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Parkinson’s disease (PD) a�ects millions of individuals worldwide, and it is the

second most common late-onset neurodegenerative disorder. There is no

cure and current treatments only alleviate symptoms. Modifiable risk factors

have been explored as possible options for decreasing risk or developing

drug targets to treat PD, including low-density lipoprotein cholesterol (LDL-C).

There is evidence of sex di�erences for cholesterol levels as well as for PD

risk. Genetic datasets of increasing size are permitting association analyses

with increased power, including sex-stratified analyses. These association

results empower Mendelian randomization (MR) studies, which, given certain

assumptions, test whether there is a causal relationship between the risk factor

and the outcome using genetic instruments. Sex-specific causal inference

approaches could highlight sex-specific e�ects that may otherwise be masked

by sex-agnostic approaches. We conducted a sex-specific two-sample cis-

MR analysis based on genetic variants in LDL-C target encoding genes to

assess the impact of lipid-lowering drug targets on PD risk. To complement the

cis-MR analysis, we also conducted a sex-specific standard MR analysis (using

genome-wide independent variants). We did not find evidence of a causal

relationship between LDL-C levels and PD risk in females [OR (95% CI) = 1.01

(0.60, 1.69), IVW random-e�ects] or males [OR (95% CI) = 0.93 (0.55, 1.56)].

The sex-specific standard MR analysis also supported this conclusion. We

encourage future work assessing sex-specific e�ects using causal inference

techniques to better understand factors that may contribute to complex

disease risk di�erently between the sexes.

KEYWORDS

Mendelian randomization (MR), sex-specific, Parkinson’s disease, low-density

lipoprotein cholesterol (LDL-C), risk factor

Introduction

Late-onset Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder

that affects millions of individuals worldwide (1, 2). It is primarily marked by the death

of dopaminergic (DAergic) neurons in the substantia nigra (3) and subsequent loss of

dopaminergic innervation to the striatum (4). Pathologically, it is characterized by the
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presence of Lewy bodies, neuronal inclusions containing α-

synuclein (3). There is no cure for PD, and medications

only alleviate symptoms (5). The most common treatment

option is the medication levodopa (L-dopa), a precursor

to dopamine. However, response to L-dopa diminishes as

the disease progresses, essentially leaving no further potent

treatment as options for individuals affected by PD (3).

The onset and progression of PD is a result of both

genetic and non-genetic factors (1). Large-scale genome-wide

association studies (GWAS) have been undertaken, identifying

around 80 genomic loci contributing to late-onset PD risk,

and it is estimated that genetic factors could contribute 20–

30% of the observed heritability (6–8). Additionally, there is

evidence of sex differences in PD, with males being ∼1.5×

more likely to develop the disease compared to females (9), and

certain symptoms being more common in one sex compared

to the other (10–17). Notably, there are also sex differences

in terms of disease progression (18) and response to current

treatment (19–21). The role of genetics on these sex differences

is only beginning to be explored (22). Finding new treatment

options, including treatment options that account for differences

between females and males, will be key to improving the quality

of life of individuals living with PD.

Many modifiable risk factors as well as drug re-purposing

options have been explored as options for decreasing risk,

delaying onset, or as novel treatments for PD, including

circulating levels of low-density lipoprotein cholesterol

(LDL-C), which will be the focus of this work. Circulating lipid

and lipoprotein metabolism and their respective levels differ

between the sexes as a result of multiple variables including

genetics, fat distribution, hormones, and environmental factors

(23). Work has been done assessing the effect of LDL-C on PD

risk, but most studies are sex-agnostic, and the role of LDL-C

on PD risk remains unclear.

Circulating LDL-C levels have a plausible biological

influence on PD risk, with several hypotheses to support either

an inverse or a positive relationship between this risk factor

and PD. The brain is the most cholesterol-rich organ in the

body, containing around 20% of the total cholesterol in the

body (24). Cholesterol is essential to brain health, being not

only a component of cellular membranes and myelin sheaths

(24) but also playing essential roles in synaptogenesis, dendrite

formation, and axonal guidance (25–27). It is important to

note that nearly all (>95%) of the cholesterol in the brain

is synthesized de novo since the blood-brain-barrier (BBB)

prevents its uptake from the periphery (28). However, its

metabolites, oxysterols, can cross the BBB (29).

