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For patients suffering from brain tumor, prognosis estimation and treatment decisions are

made by a multidisciplinary team based on a set of preoperative MR scans. Currently,

the lack of standardized and automatic methods for tumor detection and generation of

clinical reports, incorporating a wide range of tumor characteristics, represents a major

hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas,

lower grade gliomas, meningiomas, and metastases, through four cohorts of up to

4,000 patients. Tumor segmentationmodels were trained using the AGU-Net architecture

with different preprocessing steps and protocols. Segmentation performances were

assessed in-depth using a wide-range of voxel and patient-wise metrics covering
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volume, distance, and probabilistic aspects. Finally, two software solutions have been

developed, enabling an easy use of the trained models and standardized generation

of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were

quite homogeneous across the four different brain tumor types, with an average true

positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%,

and patient-wise precision around 95%. In conjunction to Dice, the identified most

relevant other metrics were the relative absolute volume difference, the variation of

information, and the Hausdorff, Mahalanobis, and object average symmetric surface

distances. With our Raidionics software, running on a desktop computer with CPU

support, tumor segmentation can be performed in 16–54 s depending on the dimensions

of the MRI volume. For the generation of a standardized clinical report, including the

tumor segmentation and features computation, 5–15 min are necessary. All trained

models have been made open-access together with the source code for both software

solutions and validation metrics computation. In the future, a method to convert results

from a set of metrics into a final single score would be highly desirable for easier

ranking across trained models. In addition, an automatic classification of the brain tumor

type would be necessary to replace manual user input. Finally, the inclusion of post-

operative segmentation in both software solutions will be key for generating complete

post-operative standardized clinical reports.

Keywords: metastasis, meningioma, glioma, RADS, MRI, deep learning, 3D segmentation, open-source software

1. INTRODUCTION

Prognosis in patients with brain tumors is heterogeneous with
survival rates varying from weeks to several years depending

on the tumor grade and type, and for which most patients will
experience progressive neurological and cognitive deficit (1).

Brain tumors can be classified as either primary or secondary.
In the former, tumors originate from the brain itself or its

supporting tissues whereas in the latter cancer cells have
spread from tumors located elsewhere in the body to reach
the brain (i.e., brain metastasis). According to the World
Health Organization classification of tumors (2), primary brain
tumors are graded by histopathological and genetic analyses and
can be regrouped in 100 different subtypes with frequent to
relatively rare occurrences. Among the most frequent subtypes,
tumors arising from the brain’s supportive cell population (i.e.,
glial tissue) are referred to as gliomas. The more aggressive
entities are labeled as high-grade gliomas (HGGs) and are
graded between 3 and 4, while the less aggressive entities are
referred to as diffuse lower grade gliomas (LGGs) and are
graded between 2 and 3. Tumors arising from the meninges,
which form the external membranous covering the brain, are
referred to as meningiomas. Aside from the aforementioned
large categories, other and less frequent tumor types exist
(e.g., in the pituitary, sellar, or pineal regions). Each tumor
category has distinct biology, prognosis, and treatment (3,
4). The most common primary malignant brain tumor type
in adults is high-grade glioma which remains among the
most difficult cancers to treat with a limited 5-year overall
survival (5).

For patients affected by brain tumors, prognosis estimation
and treatment decisions are made by a multidisciplinary team
(including neurosurgeons, oncologists, and radiologists), and
based on a set of preoperative MR scans. High accuracy in
the preoperative diagnostics phase is of utmost importance
for patient outcomes. Judgments concerning the complexity or
radicality of surgery, or the risks of postoperative complications
hinge on data gleaned from MR scans. Additionally, tumor-
specific characteristics such as volume and location, or cortical
structures profile can to a large degree be collected (6).
Retrospectively, such measurements can be gathered from the
analysis of surgical cohorts, multicenter trials, or registries
in order to devise patient outcome prediction models (7–9).
Reliable measurements and reporting of tumor characteristics
are, therefore, instrumental in patient care. Standard reporting
and data systems (RADSs) have been established for several solid
tumors such as prostate cancer (10) and lung cancer (11). Very
few attempts have been made for brain cancer in general (12)
or high-grade gliomas (13). The main goal of RADSs is to
provide rules for imaging techniques, terminology of reports,
definitions of tumor features, and treatment response to reduce
practice variation and obtain reproducible tumor classification. A
broad implementation can facilitate collaborations and stimulate
evaluation for the development and improvement of RADSs.

Currently, the lack of standardized and automatic methods
for tumor detection in brain MR scan represents a major hurdle
toward the generation of clinical reports incorporating a wide
range of tumor characteristics. Manual tumor delineation or
assessment by radiologists is time-consuming and subject to intra
and inter-rater variations that are difficult to characterize (14)

Frontiers in Neurology | www.frontiersin.org 2 July 2022 | Volume 13 | Article 932219

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bouget et al. Preoperative Brain Tumor Imaging

and, therefore, rarely done in clinical practice. As a result,
informative tumor features (e.g., location or volume) are often
estimated from the images solely based on crude measuring
techniques (e.g., eyeballing) (15).

1.1. Related Study
From the fast-growing development in the field of deep learning,
convolutional neural networks have demonstrated impressive
performance in various segmentation tasks and benchmark
challenges, with the added-value of being fully automatic
and deterministic (16). Regarding brain tumor segmentation,
performances have specifically been assessed on the Brain Tumor
Segmentation Challenge (BraTS) dataset (17, 18). Occurring
every year since 2012, the challenge focuses on gliomas (i.e.,
HGGs and LGGs) and has reached a notable cohort size with
a total of 2,040 patients included in the 2021 edition, and
multiple MR sequences included for each patient (i.e., T1c,
T1w, T2, FLAIR). Segmentation performance has been assessed
using the Dice similarity coefficient and the 95th percentile
Hausdorff distance (HD95) as metrics (19). The current state-
of-the-art is an extension of the nnU-Net architecture (20) with
an asymmetrical number of filters between the encoding and
decoding paths, the substitution of all batch normalization layers
by group normalization, and the addition of axial attention (21).
An average Dice score of 85% together with a 17.70 mm
HD95 were obtained for the enhancing tumor segmentation
task in high-grade gliomas. The segmentation of other brain
tumor types has been sparsely investigated in the literature in
comparison, possibly due to a lack of open-access annotated
data, as illustrated by recent reviews or studies investigating
brain tumor segmentation in general (22, 23). Grovik et al.
used a multicentric and multi-sequence dataset of 165 metastatic
patients to train a segmentation model with the DeepLabV3
architecture (24, 25). The best segmentation results were around
79% Dice score with 3.6 false positive detections per patient on
average. Other prior studies have focused on using variations of
the DeepMedic architecture (26), using contrast-enhanced T1-
weighted MRI volumes as input, to train their segmentation
models (27, 28). Datasets were of a similar magnitude with
around 200 patients. However, in both cases the test sets were
limited to up to 20 patients, making it difficult to assess the
generalization ability of the trained models in the absence of
cross-validation studies. Obtained average Dice scores over the
contrast-enhancing tumor were approximating 75%, with almost
8 false positive detections per patient. From a recent review on the
use of machine learning applied to different meningioma-related
tasks using MRI scans (29), more than 30 previous studies have
investigated automatic diagnosis or grading but only a handful
focused on the segmentation task. In addition, the datasets’
magnitude used for segmentation purposes has been consistently
smaller than for the other tasks, with barely up to 126 patients
in the reported studies. Laukamp et al. reported the best Dice
scores using well-known 3D neural network architectures such
as DeepMedic and BioMedIA, though at the expense of heavy
preprocessing techniques the likes of atlas registration (30, 31).
In a previous study, we achieved equally promising performance
using an attention-based U-Net architecture, reaching an average

Dice score of up to 88% on contrast-enhanced T1-weighted MRI
volumes (32). In addition, the cross-validation studies performed
over up to 600 patients with a wide range of tumor sizes, coming
from the hospital and the outpatient clinic, exhibited a proper
ability to generalize from the trained models.

