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Background: Dual-task paradigms are a known tool to evaluate possible

impairments in the motor and cognitive function in patients with multiple

sclerosis (MS). A technique to evaluate the cortical function during movement

is functional near-infrared spectroscopy (fNIRS). The evaluation of the MS

course or its treatment by associating fNIRS with gait measurements may be

flexible and low-cost; however, there are no feasibility studies in the literature

using these combined techniques in early-stage patients with MS.

Objective: To evaluate cortical hemodynamics using fNIRS and gait

parameters in patients at early stages of MS and in healthy controls during a

dual-task paradigm.

Methods: Participants performed cognitive tasks while walking to simulate

daily activities. Cortical activation maps and gait variability were used to

evaluate di�erences between 19 healthy controls and 20 patients with MS.

Results and conclusion: The results suggest an enhanced cortical activation in

the motor planning areas already at the early stages of MS when compared to

controls. We have also shown that a systematic analysis of the spatiotemporal

gait variability parameters indicates di�erences in the patient population. The

association of cortical and gait parameters may reveal possible compensatory

mechanisms related to gait during dual tasking at the early stages of

the disease.
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Introduction

Multiple sclerosis (MS) is an autoimmune inflammatory

neurological disorder characterized by demyelination and

axonal loss that can cause permanent damage (1, 2). It is one of

the most common neurological disorders that cause disability in

young adults. It is estimated that a total of 2.8 million people

live with MS worldwide. The pooled incidence rate across 75

reporting countries is 2.1 per 100,000 persons/year. The mean

age of diagnosis is 32 years, a highly productive stage of life when

people are planning their careers and families. Women are twice

as likely to live with MS than men (3).

Motor and cognitive losses are common consequences over

time for people with MS (PwMS), causing deficits in attention,

executive functions, information processing, and mobility (2, 4,

5); most of which impact the quality of life of PwMS, including a

performance at work, social functions, and daily activities. It also

comes at a high cost for society once the onset of symptoms is

usually in young adulthood when people are economically active

(6). The disease progression will define its severity regardless of

the patient’s age (2). Studies showed that gait variability could be

a marker of neurological disease severity (7, 8), identify changes

even at the early disease stages (9), and also help to identify

gait alterations when dual tasking (10, 11). Historically, mobility

is the main parameter used to evaluate the progression of MS,

using the Kurtzke expanded disability status scale (EDSS). This

scale ranges from 0 to 10, where 0 is normal neurological exams

and 10 is death due to MS. Patients rated from 0 to 4 are

considered fully ambulatory without aid (12).

Cognitive tasks were associated with increased activity

mostly in the dorsolateral prefrontal cortex (DLPFC) and

supplementary motor areas (SMA) (13). Functional near-

infrared spectroscopy (fNIRS) is a technique that measures

cortical activity as a function of oxy-hemoglobin (O2Hb) and

deoxy-hemoglobin (HHb) (14, 15) and can be used to acquire

brain data while the participant is moving (16).

The use of fNIRS in PwMS still has sparse literature; a

recent review (17) showed only 11 articles and also lacks a

standard protocol to evaluate dual-task (17). The first study

described in the review, Hernandez et al. (18), evaluated

middle-aged to elderly patients (age > 45 years, EDSS 1–

6) and healthy controls (HC). Results suggest an increase in

prefrontal cortex (PFC) activity for participants during dual-

task trials compared to single-task ones. In another study

with older adults, Chaparro et al. (19) showed that PwMS

had an increased O2Hb concentration in the PFC when

compared to HC in all tasks. In another study (20), the

same group showed that PwMS had an O2Hb decrease in

the PFC during demanding balance tasks compared to HC.

This same (20) also correlates the mean of spatiotemporal

gait parameters with O2Hb during dual tasking. In the

only study to evaluate motor areas (21) during dual-task

trials, Saleh et al. (21) showed that increased activation in

the SMA correlated to a decrease in gait speed in PwMS

compared with HC.