In light of this, 27-hydroxycholesterol (27-OHC, derived in

majority from the periphery) and 24-hydroxycholesterol (24S-

OHC, derived in majority from the brain) (30) have both been

studied in the context of PD pathogenesis and are key factors

in proposed pathways for an increase in PD risk caused by

hypercholesterolemia. 27-OHC, which increases in the brain

in situations of hypercholesterolemia (31) or oxidative stress

(32), has been shown to increase α-synuclein expression (33,

34) and cell apoptosis (34) in neuron cell culture. 27-OHC

also decreased the expression of tyrosine hydroxylase, the rate-

limiting step in DA synthesis (33, 34). 24S-OHC, while also

capable of inducing cell death (35, 36), increased the expression

of tyrosine hydroxylase and decreased that of α-synuclein in

neuron cell culture (34). In vivo findings include an increase

of 27-OHC and 24S-OHC in the cerebrospinal fluid (CSF) of

a proportion of PD patients, with 24S-OHC levels correlating

with disease duration. This was hypothesized to be caused

by neurodegenerative processes and, in the case of 27-OHC,

possible BBB defects (37). Cholesterol and oxysterols, including

27-OHC and 24S-OHC, have also been found in one study to

be increased in the cortex of PD patients (38); however, other

studies reported no significant changes in cholesterol levels in

the substantia nigra (39) and putamen (40) of PD patients.

High plasma cholesterol by itself also has links with PD

pathogenesis, as shown by the increase of neuroinflammation

and oxidative stress in the brains of animals fed high-fat diets

(41, 42). High-fat diets also exacerbate striatal DA depletion in

animal models of PD (43–45). Moreover, cholesterol-enriched

medium also promoted α-synuclein aggregation in α-synuclein-

transfected neuronal cells (46).

Conversely, there are also hypotheses for a protective

effect of high serum cholesterol on PD risk. These include

serum cholesterol’s influence on peripheral Coenzyme Q10

levels (47), a mitochondrial electron acceptor and antioxidant

that has shown promise in mitigating PD progression in

animal models of the disease (48, 49). Cholesterol and

Coenzyme Q10 share a biosynthetic pathway, and the majority

of circulating Coenzyme Q10 are incorporated into VLDL-

C and LDL-C. As such, serum cholesterol is one of the

most important determinants of serum Coenzyme Q10

levels. In addition, cholesterol can be incorporated with

ferrous iron by neuromelanin, a mechanism that can prevent

neurodegeneration (29).

Mendelian randomization (MR) is an epidemiological

approach which, under specific assumptions, intends to estimate

causal effects between an exposure and outcome of interest. A

recent sex-agnostic cis-MR study (using genetic variants within

lipid-lowering drug targets) did not find evidence of genetically-

determined LDL-C influencing PD risk (50). However, sex-

specific MR could move the field closer toward personalized

medicine by highlighting sex-specific effects that may otherwise

be masked by sex-agnostic approaches. Genetic datasets of

increasing size through the emergence of large biobanks and

meta-analyses are beginning to permit sex-stratified analyses

with adequate statistical power. Below we review the literature

on the relationship between LDL-C and PD risk, from both

observational and MR studies, and then we assess the possible

sex-specific impact of genetically-determined LDL-C levels on

PD risk through sex-specific MR.
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Most observational studies conducted in the early 2000s

assessing the relationship between circulating LDL cholesterol

(LDL-C) and/or total cholesterol (TC) levels with PD risk

suggest an inverse relationship (51–54), although there were

two cohort studies that found, respectively, no evidence of an

association between TC and PD risk (55) and evidence of a

positive association (56).

More recently, larger studies, with case-control and/or

cohort designs, have suggested either no significant association

(57) or a negative association (58–63) between cholesterol (LDL-

C and/or TC) and PD risk. A meta-analysis by Gudala et al.