To summarize, with the exception of the BraTS challenge,
there is a dearth of high-quality MRI datasets for brain tumor
segmentation. Furthermore, open-access pretrained models and
inference codes are scarce and can be cumbersome to operate,
hence hindering the generation of private datasets for brain
tumor segmentation tasks. On the other hand, open-source
tools are being developed to assist in image labeling and the
generation of AI models for clinical evaluation, such as MONAI
Label (33) or Biomedisa (34). Yet, they do not integrate nor
provide access to the latest and highest performing brain tumor
segmentation models from the literature, or provide only semi-
automatic methods hence requiring manual inputs from the user.
From a validation standpoint, the focus has been on reporting
Dice scores and often Hausdorff distances, while many other
meaningful and possibly more relevant metrics exist and could
be investigated to better highlight the strengths and weaknesses
of the different segmentation methods (35, 36).

The literature on RADSs for brain tumors is equally
scarce with only few attempts for preoperative glioblastoma
surgery (13) or post-treatment investigation (37). In the former,
automatic segmentation and computation of relevant tumor
features were provided, and an excellent agreement has been
shown between characteristics computed over the manual and
automatic segmentation. In the latter, the interpretation of the
post-treatment MR scans was provided using a structured set
of rules but deprived of any automatic tumor segmentation or
image analysis support.

1.2. Contributions
While research is exceedingly ahead for glioma segmentation
under the aegis of the BraTS challenge community, the
segmentation of meningiomas and metastases is trailing behind.
In addition, validation studies in the literature have too often
been dominated by Dice score reporting and a broader inspection
is essential to ensure clinical relevance. Finally, the outcome
of this research is often not readily available, especially for the
intended end-users who are clinicians without programming
experience. As such, the contributions of our study are: (i) the
training of robust segmentation models for glioblastomas, lower
grade gliomas, meningiomas, and metastases assessed using a
panel of more than 20 different metrics to better highlight
performance, (ii) the development of two software solutions
enabling easy and fully automatic use of the trained models and
tumor features computation: Raidionics and Raidionics-Slicer,
and (iii) open-access models and source code for the software and
validation metrics computation.

2. DATA

For this study, four different datasets have been assembled,
one for each main tumor type considered: glioblastoma, lower
grade glioma, meningioma, and metastasis. The tumor type
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TABLE 1 | Overview of the datasets gathered for the four brain tumor types

considered.

Tumor Sequence # patients # sources Volume Volume

type type average (ml) range (ml)

Glioblastoma T1c 2134 15 34.37± 28.83 [0.01, 243.39]

LGG FLAIR 659 4 51.71± 78.60 [0.14, 478.83]

Meningioma T1c 719 2 19.40± 28.62 [0.07, 209.38]

Metastasis T1c 396 2 17.53± 17.97 [0.01, 114.77]

Only one MRI sequence is available for each patient, and T1c corresponds to Gd-

enhanced T1-weighted MR scans.

was assessed at the time of surgery, when applicable, following
the currently applicable guidelines (i.e., either (38) or (39)).
Tumors were manually segmented in 3D by trained raters
using as support either a region growing algorithm (40)
or a grow cut algorithm (41, 42), and subsequent manual
editing. Trained raters were supervised by neuroradiologists and
neurosurgeons. On contrast-enhanced T1-weighted scans, the
tumor was defined as gadolinium-enhancing tissue including
non-enhancing enclosed necrosis or cysts. On FLAIR scans, the
tumor was defined as the hyperintense region. The four datasets
are introduced in-depth in the subsequent sections. An overall
summary of the data available is reported in Table 1, and some
visual examples are provided in Figure 1.

2.1. Glioblastomas
The glioblastoma dataset is made of a total of 2,134 Gd-
enhanced T1-weighted MRI volumes originating from 14
different hospitals, and one public challenge.

The first 1,841 patients have been collected from 14 different
hospitals worldwide: 38 patients from the Northwest Clinics,
Alkmaar, Netherlands (ALK); 97 patients from the Amsterdam
University Medical Centers, location VU medical center,
Netherlands (AMS); 86 patients from the University Medical
Center Groningen, Netherlands (GRO); 103 patients from the
Medical Center Haaglanden, the Hague, Netherlands (HAG);
75 patients from the Humanitas Research Hospital, Milano,
Italy (MIL); 74 patients from the Hôpital Lariboisière, Paris,
France (PAR); 134 patients from the University of California
San Francisco Medical Center, U.S. (SFR); 49 patients from the
Medical Center Slotervaart, Amsterdam, Netherlands (SLO); 153
patients from the St Elisabeth Hospital, Tilburg, Netherlands
(TIL); 171 patients from the University Medical Center Utrecht,
Netherlands (UTR); 83 patients from the Medical University
Vienna, Austria (VIE); 72 patients from the Isala hospital, Zwolle,
Netherlands (ZWO); 456 patients from the St. Olavs Hospital,
TrondheimUniversity Hospital, Norway (STO); and 249 patients
from the Sahlgrenska University Hospital, Gothenburg, Sweden.
An in-depth description of most cohorts can be found in a
recent study (13). The remaining 293 patients correspond to
the training set of the BraTS challenge (edition 2020) but
have already undergone preprocessing transformations such
as skull-stripping.

Overall, MRI volume dimensions are covering
[159; 896] × [86; 896] × [17; 512] voxels, and the voxel
size ranges [0.26; 1.25] × [0.26; 2.00] × [0.47; 7.50]mm3. An
average MRI volume is [303 × 323 × 193] pixels with a spacing
of [0.86× 0.84× 1.24] mm3.

2.2. Lower Grade Gliomas
The lower grade glioma dataset is made of a total of 659 FLAIR
MRI volumes, with mostly grade 2 diffuse gliomas, coming from
four different hospitals: 330 patients from the Brigham and
Women’s Hospital, Boston, USA; 165 patients from the St. Olavs
Hospital, Trondheim University Hospital, Norway; 154 patients
from the Sahlgrenska University Hospital, Gothenburg, Sweden;
and 10 from the University Hospital of North Norway, Norway.

Overall, MRI volume dimensions are covering
[192; 576] × [240; 640] × [16; 400] voxels, and the voxel
size ranges [0.34; 1.17] × [0.34; 1.17] × [0.50; 8.0] mm3. An
average MRI volume is [349× 363× 85] pixels with a spacing of
[0.72× 0.72× 4.21] mm3.

2.3. Meningiomas
The meningioma dataset is made of 719 Gd-enhanced T1-
weighted MRI volumes, mostly built around a dataset previously
introduced (43), showcasing patients either followed at the
outpatient clinic or recommended for surgery at the St. Olavs
Hospital, Trondheim University Hospital, Norway.

