbers or means± standard deviations [range]. p-values refer to Pearson’s chi square or ANOVA models (as appropriate).

ALSFRS-r, revised version of the Amyotrophic Lateral Sclerosis Functional Rating Scale; F, female; HC, healthy controls; M, male; MND, motor neuron disease; S1/S2, Scanner 1/Scanner

2; sMND, sporadic MND. –, not applicable.

disease duration. Furthermore, patients were similar in terms

of ALSFRS-r score and disease progression rate. Table 2 and

Supplementary Table 1 report individual diagnoses and clinical

features of included patients. The group of TARDBP patients

included six men and five women with an age of onset ranging

from 43 to 67 years old (59.8 ± 8.2). Their diagnoses included

ALS (n = 7), PMA (n = 3), and PLS (n = 1). Nine out of

11 mutated patients presented with a limb onset of disease,

with a tendency of having the right side involved first (6 out

of 7 patients with a lateralized limb onset), although at the

time of clinical evaluation muscle atrophy was mostly bilateral

and symmetrical. Two patients with a limb onset were unable

to date back a side of onset. Two patients had a bulbar onset

(i.e., dysarthria and mild difficulties when swallowing). One of

them (subject 5) had the fastest progression rate. At the time

of MRI, ALSFRS-r was ranging from 20 to 44 (34.18 ± 8.83),

considering that diagnosis was formulated from three up to

35 months after symptom onset. Disease progression rate was

highly variable among mutated subjects (being faster in patients

with bulbar presentation). No significant differences in disease

progression velocity were recorded between sMND andmutated

patients. Consistent with the fact that all MND phenotypes

were represented, different combinations of upper and lower

motor neuron signs were present at an individual basis (see

Supplementary Table 1). No patients among TARDBP mutated

and matched sMND fulfilled clinical criteria for behavioral or

linguistic variants of FTD (57, 61, 62).

Neuropsychological features

Even if data for a cognitive/behavioral diagnosis according to

the revised Strong criteria (51) were available for only about half

of our cohort, due to the fact that most patients here included

were enrolled before 2017, 5/5 sMND patients presented with

a normal cognitive profile, while 4/6 mutated patients showed

signs of mild cognitive impairment (51). Table 3 reports the

neuropsychological test scores of sMND and TARDBP mutated

patients. In terms of global cognition, the two groups of patients

scored similar results at MMSE. Furthermore, both groups

were comparable in terms of memory, executive functions,

visuospatial abilities and fluency. Of note, visuospatial abilities

were only tested with Rey figure copy and data from the sMND

population were available for only one subject. Language was

evaluated with the Battery for aphasic deficit analysis (BADA).

At the action naming subtest of BADA, TARBDP showed a

lower performance compared to controls (p = 0.003) and

sMND (p = 0.019). At the noun naming subtest of BADA,

TARDBPmutation carriers performed poorer than controls and

sMND, although pairwise comparisons did not reach statistical

significance (p= 0.081 and p= 0.088, respectively).

MRI results

Voxel-based morphometry

Figure 1 reports results of VBM for regions that survived a p

< 0.05 FWE, corrected at cluster level. Compared with controls,

TARDBP patients showed GM atrophy at the level of the right

lateral parietal cortical regions, including the supramarginal and

angular gyri (cluster size = 49; MNI coordinates of peak of

significance: x= 60, y=−40, z= 45; T-value= 5.83).

GM volumes

Figure 2 and Supplementary Table 2 summarize GM volume

comparisons. A significant GM volume reduction was found

in the left precuneus (p = 0.002) and right angular gyrus

of TARDBP patients (p = 0.037), compared to controls. No

other significant results emerged in our analysis, although

a trend toward a greater atrophy of the left angular gyrus

was also observed in TARDBP patients, compared with

controls (p= 0.08).
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TABLE 2 Individual socio-demographic and clinical features of MND patients.

Subject Mutation Diagnosis Sex (M/F) Education

(years)

Age at

onset

Age at

MRI

(years)

Time onset

to

diagnosis

(months)

ALSFSR-r

[0-48]