In this study, we created a protocol to evaluate cortical

activation in both cognitive and motor areas associated with

spatiotemporal gait parameters during dual tasking in early-

stage PwMS and HC. Usually, at the early stages (EDSS < 4),

it is difficult to capture significant changes in overall cognitive

and mobility with currently available tools. However, it is

also important to start early rehabilitation to improve the

outcome in this population (22). Therefore, we understand

that it is important to develop tools that might contribute to

assessing the disease progression and intervention protocols

even at early stages. The use of the dual-task paradigm in

this study is an attempt to simulate how the cortical activity

in PwMS would function in daily life situations when we

are usually required to walk and perform attention tasks by

observing our surroundings. We hypothesized that already at

early stages, PwMS would show higher activation in DLPFC and

SMA during dual tasking when compared to HC; however, we

expected small differences in initial clinical assessments and gait

variability parameters due to the low severity of the disease in

our participants.

Methods

Participants

To participate in this study, 20 early-stage PwMS (age 35.3±

6.3 years, EDSSmean=1.55, range= 1–4) and 19 HC (age 35.5±

8.0 years) were selected. Groups were paired by age and sex, and

all had completed at least bachelor’s level studies. For pairing,

we looked for a matched control for every PwMS enrolled in

the study. PwMS were recruited from the MS center at Hospital

Israelita Albert Einstein, Hospital das Clínicas de São Paulo, and

Amigos Múltiplos pela Esclerose. All patients were stable for

at least 6 months prior to the study and showed no clinical or

radiological disease activity for the whole duration of this work.

This study was approved by the Hospital Israelita Albert

Einstein ethics committee (CAAE: 7428416.2.0000.0071), and

all participants signed the appropriate informed consent form

according to the Helsinki declaration.

Clinical measurements

To ensure all PwMS were at an early stage and to establish

a baseline between the PwMS and HC groups in relation

to their cognitive and mobility performance, all participants

underwent a standard clinical evaluation for PwMS. The tests

were performed by a trained neurologist and consisted of a

structural MRI and the application of standardized tests such

as the MS functional composite (MSFC) (23). The chosen tests
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evaluated cognitive and leg/ambulation function. The Paced

Auditory Serial Addition Test (PASAT) is the most common

test to assess cognitive performance in PwMS (23–25), where

the participant listens to different numbers and must add the

current one to the immediately preceding one sixty times. For

ambulation assessment Timed 25 Foot Walk (T25-FW) and

Timed Up and Go (TUG) were chosen, both of which are

common and reliable measures to assess PwMS (23, 26–29). In

the T25-FW, the participant’s time was measured while walking

25 feet as fast as possible in two trials. In the TUG test, the

participant’s time was measured while performing the following

sequence: start seated, stand up and walk 3 meters, turn around,

walk back, and sit again. Both T25-FW and TUGmeasurements

were performed two times and averaged for the final score. The

EDSS of the participants was also measured as it is historically

the most used neurological scale for assessing PwMS (12, 23).

During the evaluation, participants were also asked about

current medication and family history of neurological diseases

to take into consideration possible confounds. Results were

compared with the Student’s t-test test and were considered

significant if p < 0.05.

Experimental design

The paradigm of our study was inspired by previous work

on attention-demanding locomotion in healthy older adults

(30). To evaluate the cortical activity during a dual-task, the

participants performed the n-back task while monitored by

fNIRS. The n-back task is a well-known and reliable test

to evaluate working memory. It consists of a sequence of

symbols, and the participants need to indicate if the current

FIGURE 1

Block design and participant preparation in the gait lab. All participants walked barefoot and in gym clothes, as standard in gait analysis exams.
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symbol is the same as the presented n steps before, and its

difficulty is increased by increasing the n steps (31, 32). It

has been successfully used in PwMS as a measure of cognitive

impairment (17, 33–35).

In this study, we used a block design with three different

tasks as follows: one single task and two dual tasks, each

performed five times. All participants were required to walk

continuously at a comfortable pace for 20 s while performing

the respective task and then stop for 15 s as shown in Figure 1.