Overall, MRI volume dimensions are covering
[192; 512] × [224; 512] × [11; 290] voxels, and the voxel
size ranges [0.41; 1.05] × [0.41; 1.05] × [0.60; 7.00] mm3. An
average MRI volume is [343 × 350 × 147] pixels with a spacing
of [0.78× 0.78× 1.67] mm3.

2.4. Metastases
The metastasis dataset is made of a total of 396 Gd-enhanced T1-
weighted MRI volumes, collected from two different hospitals:
329 patients from the St. Olavs Hospital, Trondheim University
Hospital, Norway; and 67 patients fromOsloUniversity Hospital,
Oslo, Norway.

Overall, MRI volume dimensions are covering
[128; 560] × [114; 560] × [19; 561] voxels, and the voxel
size ranges [0.43; 1.33] × [0.43; 1.80] × [0.45; 7.0]mm3. An
average MRI volume is [301 × 370 × 289] pixels with a spacing
of [0.85× 0.76× 1.08]mm3.

3. METHODS

First, the process for automatic brain tumor segmentation
including data preprocessing, neural network architecture, and
training design is introduced in Section 3.1. Second, the tumor
characteristics extraction process, using the generated tumor
segmentation as input, is summarized in Section 3.2. Finally,
a description of the two developed software solutions for
performing segmentation and standardized reporting is given in
Section 3.3.
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FIGURE 1 | Examples of brain tumors from the raw MRI volumes collected in this study. Each row illustrates a tumor type: glioblastoma, lower grade glioma,

meningioma, and metastasis (from top to bottom). The manual annotation contours are overlaid in red.
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TABLE 2 | Summary of the model training strategy followed for each tumor type.

Tumor type Preprocessing Strategy Protocol

Glioblastoma (ii) skull-stripping (i) from-scratch (i) leave-one-out

LGG (i) tight clipping (i) from-scratch (ii) 5-fold

Meningioma (i) tight clipping (i) from-scratch (ii) 5-fold

Metastasis (ii) skull-stripping (ii) transfer-learning (ii) 5-fold

3.1. Tumor Segmentation
The architecture selected to train segmentation models for each
brain tumor type is AGU-Net, which has shown to perform
well on glioblastoma and meningioma segmentation (32, 44).
In the following, the different training blocks are presented
with some inner variations specified by roman numbers inside
brackets. A global overview is provided in Table 2 summarizing
used variants.

Architecture: Single-stage approach leveraging multi-scale
input and deep supervision to preserve details, coupled with
a single attention module. The loss function used was the
class-averaged Dice loss, excluding the background. The final
architecture was as described in the original article with 5 levels
and [16, 32, 128, 256, 256] as convolution blocks.

Preprocessing: The following preprocessing steps
were used:

1. resampling to an isotropic spacing of 1mm3 using spline
interpolation of order 1 from NiBabel 1.

2. (i) tight clipping around the patient’s head, excluding the
void background, or (ii) skull-stripping using a custom brain
segmentation model.

3. volume resizing to 128 × 128 × 144 voxels using spline
interpolation of order 1.

4. intensity normalization to the range [0, 1].

Training strategy: Models were trained using the Adam
optimizer over a batch size of 32 samples with accumulated
gradients (actual batch size 2), stopped after 30 consecutive
epochs without validation loss improvement, following either: (i)
training from scratch with 1e−3 initial learning rate, or transfer
learning with an initial learning rate of 1e−4 fine-tuning over the
best glioblastoma model.

For the data augmentation strategy, the following transforms
were applied to each input sample with a probability of 50%:
horizontal and vertical flipping, random rotation in the range
[−20◦, 20◦], and translation up to 10% of the axis dimension.

Training protocol: Given the magnitude difference within
our four datasets, two different protocols were considered: (i) a
three-way split at the hospital level whereby MRI volumes from
one hospital constituted the validation fold; MRI volumes from a
second hospital constituted the test fold; and the remaining MRI
volumes constituted the training fold. As such, each hospital was
used in turn as the test set in order to properly assess the ability of
the differentmodels to generalize. Or (ii) a 5-fold cross-validation
with a random two-way split over MRI volumes whereby four

1https://github.com/nipy/nibabel

folds are used in turn as a training set and the remaining one as a
validation set, without the existence of a proper separate test set.

3.2. Preoperative Clinical Reporting
For the generation of standardized preoperative clinical
reports in a reproducible fashion, the computation of tumor
characteristics was performed after alignment to a standard
reference space. As described in-depth in our previous study (13),
the reference space was constituted by the symmetric Montreal
Neurological Institute ICBM2009a atlas (MNI) (45). The atlas
space did not possess any brain average as FLAIR sequence, the
T1 atlas file was used for all tumor types.

For each tumor type, the collection of features includes
volume, laterality, multifocality, cortical structure location
profile, and subcortical structure location profile. Specifically
tailored for glioblastomas, resectability features are, therefore, not
available for the other brain tumor types.

3.3. Proposed Software
In order to make our models and tumor features easily available
to the community, we have developed two software solutions.
The first one is a stand-alone software called Raidionics, and the
second one is a plugin to 3D Slicer given its predominant and
widespread use in the field (46). Both solutions provide access
to a similar back-end including inference and processing code.
However, the GUI and intended user interactions differ. The
trained models are stored in a separate online location and are
downloaded on the user’s computer at runtime. Models can be
improved over time and a change will be automatically detected,
resulting in the replacement of outdated models to the user’s
machine. Raidionics can be seen as an improved solution to our
initial GSI-RADS software, covering not only glioblastomas but
all major brain tumor types, offering the option to compute a
similar standardized report, and providing a refined graphical
user interface enabling the user to visually assess the results.

3.3.1. Stand-Alone Solution: Raidionics
The software proposes two modes: (i) single-use where only one
patient is to be processed and results can be visually assessed
in the 2D viewer, and (ii) batch-mode whereby a collection
of patients can be processed sequentially without any viewing
possibility. In each mode, the option is left to the user to
solely perform tumor segmentation or to compute the whole set
of tumor characteristics and generate the standardized report.
For each patient, the software expects an MRI scan as input
(i.e., Gd-enhanced T1-weighted or FLAIR sequence) and the
tumor type must be manually selected. Additionally, a pre-
existing tumor segmentation mask can be provided to bypass the
automatic segmentation, if collecting the tumor characteristics is
the main interest and manual annotations have been performed
beforehand. The total set of processed files saved on disk includes
the standardized reports, brain and tumor segmentationmasks in
both patient and MNI space, cortical and subcortical structures
masks in both patient and MNI space, and the registration files
to navigate from patient to MNI space. To complement the
reporting and give the possibility for follow-up statistical studies,

Frontiers in Neurology | www.frontiersin.org 6 July 2022 | Volume 13 | Article 932219

https://github.com/nipy/nibabel
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bouget et al. Preoperative Brain Tumor Imaging

the complete set of computed features is also provided in comma
separated value format (i.e., .csv).

The software has been developed in Python 3.6.9, using
PySide2 v5.15.2 for the graphical user interface, and only uses
the Central Processing Unit (CPU) for the various computations.
The software has been tested and is compatible with Windows
(≥ 10), macOS (≥ Catalina 10.15), and Ubuntu Linux (≥ 18.04).
An illustration of the software is provided in Figure 2. Cross-
platform installers and source code are freely available at https://
github.com/dbouget/Raidionics.