MRC sum

score

Disease

progression

rate

Bulb/limb

onset

Site onset Cognitive/

behavioral

profile

1 TARDBP ALS M 8 70 71 7 44 NA 0.50 Limb RUL NA

2 TARDBP ALS F 8 61 63 13 44 NA 0.17 Limb RLL NA

3 TARDBP ALS F 11 50 56 35 36 103 0.18 Limb LL ALS-ci

4 TARDBP PMA M 8 62 62 3 33 79 2.50 limb UL PMA-ci

5 TARDBP ALS F 11 48 48 4 20 91 4.00 Bulb – ALS-ci

6 TARDBP PMA M 5 60 61 10 38 91 0.83 Limb RUL NA

7 TARDBP ALS M NA 62 63 8 20 NA 2.80 Limb LUL NA

8 TARDBP PLS F 13 55 56 9 35 NA 1.08 Limb RLL Normal

9 TARDBP ALS F 16 67 67 4 40 95 1.60 Bulb – Normal

10 TARDBP PMA M NA 65 67 11 25 50 1.43 Limb RLL PMA-ci

11 TARDBP ALS M 13 43 44 18 41 NA 0.36 Limb RUL NA

12 – PMA M 16 54 60 11 33 78 0.21 Limb RUL Normal

13 – ALS F 17 65 67 19 40 91 0.36 Limb LL Normal

14 – ALS F 13 57 58 8 33 91 1.36 Limb NA NA

15 – PMA M 13 59 60 6 32 109 2.00 Limb LUL NA

16 – ALS M 6 65 66 6 29 111 2.11 Bulb – Normal

17 – PMA M 13 41 65 156 25 66 0.08 Limb RLL NA

18 – ALS F 17 50 54 12 38 111 0.25 Bulb – Normal

19 – ALS F 11 40 45 25 23 60 0.38 Limb LL Normal

20 – ALS F 8 58 59 15 42 105 0.40 Limb NA NA

21 – ALS M 13 67 68 13 41 107 0.55 Limb NA NA

22 – ALS M 13 45 47 36 37 106 0.31 Limb NA NA

ALS, amyotrophic lateral sclerosis; -ci, cognitive impairment; F, female; LL, lower limbs; LUL, left upper limb; M, male; MRC, Medical Research Council scale; NA, not available; PMA, primary muscular atrophy; PLS, primary lateral sclerosis; RLL, right

lower limb; RUL, right upper limb; UL, upper limbs. –, not applicable.
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TABLE 3 Neuropsychological features of healthy controls and MND patients.

Healthy controls sMND TARDBPMND p

N (total sample) 22 11 11

Global cognition

MMSE 29.33± 0.81 [28–30] 28.22± 0.97 [27–30] 28.00± 3.06 [20–30] 0.157

(22) (9) (10)

Memory

Digit span forward 6.33± 1.13 [4–9] 6.13± 1.64 [4–9] 5.44± 1.24 [3–7] 0.361

(15) (8) (9)

RAVLT delayed 9.00± 3.48 [3–15] 9.75± 3.81 [4–15] 7.22± 2.64 [4–13] 0.274

(15) (8) (9)

RAVLT recognition 14.23± 1.01 [12–15] 14.40± 0.89 [13–15] 14.29± 0.95 [13–15] 0.960

(13) (5) (7)

Executive functions

CPM 30.92± 3.66 [22–35] 30.43± 5.11 [21–36] (7) 28.29± 6.31 [16–34] 0.775

(13) (7)

Digit span backward 4.60± 0.91 [3–6] 4.75± 1.17 [3–6] 4.33± 1.23 [3–6] 0.783

(15) (8) (9)

Visuospatial abilities

Rey figure copy 31.60± 2.30 [29–35] 30.67± 2.08 [29–33] 30.13± 6.25 [21.5–36] 0.762

(4) (3) (4)

Language

BADA (noun) 29.86± 0.38 [29, 30] 29.67± 0.81 [28–30] 28.71± 1.38 [27–30] 0.039

(7) (6) (7)

BADA (action) 28.00± 0.00 [28] 27.67± 0.51 [27, 28] 24.86± 2.34 [21–27] 0.002

(7) (6) (7)*$

Token test 32.70± 2.14 [30–35] 33.70± 1.50 [33–36] 33.25± 1.26 [32–35] 0.451

(6) (4) (4)

Fluency

Index PF*** 4.79± 2.35 [3.28–12.05] 6.07± 4.04 [1.90–13.50] 9.54± 8.95 [2.72–31.00] 0.181

(13) (8) (8)

Index SF*** 3.63± 0.81 [2.49–5.53] 4.15± 1.93 [2.20–8.04] 10.59± 15.99 [3.49–50.00] 0.244

(13) (7) (8)

Mood & Behavior

FBI total 1.25± 0.96 [0–2] 3.38± 4.27 [0–13] 0.234

(4) (7)

Values are numbers or means ± standard deviations [range] (N of subjects). P-values refer to ANOVA models, followed by Bonferroni correction for multiple comparisons adjusted for

age, sex and education.

BADA, battery for aphasic deficit analysis; CPM, colored progressive matrices; FBI, Frontal Behavioral Inventory; PF, phonemic fluency; SF, semantic fluency; sMND, sporadic motor

neuron disease.