(64), which included 4 case-control and 4 cohort studies found

no significant association between TC and PD [pooled risk ratio

(RR) with random-effects model (95% CI) 0.87 (0.67, 1.13), p =

0.41]. A 2020 meta-analysis by Fu et al. (65), assessing 13 case-

control studies and 8 cohort studies, found a negative association

between PD risk and serum levels for both TC [Standardized

Mean Difference (SMD) = −0.21 (−0.33, −0.10), p = 0.0002

and RR 0.86 (0.77, 0.97), p = 0.01] and LDL-C [SMD = −0.26

(−0.43, −0.07), p = 0.006 and RR 0.76 (0.59, 0.97), p = 0.03].

However, both associations had high heterogeneity (I2 ≥ 35%),

warranting caution in interpretation. Jiang et al.’s 2020 meta-

analysis (66) also reported a negative association between LDL-

C and PD risk; an inverse relationship was present in both a

high vs. low LDL-C comparison [5 cohort studies with 2,406

PD cases: random-effects pooled RR 0.73 (0.57, 0.93), p= 0.079]

and a dose-response analysis [4 cohort studies with 2,300 cases: 1

mmol/L increase in LDL-C with RR 0.93 (0.88, 0.99), p= 0.084].

However, the authors found no significant association between

TC and PD risk.

Interpretation of observational studies remains difficult as it

is not possible to draw conclusions on causality through such

a design. Beside the limitations posed by possible confounders,

there is also reverse causation bias [as pointed out by Scigliano

et al. (67)] since the prodromal phase of PD, which occurs

over an undefined period of several years (68), can lead to

lifestyle changes as well as lowered efficiency of the autonomous

nervous system (69, 70) that can influence LDL-C and TC levels.

Additionally, cohort studies suffer from smaller sample sizes due

to the relatively low incidence of PD. Finally, studies are limited

by differing definitions of PD cases.

In recent years, MR has provided an exciting new avenue

to elucidating the relationship between genetically-determined

serum cholesterol levels and PD risk by circumventing several

limitations of traditional observational studies. MR studies tend

to be less vulnerable to reverse causation bias and confounders

due to their use of genetic variants as instrumental variables to

proxy for the exposure (e.g., LDL-C levels), since genotypes are

assigned at birth, stable throughout the lifespan, and unaltered

by the exposure of interest or other factors. However, the

validity of the causal inference depends on at least three core

assumptions being met. The first is that the genetic variants

used to proxy for the exposure are robustly associated with

the exposure. The second assumption is that there is no

confounding (measured or unmeasured) of the genetic variants

with the outcome (e.g., PD), and the third is that the selected

variants influence the outcome only through the exposure. The

last two assumptions cannot be statistically evaluated, and thus

sensitivity analyses must be performed to assess whether the

assumptions are likely to have been violated (71).

Sex-agnostic MR has been previously used to test whether

a causal relationship exists between genetically-determined

cholesterol levels and PD risk (50, 72–74). In brief, three of the

four studies so far found no significant association between LDL-

C and PD risk (50, 72, 74), while one found a negative association

between PD development and LDL-C as well as TC (73). Results

from theWilliams et al. study are described below, and details on

the other studies are in Supplementary material. Williams et al.

(50) examined the relationship between circulating cholesterol

levels and PD risk with two-sample cis-MR (either using

adjusted estimates from correlated variants within gene regions

of four lipid-lowering drug classes or based on uncorrelated

variants within those gene regions). “Standard” (genome-wide)

two-sample MR was also conducted using 52 lipid-associated

uncorrelated variants as instruments drawn from three GWAS

of LDL-C, triglycerides, and ApoB (sample size range= 14,004–

295,826). Variant-PD association estimates were determined

using summary data from the International Parkinson’s Disease

Genomics Consortium and 23andMe (total N = 37,688 cases

and 981,372 controls). The cis-MR and standard genome-wide

models found no significant association between LDL-C and

PD risk. None of the exposures (LDL-C, triglycerides, and

ApoB) were significantly associated with PD risk in the standard

MR analyses, but there was a suggestive protective effect for

PD risk by the lowering of triglycerides and ApoB by ApoA5

and/or ApoC3 modulation in the cis-MR models. Williams et

al. concluded that their results suggest that peripheral lipid

concentrations may play no etiological role in PD risk.