3.3.2. 3D Slicer Plugin: Raidionics-Slicer
The 3D Slicer plugin has been developed using the DeepInfer
plugin as baseline (47) and is mostly intended for tumor
segmentation purposes. Through a slider, the possibility is
provided to manually alter the probability threshold cutoff in
order to refine the proposed binary mask. Further manual
editing can be performed thereafter using the existing 3D
Slicer functionalities. The back-end processing code has been
bundled into a Docker image for convenience, and therefore,
administrator rights are required for the end-user to perform the
installation locally. The same inputs, behavior, and outputs can
be expected as for the stand-alone software.

The GitHub repository for the 3D Slicer plugin can be
found at https://github.com/dbouget/Raidionics-Slicer, and an
illustration is provided in Figure 3.

4. VALIDATION STUDIES

In the validation studies, only the automatic segmentation
performances are assessed. The clinical validity and relevance of
the extracted tumor features have been addressed thoroughly in
a previous study (13). To better grasp the different aspects of
the segmentation performance, a wider set of metrics is studied
as described in Section 4.1. For the voxel-wise segmentation
task, only two classes are considered as the whole tumor extent
(including contrast-enhancing regions, cysts, and necrosis) is the
target: non-tumor tissue or tumor tissue. In that sense, a positive
voxel is a voxel exhibiting tumor tissue, whereas a negative voxel
is a voxel exhibiting background or normal tissue.

4.1. Metrics
Following a review of metrics for evaluating 3D medical
image segmentation (36), a broad spectrum of 25 metrics
was selected, computed either voxel-wise or instance-wise,

FIGURE 2 | Illustration of the Raidionics software after generating the standardized report for a patient suffering from glioblastoma. The left side presents the tumor

characteristics belonging to the report, whereas the right side offers a simplistic view.
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FIGURE 3 | Illustration of the Raidionics-Slicer plugin after generating the standardized report for a patient suffering from glioblastoma.

and grouped according to the following categories: overlap-
based, volume-based, information theory-based, probabilistic,
and spatial distance-based.

4.1.1. Voxel-Wise:
For quantifying semantic segmentation performance, we
have selected the following metrics computed directly and
indiscriminately over all voxels of a given patient MRI volume:

1. Overlap-based: (i) True Positive Rate (TPR), also called recall
or sensitivity, is the probability that an actual positive voxel
will test positive; (ii) True Negative Rate (TNR), also called
specificity, is the probability that an actual negative voxel will
test negative; (iii) False Positive Rate (FPR), is the probability
that a false alarm will be raised (i.e., a negative voxel will test
positive); (iv) False Negative Rate (FNR), also called missed
rate, is the probability that a true positive voxel will test
negative; (v) Positive Predictive Value (PPV), also referred to
as precision, is the ratio of truly positive voxels over all voxels
which tested positive; (vi) Dice score (Dice), also called the
overlap index and gauging the similarity of two samples, is
the most commonly used metric in validating medical volume
segmentation (48); (vii) Dice True Positive score (Dice-TP)
is similar to the Dice score but is only computed over the
true positive predictions (i.e., when the model found the
tumor); (viii) Intersection Over Union (IoU), also called the
Jaccard index, measures the volume similarity as the size
of the intersection divided by the size of the union of two
samples (49); (ix) Global Consistency Error (GCE), defined as
the error measure averaged over all voxels (50).

2. Volume-based: (i) Volumetric Similarity (VS), as the absolute
volume difference divided by the sum of the compared
volumes (51); (ii) Relative Absolute Volume Difference

(RAVD), as the relative absolute volume difference between
the joint binary objects in the two images. This is a percentage
value in the range [−1.0,∞) for which a 0 denotes an
ideal score.

3. Information theory-based: (i) Normalized Mutual
Information (MI), normalization of the mutual information
score to scale the results between 0 (no mutual information)
and 1 (perfect correlation) (52); (ii) Variation Of Information
(VOI), measuring the amount of information lost or gained
when changing from one variable to the other, in this case, to
compare clustering partitions (53).

4. Probabilistic: (i) Cohen’s Kappa Score (CKS), measuring the
agreement between two samples (54). The metric ranges
between −1.0 and 1.0 whereby the maximum value means
complete agreement, and zero or lower means chance
agreement; (ii) Area Under the Curve (AUC), first presented
as the measure of accuracy in the diagnostic radiology (55),
further adjusted for the validation of machine learning
algorithms; (iii) Volume Correlation (VC), as the linear
correlation in binary object volume, measured through
the Pearson product-moment correlation coefficient where
the coefficient ranges [−1., 1.]; (iv) Matthews Correlation
Coefficient (MCC), as a measure of the quality of binary
and multiclass classifications, taking into account true and
false positives and negatives and generally regarded as a
balanced measure (56). The metric ranges between −1.0
and 1.0 whereby 1.0 represents a perfect prediction, 0.0 an
average random prediction, and −1.0 an inverse prediction;
(v) Probabilistic Distance (PBD), as a measure of the distance
between fuzzy segmentation (57).

5. Spatial-distance-based: (i) 95th percentile Hausdorff distance
(HD95), measuring the boundary delineation quality (i.e.,
contours). The 95% version is used to make measurements
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more robust to small outliers (58); (ii) the Mahalanobis
distance (MHD), measuring the correlation of all points and
calculated according to the variant described for the validation
of image segmentation (59); (iii) Average Symmetric Surface
Distance (ASSD), as the average symmetric surface distance
between the binary objects in two images.

4.1.2. Instance-Wise:
For quantifying instance detection performance, we chose the
following metrics, reported in a patient-wise fashion (PW) or
an object-wise fashion (OW). In the latter, and in case of
multifocal tumors, each focus is considered as a separate tumor.
The detection threshold has been set to 0.1% Dice to determine
whether an automatic segmentation is eligible to be considered as
a true detection or a false positive.

1. Overlap-based: (i) Recall, as the ratio in % of tumors properly
identified; (ii) Precision, as the ratio in % of tumors incorrectly
detected; (iii) F1-score (F1), measuring information retrieval
as a trade-off between the recall and precision (60); (iv)
False Positives Per Patient (FPPP), as the average number of
incorrect detections per patient.

2. Probabilistic: (i) Adjusted Rand Index (ARI), as a similarity
measure between two clusters by considering all pairs of
samples and counting pairs that are assigned in the same
or different clusters between the model prediction and the
ground truth (61). The metric ranges from −1.0 to 1.0,
whereby random segmentation has an ARI close to 0.0 and
1.0, stands for a perfect match.

3. Spatial-distance-based: (i) Object Average Symmetric Surface
Distance (OASSD), as the average symmetric surface distance
(ASSD) between the binary objects in two volumes.

4.2. Measurements
Pooled estimates, computed from each fold’s results, are reported
for each measurement (62). Overall, measurements are reported
as mean and SD (indicated by±) in the tables.

Voxel-wise: For semantic segmentation performance, the
Dice score is computed between the ground truth volume and
a binary representation of the probability map generated by a
trained model. The binary representation is computed for ten
different equally-spaced probability thresholds (PT) in the range
[0, 1].

Instance-wise: For instance detection performance, a
connected components approach coupled with a pairing strategy
was employed to associate ground truth and detected tumor
parts. A minimum size threshold of 50 voxels was set and objects
below that limit were discarded. A detection was deemed true
positive for any Dice score strictly higher than 0%.

4.3. Experiments
To validate the traied models, the following set of experiments
was conducted:

1. Overall performance study: k-fold cross-validation studies
for the different tumor types for assessing segmentation
performance. For easy interpretation, only Dice scores
together with patient-wise and object-wise recall, precision,
and F1-score values are reported.

