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Objective: Blood-brain barrier (BBB) dysfunction is implicated in the

pathophysiology of cerebral small vessel disease (cSVD)-related intracerebral

hemorrhage (ICH). The formation of perihematomal edema (PHE) is presumed

to reflect acute BBB permeability following ICH. We aimed to assess the

association between cSVD burden and PHE formation in patients with

spontaneous ICH.

Methods: We selected patients with spontaneous ICH who underwent

3T MRI imaging within 21 days after symptom onset from a prospective

observational multicenter cohort study. We rated markers of cSVD (white

matter hyperintensities, enlarged perivascular spaces, lacunes and cerebral

microbleeds) and calculated the composite score as a measure of the total

cSVD burden. Perihematomal edema formation was measured using the

edema extension distance (EED). We assessed the association between the

cSVD burden and the EED using a multivariable linear regression model

adjusting for age, (log-transformed) ICH volume, ICH location (lobar vs. non-

lobar), and interval between symptom onset and MRI.

Results: We included 85 patients (mean age 63.5 years, 75.3% male). Median

interval between symptom onset and MRI imaging was 6 days (IQR 1–19).

Median ICH volume was 17.0mL (IQR 1.4–88.6), and mean EED was 0.54 cm

(SD 0.17). We found no association between the total cSVD burden and EED

(B = −0.003, 95% CI −0.003–0.03, p = 0.83), nor for any of the individual

radiological cSVD markers.

Conclusion: We found no association between the cSVD burden and PHE

formation. This implies that mechanisms other than BBB dysfunction are

involved in the pathophysiology of PHE.
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Introduction

Spontaneous intracerebral hemorrhage (ICH) accounts for

more than 3 million cases worldwide each year (1). With a one-

month case-fatality of 40%, ICH is themost deadly type of stroke

(2). Cerebral small vessel disease (cSVD) is the most common

cause of spontaneous ICH, accounting for as much as 85% of all

cases (3, 4). The degree of cSVD is known to be associated with

poor functional outcome after ICH (5–7).

While the exact pathophysiological mechanisms that

underly the development of cSVD are not completely

understood, accumulating evidence implicates an important

role for neuro-inflammation (8). Circulating markers of

inflammation and associated endothelial dysfunction have

repeatedly been associated with cSVD severity and progression

(9–12). The disruption of endothelial function can subsequently

affect the blood-brain barrier (BBB), which is mainly formed by

the capillary endothelium (8, 9). Increasing evidence suggests

that BBB permeability plays a pivotal role in the development of

cSVD-related ICH (13–15).

Decreased BBB integrity can facilitate the passage of water

and plasma derived molecules into the interstitial tissue,

thereby influencing the formation of edema (16, 17). In

patients with ICH, BBB permeability as estimated by dynamic

contrast-enhanced MRI (DCE-MRI) has been associated with

perihematomal edema (PHE) volumes (15, 18, 19). The

formation of PHE has recently been associated with poor

outcome after ICH (20–23) and has gained increasing interest as

a potential therapeutic target to prevent secondary brain injury

after ICH. Thus, insight into the mechanisms of PHE formation

is important. We therefore aimed to assess whether the extent

of cSVD is associated with the development of PHE in adult

patients with spontaneous ICH.

Methods

This study was part of the ‘Finding ETiology of spontaneous

Cerebral Hemorrhage’ (FETCH) study. This multicenter

prospective cohort study included consecutive adults with a

spontaneous ICH admitted to three Dutch hospitals (University

Medical Center Utrecht (UMCU), Leiden University Medical

Center (LUMC) and Radboudumc) between October 2013 and

December 2018. Inclusion and exclusion criteria for the FETCH

study have been described previously (24). The FETCH study

was approved by the medical ethics committee of the UMCU.

All patients provided written informed consent.

Patient selection

For the present analysis, we selected patients who underwent

3T brain MRI imaging within 21 days after symptom onset.

TABLE 1 Characteristics of the study population.