The dual tasks were auditory 0-back and 2-back tasks where

the participants performed the respective cognitive test while

walking. In the 0-back task, the participant heard a randomized

sequence of numbers between 0 and 9 and pressed a response

button as soon as the number 0 was heard. In the 2-back task,

the participant heard a sequence of randomized numbers from 1

to 9 and had to press the response button if the current number

was the same as the 2 positions before. For example, if they

heard the sequence: 1, 5, 7, 4, 7, 8. . . , they had to press the

button on hearing the second 7. The third and final task had no

cognitive workload; the participant had only to walk and press

the response box when required.

Participants’ performance during 0-back and 2-back tasks

was evaluated using reaction time and percentage of correct

answers. Differences between groups were calculated using an

ANOVA test and intra-groups using a paired t-test; both were

considered significant if p < 0.05.

FNIRS acquisition and analysis

The cortical hemodynamic activity was acquired inside a

gait lab, and the participant had the fNIRS (NIRSport, NIRx

Medizintechnik GmbH, Germany) device in a backpack and

could walk freely and continuously on a 5-m straight lane

defined on the floor as seen in Figure 1. The fNIRS device

had 8 sources and 8 detectors, forming 21 channels acquired

at 7.8Hz and wavelengths of 760and 860 nm. The 21-channel

cap montage (Figure 2) used the international 10/20 system (36)

and was optimized to capture activity from the primary motor

cortex, SMA, premotor cortex, and DLPFC which are associated

with dual tasking.

Processing and analysis of the fNIRS data were performed

in the BrainAnalyzIR toolbox (37), also considering the recent

consensus for gait and posture fNIRS research (16). Hemoglobin

concentrations were calculated using themodified Beer-Lambert

law, taking into consideration the wavelength and age to

calculate the differential path length (38). The artifacts were

handled with the pre-whitening algorithm of the autoregressive

model using the iteratively reweighted least-squares method

(AR-IRLS) described by Barker in 2013 (39). This method,

available in the toolbox (37), was shown to be efficient

for cleaning physiological data and motion artifacts in the

fNIRS data. It consists of generalizing the statistical properties

of the fNIRS signal to be more insensitive to motion and

physiological artifacts, as explained in detail by Huppert in

2016 (40). The subject level response was calculated using the

GLM model, applying pre-whitening and robust regression to

hinder false positives (39). Group level response was calculated

using the linear mixed model, using the subject as a random

term (37, 41). Responses were compared using the two-tailed

Student’s t-test and corrected for multiple comparisons using the

Benjamin-Hochberg algorithm (42); effects with p < 0.05 were

considered significant.

The cortical activation maps were generated by mapping the

significant active channels of the group level response on the

cortex when testing the following three main conditions:

A. Intra-group: task (single or dual task) vs. stop (rest period)

for PwMS and HC.

B. Intra-group: dual task (0-back and 2-ack) vs. single task

(walk) for PwMS and HC.

C. Inter-group: PwMS vs. HC on each condition (walk, 0-back,

and 2-back).

Significantly higher activity was reported in red and

significantly lower activity in blue.

The walk block single task also captures noise related to

the physiology of the participant’s movement. When contrasting

the single task vs. dual task (condition B described above),

this also helps to account for the global effect caused by

walking physiology, giving more precision to the cortical activity

estimation due to dual tasking only.

Gait acquisition and analysis

Gait parameters were acquired using a VICON R© MX 400

system (Vicon Motion Systems Ltd, UK) equipped with 10

synchronized infrared emitter and receptor cameras (Vicon MX

T-Series) at a frequency of 2,000 frames per second. To hinder

possible interaction between the infrared camera and the fNIRS

measurement, all participants used an over cap provided by

the supplier and a reflective aluminum cap. To estimate joint

movement and calculate the 3D kinematics of the biomechanical

model, reflective markers were glued with medical tape to the

participants following the plug-in gait model protocol (43, 44).

The gait tasks were performed under the supervision of a

qualified physiotherapist.

All gait data were synchronized and brought to the same

coordinate system using the ULTRANET R© device (Vicon

Motion Systems Ltd, UK) followed by image reconstruction

in the NEXUS R© software (Vicon Motion Systems Ltd, UK).