2. Metrics analysis: in-depth performance comparison using
the additional metrics, and confusion matrix computation
between the metrics to identify redundancy in their use.

3. Representative models selection: identification of one final
segmentation model for each tumor type, which will be made
available for use in our software solutions.

4. Speed study: computation of the pure inference speed and
the total elapsed time required to generate predictions for
a new patient, obtained with CPU support and reported in
seconds. The operations required to prepare the data to be
sent through the network, initialize the environment, load the
trained model, and reconstruct the probability map in the
referential space of the original volume are accounted for. The
experiment was repeated ten consecutive times over the same
MRI volume for each model, using a representative sample of
each dataset in terms of dimension and spacing.

5. RESULTS

5.1. Implementation Details
Results were obtained using a computer with the following
specifications: Intel Core Processor (Broadwell, no TSX, IBRS)
CPU with 16 cores, 64GB of RAM, Tesla V100S (32GB)
dedicated GPU and a regular hard-drive. Training and inference
processes were implemented in Python 3.6 using TensorFlow
v1.13.1, and the data augmentation was performed using the
Imgaug Python library (63). The metrics were for the most
part computed manually using the equations described in
the Supplementary Material, or alternatively using the sklearn
v0.24.2 (64) and medpy v0.4.0 (65) Python libraries. The source
code used for computing the metrics and performing the
validation studies is made publicly available at https://github.
com/dbouget/validation_metrics_computation.

5.2. Overall Performance Study
An overall summary of brain tumor segmentation performance
for all four tumor subtypes is presented in Table 3. Meningiomas
and lower grade gliomas appear more difficult to segment given
average Dice scores of 75%, compared to average Dice scores
of 85% for glioblastomas and metastases. A similar trend, yet
with a slightly smaller gap, can be noted for the Dice-TP scores
ranging between 81 and 90% with a standard deviation of
approximately 15%, indicating the quality and relative stability
of the trained models. From a patient-wise perspective, those
results demonstrate the difficulty of achieving good recall while
keeping the precision steadily above 95%. Even though a direct
comparison to the literature is impossible since different datasets
have been used, obtained performance is on-par if not better than
previously reported performances where Dice scores have been
ranging from 75 to 85%.

Regarding the lower grade glioma tumor subtype, the diffuse
nature of the tumors and less pronounced gradients over image
intensities are possible explanations for the lower segmentation
performance. For the meningioma category, the reason for the
lower Dice-score and recall values can be attributed to the
larger number of small tumors (< 2ml) compared to other
subtypes. In addition, outliers have been identified in this dataset
whereby a small extent of the tumors were either partly enhanced
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TABLE 3 | Segmentation performance summary for each tumor type.

Voxel-wise Patient-wise Object-wise

Tumor type Dice Dice-TP F1-score Recall Precision F1-score Recall Precision

Glioblastoma 85.69± 16.97 87.36± 12.17 97.40± 01.01 98.08± 01.29 96.76± 01.43 89.61± 04.11 85.78± 07.95 94.19± 02.71

LGG 75.39± 25.95 81.24± 16.01 93.60± 01.74 92.86± 03.19 94.42± 01.07 81.58± 02.25 75.58± 02.41 88.70± 03.16

Meningioma 75.00± 30.52 84.81± 15.07 90.67± 01.42 88.46± 02.12 93.25± 04.76 83.85± 03.60 80.93± 04.34 87.77± 08.30

Metastasis 87.73± 18.94 90.02± 12.80 97.54± 00.76 97.46± 01.38 97.63± 00.77 88.71± 01.34 82.80± 02.38 95.60± 01.45

because of calcification, or non-enhancing due to intraosseous
growth. For all tumor types, Dice-score distributions are reported
against tumor volumes in Figure 4 for 10 equally-sized bins.
For meningiomas, four bins are necessary to group tumors with
a volume of up to 4ml while only one bin is necessary for
the glioblastomas, indicating a volume distribution imbalance
between the two types. The diamond-shaped points outside the
boxes represent cases where the segmentation model did not
perform well (cf. Supplementary Figures S1–S4).

While tumor volumes and outlier MR scans are reasons for
the discrepancy in Dice and recall values across the board,
precision is rather unaffected and more stable. The nature
of the convolutional neural network architecture and training
strategy used can explain those results. By leveraging volumes
covering the full brain, global relationships can be learned by
the trained model hence reducing the confusion between tumor
regions and other contrast-enhancing structures such as blood
vessels. Given GPU memory limitation, the preprocessed MR
scans have undergone significant downsampling, and as such
small tumors are reduced to very few voxels, impacting mainly
recall performance.

Finally, an average decrease of∼ 10% can be noticed between
patient-wise and object-wise detection metrics, whereby satellite
tumors are on average an order of magnitude smaller than
the main tumor, and are hence more prone to be omitted or
poorly segmented by our models. Segmentation performance is
illustrated in Figure 5. Each row corresponds to one tumor type
and each column depicts a different patient.

5.3. Metrics Analysis
Side-by-side voxel-wise performances regarding the overlap-
based metrics are reported in Tables 4, 5. Unsurprisingly, given
the good precision performance and the absence of patients
without a tumor, both TNR and its opposite FPR scores are
almost perfect for all tumor types. Similarly, the TPR and its
opposite FNR metrics are scoring similarly to Dice. Within each
tumor category, the overlap-basedmetrics are following the same
trend whereby a higher average Dice score would correlate with
a higher score for any other metrics and vice versa (e.g., IoU).
An exception can be made regarding the behavior of the GCE
metric, scoring on average higher for glioblastomas than for
meningiomas and as such not following the same pattern as
Dice. Upon careful visual inspection, the GCE metric seems
to be extremely sensitive to outliers, either coming from the
image quality or manual ground truth correctness (cf. top row

in Supplementary Figures S1–S4). Given the non-normalized
state of the GCE metric, and its absence of any upper bound,
an extremely poor agreement between manual ground truth and
automatic segmentation will result in score orders of magnitude
higher than its average expression over a given dataset. Regarding
the two volume-based metrics, featured rightmost in the second
table, an antagonistic pattern toward Dice can be observed. The
VS metric has the same cross-type trend as Dice with similar
yet slightly greater scores. On the other hand, while the RAVD
metric scores best over the metastasis group similar to Dice, its
worst average value is obtained for the glioblastoma group, hence
potentially exhibiting the same frailty toward outliers as for the
GCE metric.

Next off, voxel-wise performance for information theory-
based and probabilistic metrics are regrouped in Table 6. The
MI and VOI metrics, both based on information theory, are
exhibiting an inverse behavior in line with observations about
the relationship between Dice and GCE metrics. The normalized
mutual information metric ranges from 0.668 to 0.829 for
Dice scores between 75 and 87%, showcasing stability but also
correlation. On the contrary, the VOImetric expresses a behavior
concurrent to GCE whereby the worst performance is obtained
for the lower grade gliomas and then glioblastomas categories,
while it performs best over metastases where Dice also scores
the highest. Alike the aforementioned metric groups exhibiting
inner discrepancies, three of the five probabilistic metrics follow
a similar trend scoring high alongside Dice, with an average
gap of 0.1 corresponding to a ∼ 10% Dice score difference.
Meanwhile, the PBD metric has a behavior of its own scoring
order of magnitude worse for the meningioma category than
for the three other subtypes. The metric is not normalized and
an extremely poor agreement between the manual ground truth
and automatic segmentation would result in an extremely large
score, similar to the GCE metric, hence reporting the median
score, in addition, might be of interest (cf. second row in
Supplementary Figures S1–S4).