N = 85

Patient characteristics

Mean age, years (SD) 63.5 (14.7)

Male sex, n (%) 64 (75.3)

Medical history

Hypertension, n (%) 62 (61.2)

Diabetes, n (%) 13 (15.3)

Hypercholesterolemia, n (%) 28 (32.9)

Atrial fibrillation, n (%) 13 (15.3)

Ever smoker, n (%) 49 (57.6)

MRI imaging

Median ICH volume, mL (IQR) 17.0 (1.4-88.6)

ICH location

- Lobar, n (%)

- Deep, n (%)

- Infratentorial, n (%)

39 (45.9)

33 (38.8)

13 (15.3)

Median MRI interval, days (IQR) 6 (1-19)

Total cSVD score, n (%)

- 0

- 1

- 2

- 3

- 4

21 (24.7)

21 (24.7)

16 (18.8)

23 (27.1)

4 (4.7)

Individual cSVD markers, n (%)

- WMH a

- CMB b

- Lacunes c

- EPVS d

41 (48.2%)

51 (60%)

14 (16.5%)

32 (37.6%)

aClassified as Periventricular Fazekas 3 and/or Deep Fazekas 2–3.
bPresences of at Least one CMB.
cPresence at Least one Lacune.
dPresence of at Least 20 Basal Ganglia EPVS. CMB, Cortical Microbleeds; CSVD,

Cerebral Small Vessel Disease; EPVS, Enlarged Perivascular Spaces; ICH, Intracerebral

Hemorrhage; IQR, Interquartile Range;MRI,Magnetic Resonance Imaging; SD, Standard

Deviation; WMH, White Matter Hyperintensities.

Patients were excluded if their MRI images were of insufficient

quality to assess small vessel disease markers, e.g., due to

motion artifacts or in case the FLAIR sequence was missing.

Furthermore, we excluded patients with a hematoma volume of

<1 mL.

We retrieved clinical information on age, sex, date and time

of symptom onset, comorbid conditions including history of

hypertension (on treatment for hypertension or known with

high blood pressure (two measurements systolic blood pressure

>140 mmHg or diastolic blood pressure >90 mmHg), diabetes

mellitus (known past medical history or two fasting glucose

measurements above 7 mmol/l), hypercholesterolemia (using

lipid-lowering drugs or total cholesterol >6.2 mmol/l or), atrial

fibrillation and smoking history.
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FIGURE 1

Edema extension distance per sum score of cerebral small vessel disease burden score. Boxplots with medians and interquartile ranges. Black

diamonds depict mean values.

MRI imaging protocol

MRIs were performed on a 3T MRI scanner (Philips

Healthcare, Best, The Netherlands or Siemens Healthineers,

Erlangen, Germany). The standardized MRI scanning protocol

included a comprised a T1, axial T2-Proton Density (PD)

Inversion Recovery (IR), axial T2-Proton Density (PD)

Inversion Recovery (IR), Fluid Attenuated Inversion Recovery

(FLAIR), and susceptibility weighted imaging (SWI) or Fast

Field Echo (FFE) sequences (see Supplementary material for

MRI parameters).

MRI imaging rating

Perihematomal edema and ICH volumes were manually

segmented on axial FLAIR sequences in ITK-SNAP 3.8 by a

trained assessor (AW). A second assessor (LS) independently

segmented ICH and PHE volumes in 10 patients. The intraclass

correlation coefficient (ICC) was calculated to determine inter-

observer agreement. Hemorrhage was defined as hyperintense

on FLAIR sequences if the MRI was performed within 12 h or

beyond 8 days after symptom onset, and hypointense if MRI was

performed between 12 h and 8 days after symptom onset. If there

was uncertainty whether a region consisted of blood, SWI or FFE

sequences were used to differentiate between hemorrhage and

other lesions. ICH location was classified as deep (basal ganglia

or thalamus), lobar (cerebral lobes) or infratentorial (cerebellum

or brainstem) (25). The hyperintense region surrounding the

hemorrhage on FLAIR sequences was segmented and classified

as PHE.We usedMatlab 2014b to calculate the absolute ICH and

PHE volumes based on the number of voxels and the voxel size

in three directions. Relative PHE was calculated as absolute PHE

volume divided by ICH volume. The edema extension distance

(EED) was calculated for all patients using the formula

EED = 3

√

PHE vol+ ICH vol
4
3 π

− 3

√

ICH vol
4
3 π

(1)