Despite evidence of differences between males and

females for cholesterol levels and PD in terms of several

factors, including genetics, metabolism, clinical manifestation,

and drug response (19, 75–80), which we summarize in

Supplementary Table 2, MR analyses assessing this relationship

have been conducted in a sex-agnostic manner. We thus aimed

to assess the potential role of genetically-predicted LDL-C on

PD risk in a sex-specific MR framework to potentially uncover

effects masked by sex-agnostic approaches.

Methods

The methods describing how the literature review of the

possible role of cholesterol levels on PD risk was carried

out is described in the Supplementary material, along with a

more detailed overview of published sex-agnostic MR studies

examining this topic.
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We followed the Strengthening the Reporting of

Observational Studies in Epidemiology using Mendelian

Randomization (STROBE-MR) guidelines for reporting

MR studies (Supplementary Table 1) (81, 82). Literature

review of the possible role of cholesterol levels on

Parkinson’s disease risk: additional sex-agnostic Mendelian

randomization studies.

Power calculations

Power calculations for the female-only and male-only

analyses were performed using the https://shiny.cnsgenomics.

com/mRnd/, which is based on the approach described by

Burgess (83).

Summary statistics for e�ects of
instrumental variables on exposure
and outcome

We obtained sex-specific variant-trait association results for

the genetic instruments for the exposure (circulating levels of

LDL-C) from sex-stratified summary statistics for LDL-C that

was directly measured (rather than estimated from an equation)

from “round 2” of the UK Biobank analysis conducted by

the Neale lab (http://www.nealelab.is/uk-biobank), visualized

in Supplementary Figure 1A. To our knowledge, sex-stratified

summary statistics are not currently available for related traits

triglycerides or ApoB [which were also used as exposures

in the Williams et al. study in addition to LDL-C (50)],

and thus, we focused only on LDL-C. The UK Biobank

resource has been described in detail (84). Briefly, the biobank

is a population-based prospective cohort study of around

half a million individuals (roughly 51% female) aged 40–69

years at recruitment. Participants were recruited across 22

recruitment centers in the United Kingdom between 2006

and 2010. LDL-C was measured in mmol/L through blood

chemistry analysis by enzymatic protective selection analysis

on a Beckman Coulter AU5800 at the initial assessment

visit at which participants were recruited and consent given.

The female-specific and male-specific association analyses

conducted by the Neale lab assessed 184,689 and 158,932

individuals, respectively, and tested the inverse variant rank

normalized values from UK Biobank field 30780 for association

genome-wide (autosomes and chromosome X) on European-

ancestry participants. Age, age∧2, and the first twenty principal

components for genetic ancestry were included as covariates in

the models.

For the association results for the outcome (PD), we

downloaded sex-stratified summary statistics (autosomes

only) from the analysis conducted by Blauwendraat et al.

(80) from the International Parkinson’s Disease Genomics

Consortium website (https://pdgenetics.org/), visualized in

Supplementary Figure 1B. For most cohorts in this meta-

analysis, PD ascertainment was through clinical assessment,

and control participants were excluded if they had any known

neurological diseases. Sex-stratified analyses were based on

genetic sex. To ensure independence of study individuals

between the PD (outcome) and the LDL-C (exposure) sex-

stratified summary statistics, and thus permitting a two-sample

MR study design, we used the version of the PD summary

statistics in which the UK Biobank individuals were removed.

23andMe individuals are not included in the publicly available

results. Details of the individual cohorts included in the

analysis can be found in Supplementary Table 3. In brief,

the non-UK Biobank association results were derived from

a meta-analysis of up to 17 European-ancestry case-control

studies (12,054 male cases, 19,336 male controls, 7,384 female

cases, and 20,330 female controls) in which the following

covariates were included: age at onset for cases and age of last

examination for controls, the first five principal components

of genetic ancestry, and dataset origin. Bi-allelic variants

with a minor allele frequency > 1% that had a meta-analysis

heterogeneity statistic (I2) of <80% were retained. A total of

19 genome-wide significant regions but no sex-specific effects

were observed. The authors reported a high genetic correlation

between the male and female analyses (rg = 0.877), and very

similar heritability estimates between male and female PD

cases (∼20%).