From the gait cycle, 11 spatiotemporal measures were calculated

relative to each task, such as stride time, cadence, step time,

opposite foot off the ground, opposite foot contact to the ground,

foot off the ground, single and double support, stride length,

speed, and step length. These data were then imported to a
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FIGURE 2

(A) Montage in 2D relative to the 10/20 system. (B) 3D superior. (C) Lateral view.

customized program in MatLab (R2016a version, MathWorks,

Massachusetts, USA) to calculate the coefficient of variation (CV

= standard deviation/mean) for each parameter, which provides

a good measure for individual gait variability once the variation

is relative to the mean of that specific participant (7, 27). CV

normality was verified using the Kolmogorov-Smirnov test,

and group statistics were calculated using an ANOVA for each

parameter for the three experimental conditions. Differences

were considered significant when p < 0.05 after applying the

Bonferroni multiple comparison correction.

Results

Participants

Of the 20 evaluated PwMS, 12 reported cognitive complaints

(such as memory and ability to compile information). Of

those, ten also reported fatigue, and two were fatigue only

(without cognitive complaints). During the experiments, four

of the PwMS also reported other neurological diseases such

as migraine (2 participants), cephalea (1 participant), and

epilepsy (1 participant), all under control. Notably, 15 PwMS

reported weekly intake of vitamin D, 7 used antidepressants,

9 used immunomodulators, 11 used immunosuppressors, 16

had pulsotherapy, and 12 exercised regularly. The PwMS (EDSS

mean = 1.55, range = 1–4) included in this study were

diagnosed on average 5.7 ± 4.9 years ago with an average of 2.9

± 3.11 relapses since they were diagnosed. They had a decrease

in relapses in the last 2 years to an average of 0.85± 0.98.

In the HC group, no cognitive or fatigue complaints were

reported. Moreover, three participants reported migraine. The

other three used antidepressants, and eight exercised regularly.

The standard clinical tests reported no significant differences

between PwMS and HC, as shown in Table 1. This suggests that

even though the PwMS had a perceived loss in their cognitive

function, this was not shown to be significant through the

clinical tests.

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.937231
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


de Aratanha et al. 10.3389/fneur.2022.937231

TABLE 1 Comparison of the initial clinical evaluation between

patients with MS and healthy controls.

Clinical test HC PwMS p value

Age 35.47± 8.01 35.35± 6.35 0. 92

PASAT 45.17± 7.85 43.65± 9.14 0. 59

T25FW 4.84± 0.49 5.14± 0.74 0.16

TUG 7.28± 1.02 7.47± 1.08 0. 58

PASAT, paced auditory serial addition test; T25FW, timed 25-foot walk; TUG, timed up

and go. The results show the mean and standard deviation for each test.

For the participant’s performance, no differences were found

when comparing groups. However, the reaction time was higher

for both groups in the 2-back task, and PwMS scored higher in

the 2-back when compared to the 0-back task (Figure 3).

Cortical activity

The cortical activation maps generated from group

analysis in the first intra-group comparison, task vs. stop

(condition A described in the “Methods” session), revealed a

significant increase in the O2Hb in all channels for PwMS

during all tasks. For HC when compared to the stop,

there was a significant increase in all channels on O2Hb

during 0-back and 2-back tasks and a more localized

activity in motor areas during the walking task and a

decrease in one channel from the right premotor cortex.

There were no significant changes in HHb in any of the

cases (Figure 4A).

In the second intra-group comparison (condition B

described in the “Methods” session), dual task vs. single task,

we observed a significant increase in O2Hb in premotor

and motor cortexes in all tasks for HC and a significant

decrease in HHb in dorsolateral, premotor, and motor cortexes

for the 0-back. PwMS had a significant increase in O2Hb

in premotor, motor, and right dorsolateral cortexes and a

significant decrease in HHb in one channel over the left

dorsolateral cortex for the 0-back task. In the 2-back task,

PwMS had a significant increase in O2Hb in all channels

and a significant decrease in HHb in the left dorsolateral

area, similar to the 0-back task (Figure 4B). No significant

differences were found when comparing 0-back and 2-back tasks

in all groups.