The cerebral small vessel disease burdenwas rated by one trained

rater, with a second rater assessing a random subsample, as

previously described (26). Additionally, enlarged perivascular

spaces (EPVS) were rated by a trained assessor (WJ), with

a second rater (CK) assessing a random subsample of

10%. Lacunes, white matter hyperintensities (WMH), cortical

microbleeds (CMB) and enlarged perivascular spaces (EPVS)

were assessed according to the Standards for ReportIng Vascular

changEs on neuroimaging (STRIVE) (27). The total cSVD

burden was scored on an ordinal scale of 0 to 4 (28). One

point was assigned for each of the following radiological

characteristics: presences of at least one CMB, one or more

lacunes, at least 20 basal ganglia EPVS and presence of WMH

classified as periventricular Fazekas 3 and/or deep Fazekas 2–

3 (28).
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Data analysis

Depending on the normality of distribution data are

presented as either mean and standard deviation (SD) or

median and interquartile range (IQR). We explored the

association between the composite total cSVD score and EED

via univariable linear regression. Subsequently, we constructed

a multivariable linear regression model adjusting for the

variables age, (log-transformed) ICH volume on 3T MRI,

interval between symptom onset and 3T MRI and ICH location

(dichotomized as lobar vs. deep/infratentorial) as predictors

of EED. We evaluated the performance of the multivariable

regression model by means of the R2 statistic. In secondary

analysis we assessed the association of the total cSVD score with

absolute PHE volume and relative PHE volume.We additionally

explored the difference in EED in the presence of each individual

cSVDmarker with an independent t-tests. Statistical significance

was set at p < 0.05. All statistical analyses were performed

in Rstudio, version 3.6.2 with the use of the tidyverse and

dplyr packages.

Results

We included 85 patients with a mean age of 63.5 years (SD

14.7); 64 were male (75.3%). Further clinical characteristics are

summarized in Table 1. The median ICH volume at the time of

MRI imaging was 17.0mL (IQR 1.4–88.6). In 39 patients (45.9%)

the ICH was lobar. The median interval between symptom

onset and MRI acquisition was 6 days (IQR 1–19). Twenty-one

patients had a total cSVD score of 0 (24.7%), 21 a score of 1

(24.7%), 16 patients a total cSVD score of 2 (18.8%), 23 patients

a score of 3 (27%) and four the maximum total cSVD score of

4 (4.7%). The mean EED was 0.54 cm (SD 0.17). Inter-observer

agreement for ICH (ICC 0.95) and PHE (ICC 0.99) volume

was excellent.

Univariable linear regression analysis showed no association

between the total cSVD score and EED (B = −0.003, 95% CI

−0.003–0.03, p = 0.83; Figure 1). In the multivariable analysis,

larger (log-transformed) absolute hematoma volume (B 0.093,

95% CI 0.05–0.13, p < 0.001) and the MRI interval since

symptom onset (B = −0.007, 95% CI −0.015–0.001, p = 0.03)

were independently associated with increased EED, while total

cSVD score was not (B −0.02, 95% CI −0.051–0.007, p = 0.13;

Table 2). Dichotomization of the cSVD score by the mean (<2

vs. ≥2) did not alter the results of the multivariable regression

model, nor did narrowing of the MRI interval to 5–14 days

(n = 52; B = 0.013, 95% CI −0.03–0.054, p = 0.53). Model

performance was poor with a multiple R2 of 0.29. Multiple

R2 increased to 0.79 in the multivariate model when PHE was

expressed as absolute PHE volume. We found no association

between total cSVD score and absolute and relative PHE volume

TABLE 2 Multivariable linear regression model investigating

predictors of EED.

B (95% CI) p-value

cSVD score −0.02 (−0.051–0.007) 0.13

Log-transformed ICH volume 0.093 (0.056–0.129) <0.001*

Age 0.001 (−0.001–0.004) 0.33

Dichotomized ICH locationa −0.044 (−0.122–0.033) 0.26

MRI interval (days) −0.007 (−0.015-0.001) 0.03*

aLobar vs. Deep/Infratentorial ICH Location. *Statistically Significant. CSVD, Cerebral

Small Vessel Disease; EED, Edema Extension Distance; ICH, Intracerebral Hemorrhage;

MRI, Magnetic Resonance Imaging.

(data not shown). Moreover, we found no association between

the individual markers of cSVD and EED (Figure 2).