Sex-specific cis-Mendelian
randomization

We conducted sex-specific (female-only and male-only)

two-sample cis-MR with uncorrelated genetic variants to assess

the relationship between genetically-predicted LDL-C levels

on late-onset PD risk, and visualized results in R (version

4.0.5) (85) using the package TwoSampleMR, version 0.5.6

(86). The packagesMendelianRandomization, version 0.5.1 (87)

and MR-PRESSO version 1.0 (88) were used to obtain the

I2GX from MR-Egger regression (a statistic ranging between 0

and 1 assessing whether genetic variant-exposure associations

are sufficiently heterogeneous) and the MR-PRESSO outlier

test, respectively. In cases where the residual standard error

in the MR-Egger regression was less than one, we report

the MendelianRandomization implementation of the p-value in

which the residual standard error is set at 1 and a z-distribution

is used to obtain the corresponding p-value, instead of the more

conservative TwoSampleMR implementation using the residual

standard error set at 1 and a t-distribution.

As genetic instruments, we started with the same genetic

variants that were used in the Williams et al. (50) sex-agnostic
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cis-MR analysis of uncorrelated variants for LDL-lowering gene

targets weighted by LDL-C. The selected variants fall within

± 100 kilobases of the gene start/stop coordinates (APOB- 2

variants, HMGCR- 1 variant, NPC1L1- 1 variant, PCSK9- 2

variants), have a significant (p < 5 × 10−8) GWAS association

with LDL-C and are independent from each other (pairwise r2 <

0.001). We verified that the selected variants also had genome-

wide significant associations with LDL-C (p < 5 × 10−8)

in the sex-stratified UK Biobank LDL-C summary statistics.

Since one of the variants (rs2073547) was not available in the

exposure association statistics, we used the LDlink resource (89)

to select the non-palindromic rs17725246 as a proxy, given the

high linkage disequilibrium between these two variants of r2

= 0.98 (based on European genetic ancestry samples in the

1000 Genomes Project). We obtained the variant-exposure and

variant-outcome effect sizes from the sex-stratified association

results for LDL-C and PD, respectively.

The study protocol was not pre-registered, but we

determined in advance the MR approach for the primary

analysis. Specifically, in the primary analysis we used the

inverse-variance weighted (IVW) method with random

effects, and we conducted MR-Egger, weighted median,

simple mode, and weighted mode as sensitivity analyses to

assess consistency of results. Although horizontal pleiotropy

is minimized in a cis-MR analysis as only genetic variants

within the vicinity of genes encoding drug targets of interest

are included, we still ran tests to detect the presence of

pleiotropy as an additional check, specifically the MR-

Egger intercept test and the MR-PRESSO (88) outlier test.

To assess directionality (whether the direction of effect

is from LDL-C to PD or if the opposite is a possibility),

we used Steiger filtering (90) as implemented in the

directionality_test function of the TwoSampleMR R package.

Results were expressed as PD risk per standard deviation

lower LDL-C.

Sex-specific standard Mendelian
randomization analysis

To complement the cis-MR analyses, we also performed

sex-specific standard MR using as genetic instruments genome-

wide independent variants robustly associated with LDL-C levels

from female-specific and male-specific GWAS conducted in

the UK Biobank. For genetic instruments, we started with

the independent LDL-associated variants used in the standard

non-sex-specific MR analysis listed in Supplementary Table 6

of Williams et al. (50). For the female-only analysis, we

retained instruments if they were genome-wide significant

(p < 5 × 10−8) in the female-specific LDL-C GWAS.

Similarly, for the male-only analysis, we retained instruments

if they were genome-wide significant in the male-specific

GWAS. We used IVW as the primary approach followed by

sensitivity analyses.

Ethics

This study used existing publicly available summary

statistics reporting genome-wide variant-trait associations for

LDL-C and PD. Separate ethical approval was not required.

Results

Power calculations

We have adequate power (>76%) to detect modest effects

in either direction (0.90 ≥ OR ≥ 1.10) per SD difference in the

trait for our MR analyses for LDL-C (Supplementary Table 4).