In the inter-group comparison (condition C described

in the “Methods” session), the cortical map revealed a

significant increase in O2Hb in PwMS relative to HC in

the right premotor cortex in the walk and 0-back tasks

and bilaterally increased O2Hb in the premotor area for

the 2-back task. No significant differences were found for

HHb (Figure 4C).

Gait analysis result

The CV analysis of the 11 gait parameters acquired during

dual-tasking trials showed no significant intra-group differences.

However, there were group differences between tasks in the

walking task for step and stride length and speed differences in

the 0-back task, as shown in Figure 5.

Discussion

In this study, we created a protocol to evaluate the cortical

activity using fNIRS and spatiotemporal gait parameters of

20 early-stage PwMS and 19 HC. We established a cognitive

and mobility baseline for both groups using standard clinical

tests to evaluate MS progression (PASAT, T25-FW, TUG, and

EDSS). We wanted to assess whether cortical activation and gait

differences could already be detected at the early stages of the

disease. We used dual tasking to simulate daily activities, usually

walking while performing a second task that can be more or less

demanding.We used the n-back task, which is a well-known and

robust way to evaluate different cognitive tasks by changing the n

(31). Both HC and the PwMS group showed significantly higher

reaction times in the 2-back task when compared to the 0-back,

which might be interpreted as the expected higher cognitive

effort (Figure 3).

Stojanovic-Radic et al. (45) also used the n-back task to

evaluate cognitive activity in PwMS and HC, more specifically

0, 1, 2, and 3-back. Their results indicate that PwMS have

significantly higher O2Hb in the PFC during easier tasks when

compared to HC and a decrease in the activation in difficult

conditions. They also showed a significant difference between

groups in task accuracy on the easier conditions; however, the

EDSS was not provided. In this study, the accuracy was higher

in a more difficult condition, which might indicate an enhanced

difficulty in simpler tasks. The different results could be due to

the disease progression in the first study and/or that dual-tasking

in early-stage PwMS might involve differences in activation for

premotor but not frontal areas.

The comparison between task and stop conditions for each

group (Figure 4A) shows a global effect for PwMS in all tasks.

This can be interpreted as an activation of both frontal and

motor areas independent of task difficulty, with the intensity

being higher for more demanding tasks. The activation map is

less intense for the HC group, and in the walking-only activity,

there is no activation in most of the frontal channels.

The intra-group comparison (Figure 4B) indicated a

significant O2Hb increase in the premotor and motor areas

when comparing 0- and 2-back conditions to walk conditions in

both groups. However, a significant increase in O2Hb in DLPFC

was observed only for PwMS during both cognitive tasks. We

also reported a significant HHb decrease in dorsolateral and

premotor areas only in 0-back for HC and HHb decrease in the
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FIGURE 3

Reaction time (s) and score percentage for the 0-back and 2-back tasks in the healthy controls and people with MS. There were no significant

di�erences between the groups. Within each group, the reaction time of the 2-back task was higher when compared to 0-back. PwMS also

scored higher in the 2-back when compared to the 0-back task (*p < 0.05).

FIGURE 4

Cortical maps of all channels showing the significant t-statistic e�ect of oxi- and deoxyhemoglobin (O2Hb and HHb) from 19 healthy controls

(HC) and 20 patients with MS (PwMS). (A) Intra-group contrast during cognitive dual tasks (0-back and 2-back) and walk relative to the rest

period. (B) Intra-group between the cognitive dual tasks (0-back and 2-back) and walk. (C) Inter-group contrast during cognitive dual tasks

(0-back and 2-back) and walk.

left dorsolateral area for PwMS in both conditions. These results

are corroborated by Hernandez et al. (18), where increased

O2Hb concentration is reported in the prefrontal areas for

PwMS during dual tasking when compared to walking only.