*, significantly different from healthy controls; $, significantly different from sMND; ***, verbal fluency indices were obtained as following: time for generation condition—time for control

condition (reading or writing generated words)/total number of items generated. Bold indicates significant values.

DT MRI

As shown in Figure 3 and Supplementary Table 3, the right

CST showed decreased fractional anisotropy (FA) only in

TARDBP patients, compared to controls (p = 0.035). The

left inferior longitudinal fasciculus (ILF) showed higher values

of axial diffusivity (axD) in TARDBP compared to controls

(0.017); the right ILF instead showed increased axD both in

sMND compared to controls (p = 0.047) and in TARDBP cases

compared to controls (p= 0.019).

Discussion

To the best of our knowledge, this was the first study

analyzing a relatively large cohort of TARDBP mutated MND

patients with quantitative MRI advanced techniques. Previous

studies have described single cases or small case series of families

or unrelated subjects affected by TARDBP mutations causing a

syndrome of the FTD-ALS spectrum (14–22, 33). However, none

of these reports involved the use of advanced MRI techniques.
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FIGURE 1

Voxel-based morphometry (VBM) results. Voxel-based analysis

showing gray matter (GM) volume loss in TARDBP MND patients

relative to healthy controls. Results are overlaid on a

three-dimensional rendering of the Montreal Neurological

Institute standard brain and displayed at p < 0.05 corrected for

multiple comparisons. Only clusters comprising at least 20

contiguous voxels are shown. Analysis is corrected for

intracranial volume, age, sex, and MR scanner type.

Available data in the literature only included description of

cortical atrophy by visual inspection of conventional MRI

sequences, without displaying quantitative information on GM

volumes or any information at all on WM alterations of patients

affected by TARDBP mutations. We have previously described

GM atrophy in a cohort of genetic FTLD (32), which included

some of the TARDBP patients included here. However, in

the present study, we expanded our cohort and performed a

systematic analysis exploring WM features at DT MRI as well.

Our study provides therefore a thorough, combined picture of

GM and WM structural alterations in patients carrying this

mutation, highlighting neuroanatomical differences compared

to clinically matched sMND cases.

In the present cohort, all patients carrying mutations in the

TARDBP gene presented with a pure MND phenotype, as no

patient fulfilled established clinical criteria for a defined FTD

syndrome (61, 62). The clinical presentation was heterogeneous,

with patients presenting with variable combinations of upper

and lower motor neuron signs, configuring all the main

MND phenotypes, including ALS, PMA and PLS. Furthermore,

mutated patients presented with either a limb or a bulbar onset

(in one case, with a very fast disease progression). Therefore, in

our cohort, no specific motor phenotype was associated with a

TARDBP mutation. The right-sided onset of motor symptoms

reported by most TARDBP patients with a limb onset might

have been influenced by the fact that all patients were right-

handed, as at time of neurological evaluation there was no clear

consistent lateralization of clinical findings. Such heterogeneity

diverges from previous reports, in which TARDBP mutations

with MND have been mostly associated with an ALS syndrome,

with the exception of one case of PMA (63), in a patient whose

first symptom was camptocormia. All other cases reported an

ALS presentation (14–22, 33), with variable associations of FTD

phenotypes (of note, often consistent with temporal variant of

FTD or semantic dementia) (16).

When examining neuropsychological data, sMND and

TARDBP-mutated MND patients were comparable in terms

of global cognitive measures, as well as performance in

most cognitive domains and behavioral symptoms. However,

TARDBP patients differed from controls and matched sMND

patients in terms of linguistic performance. Indeed, at the

action and noun naming subtests of a battery examining

comprehension, denomination and repetition of nouns and

verbs, mutated patients performed significantly worse than

sMND. Even considering the limitation that sufficiently

complete neuropsychological data for a formal cognitive

diagnosis (51) was not available for all subjects, four mutated

patients fulfilled Strong criteria for MND with cognitive

impairment (51), suggesting a more globally distributed,

although mild, damage to cognitive functions compared with

the sMND sample, matched for all other clinical features. This

is consistent with data reported in the literature, in which there

are cases of TARDBP patients presenting with (or developing in

the course of the disease) cognitive impairment, particularly in

the executive and linguistic domains (15, 16). However, further

data are warranted to confirm this as a characteristic feature of

TARDBPmutated patients presenting with isolated MND.

Compared with controls, VBM showed a circumscribed,

distinctive atrophy of the right lateral parietal cortex in MND

patients with a TARDBPmutation, confirmed by GM volumetric

reduction of the right angular gyrus. Moreover, GM volumetric

analysis also demonstrated significant atrophy of the left

precuneus, as well as an almost significant trend for the left

angular gyrus in TARDBPmutation carriers. The lateral parietal

cortex and the precuneus are known to be cross-modal hubs

where multisensory information converging from frontal and

temporal inputs is processed and integrated (64, 65). Among

lateral parietal cortical regions involved, the key region showing

atrophy only in mutation carriers was the angular gyrus. This

area has been implied in higher language abilities, and its

activation has been registered during semantic processing (66)

and semantic tasks on auditory (67) and visual (68) stimuli.