However, we do not have adequate power using only a

single genetic variant (e.g., a sentinel variant in PCSK9). We

thus ran our sex-specific gene-based cis-MR analyses with

the four lipid-lowering drug target genes together (APOB,

HMGCR, NPC1L1, and PCSK9), rather than one gene at

a time.

Sex-specific cis-Mendelian
randomization analyses

We used 6 genetic instruments in our female-specific

and male-specific cis-MR analysis (Table 1). We did

not find significant evidence for a relationship between

LDL-C levels and late-onset PD risk in either the

female-specific or male-specific cis-MR analyses (Table 2,

Figure 1).

We conducted the MR-Egger intercept test to assess whether

the intercept significantly differs from 0, which would suggest

the existence of directional pleiotropy (that is, the average

pleiotropic effect differs from zero) and/or violation of the

INstrument Strength Independent of Direct Effect (“InSIDE”)

assumption (which states that there is no correlation between

the genetic associations with the exposure and the direct

effects of the genetic instruments on the outcome). The

intercept was not significantly different from 0 in the male-

only analysis (p = 0.73), but significant for the female-only

analysis (p = 0.009). As the IVW method requires absence

of horizontal pleiotropy to obtain valid causal estimates (91),

our results from the MR-Egger intercept test for the female-

specific analysis implied that this IVW assumption may be

violated and that the IVW results could be biased (moreover the

correlation between instrument strength and pleiotropic effects

can be large by chance with a small number of instruments)

(92). However, we did not find strong evidence for violation
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TABLE 1 Genetic instrumental variables for the sex-specific cis-Mendelian randomization analysis between LDL-C gene targets and late-onset PD.

Genetic

instrument for

LDL-C

Female-specific analysis Male-specific analysis

LDL-C Beta

(SE)

LDL-C effect

allele

PD Beta

(SE)

PD effect

allele

LDL-C Beta

(SE)

LDL-C effect

allele

PD Beta

(SE)

PD effect

allele

rs10062361 (HMGCR) 0.066717

(0.0039256)

T 0.0061 (0.0282) T 0.0495 (0.00428) T 0.0428 (0.0249) T

rs11206510 (PCSK9) −0.050126

(0.0041043)

C 0.009 (0.0292) T −0.0454 (0.00446) C −0.0455 (0.0257) T

rs12714264 (APOB) −0.096566

(0.004815)

T −0.0658 (0.034) A −0.103 (0.00524) T −0.0304 (0.0304) A

rs2073547 (NPC1L1) 0.040959

(0.0041382)

G −0.0467 (0.031) A 0.0294 (0.00452) G 0.0107 (0.0271) A

rs2495477 (PCSK9) −0.037018

(0.0033441)

G 0.0196 (0.027) A −0.0428 (0.00366) G 0.027 (0.0243) A

rs4341893 (APOB) −0.040996

(0.0033505)

G 0. 0277 (0.0256) A −0.0275 (0.00365) G −0.0038 (0.023) A

of the NO Measurement Error (“NOME”) assumption for

the MR-Egger regression estimate, as the I2GX statistic, a

measure of the collective strength of a set of instruments, was

>94.9% for both sex-specific analyses (Table 2). Additionally,

MR-PRESSO did not identify outlier instruments for either

the female-only or male-only analyses (p = 0.175 and p =

0.221, respectively).

We also assessed the possibility of reverse causality

(the possibility of PD influencing LDL-C levels, rather

than vice-versa) through Steiger filtering. For both

sexes, the instruments explained more variance of the

exposure (LDL-C) than the outcome (PD), supporting

the direction to be from LDL-C levels influencing

PD risk, rather than the opposite. The scatterplots

of effect sizes, leave-one out, and funnel plots for

the sex-specific cis-MR analyses are presented in

Supplementary Figures 2–4, respectively.

Sex-specific standard Mendelian
randomization analyses

We used 28 genetic instruments for the female-specific

analysis (independent variants with p < 5 × 10−8 from

the female-only LDL-C GWAS) and 20 for the male-

specific analysis (independent variants with p < 5 × 10−8

from the male-only LDL-C GWAS), which are outlined in

Supplementary Table 5. The primary analysis (IVW method)

and sensitivity analyses yielded consistent but non-significant

estimates. Results are presented in Supplementary Table 6

and visualized in Supplementary Figures 5–8. The MR-Egger

TABLE 2 Sex-specific cis-Mendelian randomization results (estimates

for gene targets weighted by LDL cholesterol estimates).