Finally, the voxel-wise distance-based metrics are reported
in Table 7. Similar cross-type trends can also be noted whereby
the best HD95 of 4.97 mm is obtained for the glioblastoma
category and the worst HD95 of 10 mm formeningiomas, heavily
correlated to Dice performance. Our average HD95 results
appear lower than previously reported results in the literature,
however, a strong statement can hardly be made as the tumors
featured can vary highly in terms of volume and number of
satellites which might reflect greatly on metrics’ average scores.
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FIGURE 4 | Volume-wise (equally binned) Dice performance as boxplots for each of the four tumor types.

The other two spatial distance-based metrics display similar
behavior to HD95, whereby tumor types can be ranked as follows
based on best to worse performance: glioblastoma, metastasis,
lower grade glioma, and meningioma.

Regarding instance-wise metrics, grouped inTable 8, the close
OASSD average values between glioblastomas and meningiomas
represent the most surprising outcome given the 5% difference
in F1-score. Unsurprisingly, the lower grade glioma category
achieves the highest average OASSD with 2.6 mm together
with the lowest F1-score. As one might expect, the amount
of FPPP correlates greatly with the average precision values
obtained. Ultimately, the ARI metric generates scores extremely
similar to voxel-wise Dice and correlates highly with the F1-
score whereby the glioblastoma and metastasis categories obtain
almost 0.1 more than for the meningioma and lower grade
glioma subtypes.

For completeness, the correlation between the different
metrics computed in this study has been assessed, and the results
over the glioblastoma category are shown in Table 9 (cf. other
correlation matrices in Supplementary Tables S2, S4, S6, S8).
Somemetrics have been excluded given inherent correlation from

their computation, such as FPR and FNR being the opposite
of TNR and TPR. Similarly, metrics having computation in
a voxel-wise, patient-wise, or instance-wise fashion were not
considered in the matrix (i.e., recall, precision, and F1-score).
Overall, the conclusions identified by analyzing the raw average
results are further confirmed whereby a majority of voxel-wise
metrics correlate with one another and thus do not bring any
additional information to Dice. However, relevant insight can
be obtained from the RAVD and GCE/VOI metrics given their
low correlation to Dice and their higher sensitivity toward
outliers, enabling to quantify the ability to generalize the model
or potentially the quality of the data and manual ground truth
(cf. third row in Supplementary Figures S1–S4). The correlation
between HD95 and MHD appears also quite low for spatial
distance-based metrics, indicating potential usefulness. Finally,
in the instance-wise category, the OASSD is a stand-alone metric
offering to properly assess model performance over the detection
of satellite tumors. To conclude, a final pool of metrics to
consider for benchmarking purposes and capturing all aspects
of the segmentation performances are Dice, RAVD, VOI, HD95,
MHD, and OASSD. Given the task, reporting patient-wise and
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FIGURE 5 | Examples of segmentation performances. One row illustrates one tumor type: glioblastoma, lower grade glioma, meningioma, metastasis (from top to

bottom), and each column depicts a different patient. The manual delineation is shown in red, the automatic segmentation in blue, and the patient-wise Dice score in

white.

instance-wise recall, precision, and F1-score is always of interest
because of an innate comprehension of their meaning, easy to
interpret for clinicians or other end-users.

5.4. Representative Models Selection
Only one model can be provided in the software solutions
for each tumor type, and the best model selection was

done empirically according to the following criterion: the
size of the validation or test set, average Dice score, and
patient-wise F1-score performances. The exhaustive list of
chosen models is the following: the model trained for fold
0 was selected for the glioblastomas, the model trained for
fold 3 was selected for the lower grade gliomas, for the
meningiomas the model trained for fold 2 was selected,
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TABLE 4 | Voxel-wise overlap-based metrics performance summary for each tumor type.

Tumor type TPR TNR FPR FNR PPV

Glioblastoma 87.88± 17.64 99.96± 00.06 00.04± 00.06 12.12± 17.64 87.35± 13.29

LGG 77.91± 27.89 99.90± 00.16 00.09± 00.16 22.08± 27.89 82.16± 17.01

Meningioma 77.44± 32.48 99.97± 00.04 00.02± 00.04 22.56± 32.48 84.77± 15.69

Metastasis 88.45± 20.82 99.98± 00.03 00.01± 00.03 11.54± 20.82 89.43± 16.78

TABLE 5 | Voxel-wise performance summary for each tumor type for overlap-based and volume-based metrics.

Overlap-based Volume-based

Tumor type Dice Dice-TP IoU GCE (1e4) VS RAVD

Glioblastoma 85.69± 16.97 87.36± 12.17 77.59± 17.99 12.34± 12.57 90.43± 16.94 13.98± 171.2

LGG 75.39± 25.95 81.24± 16.01 65.72± 25.32 34.15± 46.34 82.20± 26.44 07.88± 60.14

Meningioma 75.00± 30.52 84.81± 15.07 67.13± 29.39 09.04± 17.53 80.21± 31.08 07.87± 61.31

Metastasis 87.73± 18.94 90.02± 12.80 81.56± 20.42 04.55± 07.62 91.37± 18.61 02.11± 55.35

TABLE 6 | Voxel-wise performance summary for each tumor type for information theory-based and probabilistic metrics.

Information theory-based Probabilistic

Tumor type MI VOI CKS AUC VC MCC PBD

Glioblastoma 0.787± 0.168 0.011± 0.009 0.856± 0.169 0.939± 0.088 0.978± 0.089 0.875± 0.122 0.840± 24.02

LGG 0.668± 0.246 0.026± 0.030 0.753± 0.259 0.889± 0.139 0.961± 0.119 0.812± 0.167 0.573± 04.82

Meningioma 0.691± 0.291 0.008± 0.013 0.749± 0.305 0.887± 0.162 0.954± 0.149 0.841± 0.171 5.358± 103.4

Metastasis 0.829± 0.191 0.004± 0.006 0.877± 0.189 0.942± 0.104 0.978± 0.100 0.901± 0.127 0.152± 0.623

TABLE 7 | Voxel-wise performance summary for each tumor type for spatial

distance-based metrics.

Tumor type HD95 MHD ASSD

Glioblastoma 04.97± 09.06 00.41± 03.69 01.46± 03.22

LGG 08.37± 13.31 00.53± 03.27 02.19± 05.06

Meningioma 10.11± 21.82 00.72± 03.57 02.77± 07.91

Metastasis 07.54± 20.61 00.54± 04.56 01.73± 05.89

and finally for the metastases the model trained for fold 2
was selected.

5.5. Speed Study
A comparison in processing speed regarding pure tumor
segmentation and complete generation of standardized reports
is provided in Table 10 when using the Raidionics software with
CPU support. The high-end computer is the computer used
for training the models, whereas the mid-end computer is a
Windows laptop with an Intel Core Processor (i7@1.9GHz), and
16GB of RAM.