A recent report has specifically related hypoperfusion of the

angular gyrus with language deficits in ALS (57, 69). With the

limitations of the small number of patients included in our

study, which could not allow us to properly run a correlation

analysis, atrophy of these cortical regions could possibly justify,

at least in part, the lower scores obtained at language assessments

by mutated patients.

Previous studies have described cortical atrophy in more

anterior regions in sMND patients, such as the primary motor
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FIGURE 2

Gray matter (GM) cortical volumes showing significant di�erences in MND patients and controls. Values refer to mm3. Comparisons between

groups were performed using age-, sex-, and MRI scanner-adjusted analysis of variance models, followed by post-hoc pairwise comparisons,

Bonferroni-corrected for multiple comparisons. HC, healthy controls; L, left; R, right; sMND, sporadic motor neuron disease. *Significantly

di�erent from HC.

FIGURE 3

Di�usion tensor (DT) MRI metrics of white matter (WM) tracts showing significant di�erences in MND patients and controls. Comparisons

between groups were performed using age-, sex-, and MRI scanner-adjusted analysis of variance models, followed by post hoc pairwise

comparisons, Bonferroni-corrected for multiple comparisons. CST, corticospinal tract; HC, healthy controls; ILF, inferior longitudinal fasciculus;

L, left; R, right; sMND, sporadic motor neuron disease. *Significantly di�erent from HC.

and premotor cortices, as well as prefrontal and temporal

regions (32, 70, 71). A more posterior pattern of atrophy

has instead been associated with other genetic forms of

MND—mostly, related to C9orf72 pathologic expansions (32,

72, 73)—, leading to the hypothesis that genetic mutations

may promote neurodegeneration also in areas that are not
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typically involved in MND, possibly due to an accelerated

neurodegenerative process (32, 72, 73).

As previously highlighted, the present study was the first

to assess WM damage using DT MRI in TARDBP mutated

patients in a systematic way. Based on our results, TARDBP

patients and sMND shared a significant microstructural damage

of the CST and ILF, although mutation carriers showed a slightly

more extensive involvement, in comparison with the matched

sMND sample. DTMRI of the CST is a well-known quantitative

measure of upper motor neuron damage in MND (74, 75),

whereas the ILF (connecting occipital and temporal lobes) is

known to be involved not only in spatial processing but also

in language processes (76–78). It has been suggested that the

ILF acts in the interplay of the semantic-ventral stream (79–

84), as supported by consistent evidence obtained from patients

with semantic dementia, in which the ILF is highly disrupted

(58, 85). Of note, a significant proportion of FTD patients with

a TARDBP mutation were found to fulfill criteria for semantic

dementia by other reports (16). So far, previous studies on ALS

patients have demonstrated a correlation between alterations

of the ILF and emotional processing disorders (86, 87), but

future investigation will be needed to perfect our knowledge

on the role of this WM tract for linguistic impairment in

pure MND.

This study is not without limitations. First, to reach the

greatest number of TARDBP patients, we had to include

subjects who performed MRI on two different scanners. This

limitation was partially overcome by including scanner type

as a covariate in our statistical analyses. Secondly, accurate

cognitive/behavioral phenotyping was not available for the

whole cohort of patients, thus not allowing a proper correlation

analysis between neuroanatomical and cognitive data in a

sufficiently powered sample. Moreover, we did not have

systematic information regarding mutations or variants of

unknown significance on less common MND-related genes,

other than those analyzed with Sanger sequencing (e.g., those

related with hereditary spastic paraplegia, etc.). Although we

could not completely exclude the presence of these alterations

in the sMND sample, we still could describe the distinctive

neuroanatomical alterations of the TARDBP mutated subjects,

as per declared objective of the present study. One last pitfall of

this study is its cross-sectional design, as a longitudinal approach

would have allowed to keep track of cortical and subcortical

damage as the disease unfolds and different symptoms come at

play. Longitudinal studies are warranted to better understand

the clinical relevance of these findings in mutated subjects,

in order to identify useful outcome measures in future gene-

targeting clinical trials.

In conclusion, our findings suggest that MND patients

carrying a TARDBP may present with a heterogeneous

clinical phenotype. However, we suggest that a distinctive,

mild impairment of the linguistic domains, together with a

prominent damage to parietal GM structures might be the

hallmark of this uncommon, but significant cause of genetically-

determined MND.
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