Female-specific

analysis

Male-specific

analysis

LDL-C (N genetic variants used as instrument = 6)

IVW OR (95% CI); p 1.01 (0.60–1.69); p= 0.96 0.93 (0.55–1.56); p= 0.78

Weighted median OR

(95% CI); p

1.11 (0.62–1.97); p= 0.72 0.78 (0.46–1.33); p= 0.36

Simple mode OR (95%

CI); p

1.44 (0.52–4.03); p= 0.51 0.75 (0.26–2.22); p= 0.63

Weighted mode OR

(95% CI); p

1.20 (0.49–2.90); p= 0.71 0.75 (0.39–1.41); p= 0.41

MR-Egger OR (95%

CI); p

0.22 (0.07–0.75); p= 0.015 0.74 (0.20–2.74); p= 0.68

MR-Egger intercept (p) 0.09 (p= 0.009) 0.01 (p= 0.73)

I2GX statistic 94.9% 95.8%

intercept test did not suggest evidence of horizontal pleiotropy

for the female-only or the male-only analysis (p = 0.95 and p =

0.53, respectively). MR-PRESSO did not identify outlier genetic

instruments for the female-only or the male-only analysis (p =

0.225 and p= 0.369, respectively).

Discussion

We did not find significant evidence for a causal effect

between genetically-determined LDL-C levels and late-onset PD

risk in either the female-only or the male-only MR analyses
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FIGURE 1

Forest plot of sex-specific cis-Mendelian randomization results for the e�ect of circulating LDL cholesterol levels on risk of late-onset

Parkinson’s disease. Female-specific results presented in (A), and male-specific in (B).

using genetic variants at lipid drug targets (cis-MR) or genome-

wide variants associated with LDL-C levels (standard MR).

In contrast to findings from several observational studies

suggesting a negative association between LDL-C and PD risk,

our sex-specific MR results, as do most of the current sex-

agnostic MR studies, do not provide strong evidence of a

causal relationship between LDL-C levels and PD risk (50, 72,

74). Possible explanations for this discrepancy could include

confounding factors in observational studies (including reverse

causation as well as uncontrolled or imperfectly controlled

lifestyle and biological factors in the comparison groups) or

limitations of MR analyses (including imperfect validity of the

core assumptions and lack of power to detect weaker effects).

The absence of association in our sex-specific framework

could suggest that the difference in PD prevalence between the

sexes may not be primarily caused by differences in LDL-C

levels. There are several mechanisms proposed for the higher

risk of PD in men compared to women in addition to that of

the effects of lipid metabolism. So far, no evidence has been

found of sex-specific common variants involved in PD risk in

autosomes (80) or on the X chromosome (93), although genetics

studies on this subject with larger sample sizes and taking into

account X chromosome inactivation are warranted. However,

men and women have innate differences in nigrostriatal

dopamine transmission (94–97) and response to stress (98,

99) that can affect their risk for developing PD. Estrogen-

modulated differences in mitochondrial function (78) as well as

in vulnerability to oxidative stress and neuroinflammation (100)

may also account for the relative neuroprotection seen in women

for PD development. Furthermore, menmay be at greater risk of

developing PD due to environmental and lifestyle factors, such

as higher rates of traumatic head injuries (77, 101) and increased

occupational exposure to agricultural pesticides (77, 102).

In addition to differences between the sexes in PD, there

are also well-documented differences in lipid metabolism and

profiles between the sexes (with premenopausal women having

a more cardioprotective profile than age-matched men due

to greater HDL-C and lower LDL-C and triglyceride levels)

(103) that result from a complex and complimentary interplay

between the actions of sex chromosomes and gonadal hormones.

These interact with other factors (such as X chromosome

imprinting and inactivation, environmental stimuli, and the gut

microbiome) to influence gene expression and protein signaling

pathways to produce sexually dimorphic phenotypes (23).

Evidence for differences in associations between genetic variants

and LDL-C levels through sex-stratified GWAS further supports

a genetic contribution to the observed sexual dimorphism in

lipid levels (75).