For the smallest MRI volumes on average, 17 s are needed
to perform tumor segmentation whereas 4.5 min are required
to generate the complete standardized report with the high-end
computer. Unsurprisingly, the larger the MRI volume the more
time required to perform the different processing operations

(cf. Supplementary Section S3). For the largest MRI volumes
overall, 54 s are needed to perform tumor segmentation whereas
15.1 min are required to generate the complete standardized
report. When using the mid-end laptop, overall runtime is
increased by 1.5 times for the different MRI volume sizes. On
average, 9 min are necessary to generate the standardized report
for MRI volumes of reasonable quality.

6. DISCUSSION

In this study, we have investigated the segmentation of a range

of common main brain tumor types in 3D preoperative MR

scans using a variant of the Attention U-Net architecture.
We have conducted experiments to assess the performances of
each trained model using close to 30 metrics and developed
two software solutions for end-users to freely benefit from
our segmentation models and standardized clinical reports.
The main contributions are the high performances of the
models, on-par with performances reported in the literature
for the glioblastomas, with illustrated robustness and ability to
generalize due to the multiple and widespread data sources.
In addition, the two proposed open-access and open-source
software solutions include our best models, together with a
RADS for computing tumor characteristics. This is the first open
RADS solution that supports all major brain tumor types. The
software is user-friendly, requiring only a few clicks and no

Frontiers in Neurology | www.frontiersin.org 13 July 2022 | Volume 13 | Article 932219

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bouget et al. Preoperative Brain Tumor Imaging

TABLE 8 | Instance-wise performance for each tumor type.

Tumor type F1-score Recall Precision FPPP ARI OASSD

Glioblastoma 89.61± 04.11 85.78± 07.95 94.19± 02.71 0.078± 0.037 0.856± 0.169 01.45± 02.82

LGG 81.58± 02.25 75.57± 02.40 88.67± 03.16 0.129± 0.041 0.751± 0.259 02.60± 06.10

Meningioma 83.85± 03.60 80.93± 04.34 87.77± 08.30 0.151± 0.128 0.749± 0.305 01.62± 04.09

Metastasis 88.71± 01.34 82.79± 02.38 95.60± 01.45 0.061± 0.020 0.877± 0.189 0.672± 0.869

TABLE 9 | Metrics correlation matrix for glioblastoma segmentation.

Overlap Volume Information theory Probabilistic Spatial distance Instance-wise

Dice TPR TNR PPV IoU GCE VS RAVD MI VOI CKS AUC VC MCC PBD HD95 MHD ASSD ARI OASSD

Dice 1.0 0.7 0.29 0.62 0.98 -0.22 0.94 -0.35 0.99 -0.23 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

TPR 0.7 1.0 -0.17 -0.07 0.71 -0.08 0.62 0.1 0.7 -0.08 0.7 1.0 0.51 0.71 -0.26 -0.38 -0.34 -0.47 0.7 -0.2

TNR 0.29 -0.17 1.0 0.58 0.28 -0.76 0.29 -0.36 0.33 -0.76 0.29 -0.17 0.23 0.29 -0.04 -0.16 -0.04 -0.27 0.29 -0.22

PPV 0.62 -0.07 0.58 1.0 0.64 -0.24 0.55 -0.49 0.64 -0.25 0.62 -0.07 0.47 0.63 -0.16 -0.38 -0.21 -0.47 0.62 -0.22

IoU 0.98 0.71 0.28 0.64 1.0 -0.24 0.9 -0.29 0.99 -0.24 0.98 0.71 0.71 0.99 -0.28 -0.55 -0.37 -0.7 0.98 -0.31

GCE -0.22 -0.08 -0.76 -0.24 -0.24 1.0 -0.19 0.13 -0.3 1.0 -0.23 -0.09 -0.14 -0.23 0.02 0.18 0.03 0.29 -0.23 0.28

VS 0.94 0.62 0.29 0.55 0.9 -0.19 1.0 -0.37 0.9 -0.2 0.94 0.62 0.76 0.92 -0.36 -0.48 -0.43 -0.65 0.94 -0.26

RAVD -0.35 0.1 -0.36 -0.49 -0.29 0.13 -0.37 1.0 -0.31 0.15 -0.35 0.1 -0.39 -0.34 0.18 0.19 0.14 0.28 -0.35 0.15

MI 0.99 0.7 0.33 0.64 0.99 -0.3 0.9 -0.31 1.0 -0.31 0.99 0.7 0.74 0.99 -0.31 -0.56 -0.4 -0.71 0.99 -0.32

VOI -0.23 -0.08 -0.76 -0.25 -0.24 1.0 -0.2 0.15 -0.31 1.0 -0.23 -0.08 -0.15 -0.24 0.03 0.18 0.03 0.3 -0.24 0.28

CKS 1.0 0.7 0.29 0.62 0.98 -0.23 0.94 -0.35 0.99 -0.23 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

AUC 0.71 1.0 -0.17 -0.07 0.71 -0.09 0.62 0.1 0.7 -0.08 0.71 1.0 0.51 0.71 -0.27 -0.38 -0.34 -0.47 0.71 -0.2

VC 0.78 0.51 0.23 0.47 0.71 -0.14 0.76 -0.39 0.74 -0.15 0.78 0.51 1.0 0.78 -0.49 -0.51 -0.58 -0.71 0.78 -0.22

MCC 1.0 0.71 0.29 0.63 0.99 -0.23 0.92 -0.34 0.99 -0.24 1.0 0.71 0.78 1.0 -0.36 -0.55 -0.44 -0.71 1.0 -0.31

PBD -0.34 -0.26 -0.04 -0.16 -0.28 0.02 -0.36 0.18 -0.31 0.03 -0.34 -0.27 -0.49 -0.36 1.0 0.16 0.97 0.29 -0.34 0.05

HD95 -0.55 -0.38 -0.16 -0.38 -0.55 0.18 -0.48 0.19 -0.56 0.18 -0.55 -0.38 -0.51 -0.55 0.16 1.0 0.25 0.89 -0.55 0.14

MHD -0.43 -0.34 -0.04 -0.21 -0.37 0.03 -0.43 0.14 -0.4 0.03 -0.43 -0.34 -0.58 -0.44 0.97 0.25 1.0 0.4 -0.43 0.06

ASSD -0.71 -0.47 -0.27 -0.47 -0.7 0.29 -0.65 0.28 -0.71 0.3 -0.71 -0.47 -0.71 -0.71 0.29 0.89 0.4 1.0 -0.71 0.2

ARI 1.0 0.7 0.29 0.62 0.98 -0.23 0.94 -0.35 0.99 -0.24 1.0 0.71 0.78 1.0 -0.34 -0.55 -0.43 -0.71 1.0 -0.3

OASSD -0.3 -0.2 -0.22 -0.22 -0.31 0.28 -0.26 0.15 -0.32 0.28 -0.3 -0.2 -0.22 -0.31 0.05 0.14 0.06 0.2 -0.3 1.0

The color intensity of each cell represents the strength of the correlation, where blue denotes direct correlation and red denotes inverse correlation.

TABLE 10 | Segmentation (Segm.) and standardized reporting (SR) execution speeds for each tumor subtype, using our Raidionics software.