In another study of the same group, Hernandez et al. (20)

showed a decreased O2Hb in PwMS during dual tasking when

compared to healthy older adults. The low EDSS range in this

study (mean = 1.55, range = 1–4) compared to the previous

studies (18, 20) (mean 3.65) can indicate alterations in the

prefrontal cortex and significant differences in cognitive task

performance are related to disease progression. This suggests

that PwMS participating in this study preserved cognitive

functions comparable to HC, which is compatible with the early

stages of the disease.
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FIGURE 5

Boxplot of the significant parameters in group comparison after multi-comparison correction (*p < 0.05).

Therefore, it is also interesting to evaluate cortical areas

related to motor planning and motor activity during dual

tasking. Saleh et al. (21) is the only study that looks only at the

motor and premotor cortexes. The authors recorded fNIRS in

14 PwMS (no EDSS reported) and 14 HC during dual tasking

and reported increased O2Hb concentration in right premotor

and bilateral supplementary motor cortexes when compared

to a static cognitive task for both groups. This study showed

similar results, with a significant increase inO2Hb concentration

in the premotor cortex (Figure 4C), unilateral for the easier

tasks (walk and 0-back) and bilateral for the more demanding

task (2-back).

In Kalron et al. (7), the authors have included more

than 300 PwMS and analyzed the CV on spatiotemporal

gait parameters to characterize disease progression. This study

concluded that CV for step length, step time, and single support

was significantly different only for moderate to severe disease

stages with an EDSS above 4–5. In this investigation, we reported

significant differences in the CV for three parameters (stride,

step length, and speed) between groups for the 0-back condition.

This suggests that systematic analysis of gait variability during

dual tasking can bring additional information even for early-

stage PwMS. This corroborates the findings of (9), especially

when related to simple activities such as walking and low-

demand dual tasks. The bilateral recruitment of premotor areas

during the most demanding task (2-back) in PwMS when

compared to HC could suggest a compensation mechanism in

patients to maintain the same cognitive and motor performance

during the task.

Monitoring the evolution of MS is mostly dependent on the

use of clinical tests such as EDSS, PASAT, T25FW, and TUG,

among others, and on the McDonald revised criteria (46, 47)

which use structural magnetic resonance imaging that, although

increasingly used around the world, still has reduced availability

due to its high costs (2). fNIRS could be an interesting and low-

cost way to measure brain activity for monitoring the evolution
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of the disease or treatment impact, especially when considering

the disease in its early stages.

To the best of our knowledge, this is the first study

to evaluate cortical activity in both frontal and motor areas

combined with gait variability parameters in early-stage PwMS

and HC. Gait variability is a known method for evaluating

neurological disorders and their severity, including MS (7,

8). Combining the gait and cortical areas associated with

motor control and execution can provide new information

to help understand mechanisms underlying gait control in

the patient population, such as compensation. This may

give new opportunities to explore the disease progression or

rehabilitation impact.

In this study, we used fNIRS to evaluate 19 HC and

20 PwMS. The participants performed cognitive tasks while

walking to simulate daily activities. We proposed an acquisition

protocol with different cognitive demand levels based on the

n-back task that can be easily reproduced. We observed a

higher unilateral cortical activation for easier tasks and a

bilateral increase for more difficult tasks for PwMS when

compared to HC in areas related to motor planning. Moreover,

significant differences between groups in step and stride length,

along with gait speed, were reported. The developed protocol

suggests that it is possible to observe differences in early-stage

PwMS. Finally, our results indicate that the association between

cortical activity and gait variability could bring new light to

disease progression, treatment, and rehabilitation evaluation,

helping to understand the impact of daily activities on gait

control in early-stage PwMS. Further studies using this protocol

could also benefit from exploring the combined data as a

classification tool, for example, using machine learning to

classify PwMS and also the possibility to predict progression in

early-stage PwMS.

Limitations of this study

Although we designed an experiment considering the

systemic and physiological changes related to movement, we

are still limited in the use of new regression techniques

that make use of short channels dedicated to capturing extra

cortical activity and accelerometers at the probe level to

quantify head motion. All data will be made available upon

reasonable request.
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