Although we performed several sensitivity analyses,

including tests for horizonal pleiotropy, to ensure the

robustness and consistency of results, there remain several

limitations. First, we note that we are adequately powered

to detect modest effects (0.90 ≥ OR ≥ 1.10); it is therefore

possible that smaller effects might be missed. Also, it has been

established that sample overlap between the exposure and

outcome datasets can lead to biased MR estimates. It is unlikely,
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however, that there is meaningful overlap between our data

sources as our exposure data was derived from the UK Biobank

and our outcome data was from non-UK Biobank individuals.

In addition, recent research has shown that sex-differential

participation bias is present in large cohorts, including the

UK Biobank, and that such sampling can bias sex-specific

estimates in MR analyses (104). This participation bias is a

limitation. As for all MR studies, we note that our results cannot

be generalized to other populations, such as individuals of

different genetic ancestry. Additionally, despite efforts to select

valid genetic instruments and datasets derived from individuals

of similar genetic ancestry, we cannot be certain that the core

assumptions and the assumption of environmental equivalence

of the exposure and outcome datasets are met. Furthermore,

MR studies assess the relationship between cholesterol levels

and PD based on genetic information; hence, the variants are

proxies for lifelong LDL-C levels, which may not necessarily

reflect LDL-C levels affected by the environment. Finally, here,

we defined sex in terms of genetic sex karyotype, specifically the

presence of two X chromosomes for females or one X and one

Y chromosome for males. Genetic sex is, however, a non-binary

spectrum (for instance, individuals can have aneuploidy of the

X or Y chromosomes or monosomy of the X), and we recognize

our binary classification as a limitation.

Of note, cholesterol has also been linked to the possible

pathogenesis of other movement disorders. For example, in

Huntington’s Disease (HD), an autosomal dominant genetic

disorder characterized by the expansion of the CAG repeats in

the gene encoding for the huntingtin protein (105), important

perturbations in both central nervous system (CNS) and whole-

body cholesterol metabolism have been described. In the CNS,

the mutated huntingtin protein induces downregulation of

cholesterol biosynthesis (106–108) and reduces cholesterol’s

cellular efflux to ApoE, negatively impacting its transportation

from astrocytes to neurons (109, 110). In human post-

mortem tissues, increased cholesterol was also found in the

caudate (111) and putamen (112). The alteration in cholesterol

metabolism is theorized to contribute to HD pathogenesis by

various neuronal processes, including enhanced vulnerability

to excitotoxicity, increased neuroinflammation, and impaired

synaptic transmission (113). There is also evidence of a

decrease in plasma 24S-OHC levels (theorized to be caused by

neurodegeneration) (114) as well as in peripheral cholesterol

biosynthesis and elimination (115), where the huntingtin

protein is also ubiquitously expressed (116). Currently, while

the picture is incomplete, correction of CNS cholesterol

metabolism is being investigated as a possible therapeutic

avenue for HD, with promising results in animal studies

(117–120). So far, to our knowledge, there are no MR

studies on the association between cholesterol and other

movement disorders.

In conclusion, our sex-specific MR analyses do not

provide evidence of a causal relationship between genetically-

determined LDL-C levels on PD risk, which agrees with

findings from the sex-agnostic analyses conducted by Williams

et al. (50). Nevertheless, sex differences in lipid metabolism

and profiles, in the genetic basis of LDL-C levels, in the

prevalence and manifestation of PD, and in other factors are

known to exist. These differences highlight the importance of

future investigation of sex-specific factors. From the genetics

perspective, with individual-level data, testing LDL-C sex-

specific polygenic scores for association with PD case-control

status could provide another approach to assess whether

genetically-determined LDL-C is associated with PD risk. Going

forward, integration of research frommultiple fields is necessary

to clarify the biological mechanisms by which cholesterol levels

influence PD risk and to better interpret results from both

observational and MR studies. The latter have already shown

great promise as an important methodological component of

this multi-disciplinary approach. As sample sizes in genetic

studies continue to increase, permitting better powered sex-

stratified efforts, we hope that sex-aware analyses become

mainstream and yield important discoveries.
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