High-end computer (Desktop) Mid-end computer (Laptop)

Dimensions (voxels) Segm. (s) SR (m) Segm. (s) SR (m)

LGG 394× 394× 80 16.69± 0.426 04.50± 0.09 28.69± 0.577 07.32± 0.07

Meningioma 256× 256× 170 17.21± 0.425 05.48± 0.12 31.41± 0.862 09.09± 0.32

Glioblastoma 320× 320× 220 21.99± 0.177 05.89± 0.03 33.65± 1.429 09.06± 0.24

Metastasis 560× 560× 561 59.06± 1.454 15.35± 0.41 98.54± 2.171 24.06± 0.93

programming to use, making it easily accessible for clinicians.
The overall limitations are those already known for deep learning
approaches whereby a higher amount of patients or data sources
would improve the ability to generalize, boost segmentation
performances, and increase the immunity toward rare tumor
expressions. The employed architecture also struggles with
smaller tumors given the large downsampling to feed the entire

3D MR scan in the network, hence the need for a better design
combining local and global features either through multiple steps
or ensembling.

The architecture and training strategy used in this study
were identical to our previously published work considering
that the intent was not to directly make advances on the
segmentation task. Nevertheless, the stability and robustness
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to train efficient models had been documented, alongside
performance comparison to another well-known architecture
[e.g., nnU-Net (20)], thus not precluding its use to train models
for other brain tumor types. Aside from evident outliers in the
datasets, where either tumors with partial or missing contrast
uptake or suboptimal manual annotations were identified, the
major pitfall of using the AGU-Net architecture lies in its struggle
to segment equally satisfactorily small tumor pieces with a
volume below 2ml. Overall, the glioblastoma model is expected
to be the most robust and able to generalize since patient data
from 15 different sources were used. For other models trained
on data from much fewer hospitals, with an expected limited
variability in MR scan quality, their robustness is likely to be
inferior. While larger datasets are often correlated with improved
segmentation performance, the metastasis model is the best
performing with the lowest amount of patients included. The
relative easiness of the task from a clear demarcation of the
tumor from surrounding normal tissue in contrast-enhanced T1-
weighted volumes, and the potentially low variance in tumor
characteristics with patient data coming from two hospitals only,
can explain the results. Additionally, the metastasis model has
been trained by transfer-learning using as input the second
best performing glioblastoma model where the most data was
used, which may have been the compelling factor. Lower-grade
gliomas represent the most difficult type to manually segment
since tumors are diffuse and infiltrating with an average volume
in FLAIR sequences a lot higher than in T1 sequences for the
other tumor types, and as such overall worse performances
were expected.

The in-depth assessment of a larger pool of metrics allowed
us to identify redundancy and uniqueness and proved that the
Dice score is overall quite robust and indicative of expected
performance. However, the sole use of the Dice score cannot
cover all aspects of model performance, and spatial distance-
based metrics (e.g., HD95 and MHD) are suggested to be used
in conjunction as providing values uncorrelated to Dice. In
addition, some metrics were identified to be more sensitive to
outliers and are as such powerful to either assess the ability to
generalize a model across data acquired on different scanners
from multiple sources or quickly identify potential issues in a
large body of data. Finally, and depending on the nature of
the patients included in one’s study and the number of satellite
tumors, specific object-wise metrics are imperative to use (e.g.,
OASSD). Only a combination of various metrics computed
either voxel-wise, patient-wise, or instance-wise can give the full
picture of a model’s performance. Unfortunately, interpreting
and comparing sets of metrics can prove challenging, and
as such further investigations regarding their merging into a
unique informative and coherent score are fundamental [e.g.,
Roza (66)]. Furthermore, an inadequacy lies in the nature of
the different metrics whereby some can be computed across
all segmentations generated by a trained model, whereas others
are exclusively eligible on true positive cases, i.e., when the
model has correctly segmented to some extent of the tumor.
For models generating perfect patient-wise recall, all metrics
will be eligible for every segmentation. However, in this field

of research and as of today, no trained model can fulfill
this requirement due to the substantially large inter-patient
variability. Ideally, the identification of relevant metrics, bringing
unique information for interpreting the results, should not be
confined to the validation studies. More metrics should be
considered to be a part of the loss function computation during
the training of neural network architectures. Attempts have been
made toward using the Hausdorff distance as a loss function,
but a direct minimization is challenging from an optimization
viewpoint. For example, approximation of Hausdorff distance
based on distance transforms, on morphological operations, or
with circular and spherical kernels showed potential for medical
image segmentation (67). In general, a careful mix between losses
(e.g., Dice, cross-entropy, and HD95) is challenging to achieve
and adaptive strategies might be required to avoid reaching a
local minimum where overall segmentation performance may
suffer (68).

As a current trend in the community, inference code and
trained segmentation models are often at best available on
GitHub repositories. As a consequence, only engineers, or
people with some extent of knowledge in machine learning
and programming, can benefit from such research advances.
Besides, the research focus is heavily angled toward gliomas,
due to the BraTS challenge influence, whereby segmentation
models are expected to yield superior performance than for
meningiomas and metastases. By developing and giving free
and unrestricted access to our two proposed software solutions,
we hope to facilitate more research on all brain tumor types.
Willing research institutes have the opportunity to generate
private annotated datasets at a faster pace than through fully
manual labor by exploiting our trained models. Having made
all source code available on GitHub, as customarily done, we
made the effort to further make stand-alone solutions with easy-
to-use GUIs. Hopefully, clinicians and other non-programming
end-users should feel more comfortable manipulating such
tools, available across the three major operating systems
and necessitating only a computer with average hardware
specifications. For the generation of standardized clinical reports,
the computation of tumor characteristics relies heavily on
the quality of the automatic segmentation, occasional mishaps
are expected as models are not perfect and can omit the
tumor. Therefore, manual inputs will be required sporadically
to correct the tumor segmentation. Over time, new and better
models will be generated and made available seamlessly into
the two software through regular updates. For the time being,
support for AGU-Net models only is provided due to its
lighter codebase compared to nnU-Net, for similar overall
performances. From a software bundling and deployment
perspective, integrating a heavier inference framework and
mixing backend engines (i.e., TensorFlow and Torch) will make
it more challenging to create stable executables for Raidionics
on Mac, Windows, and Ubuntu. Support for other architectures
will be considered if new models clearly outperform the current
models.

In the future, an approach incorporating a set of metrics
and converting them into one final score would be highly
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desirable (e.g., Roza). Not only would it help to automatically
select the best model from a k-fold validation study from
one unique score, but a proper assessment and ranking across
multiple methods would be enabled. With all preoperative brain
tumor types available for segmentation and reporting in our
software, a key missing component is the automatic tumor type
classification to supplementmanual user input. Concurrently, the
variety and amount of tumor characteristics to compute should
be extended, considering more type-specific features similar to
the resection index for glioblastomas. Alternatively, bringing a
similar focus on post-operative segmentation of residual tumors
is of great interest to both assess the quality of the surgery
and refine the estimated patient outcome. The generation of a
complete post-operative standardized clinical report would also
be permitted with new features such as the extent of resection.
Otherwise, intensifying the gathering of patient data from more
widespread hospital centers and a larger array of MRI scanners
is always of importance. The inclusion of more than one MR
sequence per patient as segmentation input has the potential to
boost overall performance, but at the same time might reduce
models’ potency as not always routinely available across all
centers worldwide.

7. CONCLUSION

Efficient and robust segmentation models have been trained on
pre-operative MR scans for the four main brain tumor types:
glioblastoma, lower grade glioma, meningioma, and metastasis.
In-depth performance assessment allowed to identify the most
relevant metrics from a large panel, computed either voxel-wise,
patient-wise, or instance-wise. Trained models and standardized
reporting have been made publicly available and packaged into a
stand-alone software and a 3D Slicer plugin to enable effortless
widespread use.
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