Discussion

In the present study, we found no association between the

total burden of cSVD, or any of its components, and PHE

formation on MRI within 21 days after spontaneous ICH.

Although a close relation between cSVD markers and BBB

permeability has been established (9, 17, 29, 30), few studies have

addressed the role of cSVD in the development of PHE (31). In

the one previous study in 79 patients using MRI within 72 h of

symptom onset to quantify ICH and PHE volumes, the authors

did not find an association between WMH score and absolute

PHE volume (31). We, however, used EED as primary outcome

measure since it is relatively independent of ICH volume, unlike

the traditionally used absolute and relative PHE (32). The strong

association between ICH volume and absolute PHE volumed

is reflected in the strong increase of R2 in our multivariate

analysis when PHE was expressed as absolute PHE instead of

EED. In addition, median MRI interval in our study population

(6 days vs. 37.6 h) was considerably longer, which coincides with

the peak of PHE formation (33). Nevertheless, we could not

demonstrate any association betweenmarkers of cSVD and PHE

formation. There are no studies that assessed the association

between other radiological cSVD markers or total cSVD burden

score and PHE formation.

The evolution of perihematomal edema has several phases.

Natural history data on PHE in humans indicate that edema

develops rapidly during the first hours after ICH onset, followed

by a slower progressive phase in the weeks thereafter (34, 35).

It is generally accepted that peak PHE volume is reached at ∼2

weeks after ICH onset (33). The early stage of PHE development

is largely driven by the hydrostatic pressure resulting from

the outflow of water, serum proteins and electrolytes from

the ruptured blood vessel (35). The subacute phase of PHE

growth is largely attributed to vasogenic edema resulting from

inflammation mediated BBB disruption (34). Exposure of the
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FIGURE 2

Edema extension distance per individual markers for cerebral small vessel disease. Boxplots with medians and interquartile ranges. Black

diamonds depict mean values. (A) Edema extension distance explored per white matter hyperintensity score (p = 0.96). One point was assigned

when white matter hyperintensities were classified as periventricular Fazekas 3 and/or deep Fazekas 2–3. (B) Edema extension distance explored

per cortical microbleeds score (p = 0.62). One point was assigned when at least one cortical microbleed was present. (C) Edema extension

distance explored per lacunes score (p = 0.28). One point was assigned when at least one lacune was present. (D) Edema extension distance

explored per enlarged perivascular spaces score (p = 0.93). One point was assigned when at least 20 enlarged perivascular spaces were present

in the basal ganglia. CMB, cortical microbleeds; EPVS, enlarged perivascular spaces; WMH, white matter hyperintensities.

brain parenchyma to the toxic blood components after ICH

leads to a neuroinflammatory cascade that facilitates the influx

of immune cells and increased production of cytokines and

other mediators that further increase the BBB permeability

and subsequent PHE formation. Interestingly, the underlying

cSVD subtype in ICHmight impact this inflammatory response.

A prospective study of 79 patients with ICH found that

cytokine profiling could differentiate between ICH resulting

from cerebral amyloid angiopathy (CAA) and ICH associated

with deep perforating vasculopathy (36).

In this light, it has been proposed ICH etiology may impact

PHE formation. However, controversy exists regarding the

association between PHE volume and hematoma location, which

is often considered a reflection of the underlying type of cSVD

(16, 37–39). In this study we did not find such an association. A

possible explanation for the lack of an association between cSVD

and PHE may be that the degree of BBB disruption that occurs

in acute ICH is that large that any impact of the much smaller

chronic reduction in endothelial integrity as observed in cSVD is

of no relevance. BBB permeability can be measured by dynamic

contrast-enhanced MRI (DCE-MRI) and perfusion computer

tomography (CT-P) imaging. Published data quantifying BBB

permeability after ICH are however scarce. A prospective cohort

study of 25 patients with spontaneous ICH using DCE-MRI

to measure BBB integrity revealed considerable BBB leakage in

the rim surrounding the hematoma (18). This study reported

a positive relationship between BBB leakage rate and PHE

volumes. However, this relation was fairly moderate (ρ = 0.62, p

= 0.002), suggesting that BBB permeability is not the only factor

that influences edema formation.

Our study has several strengths. First, the data was obtained

from a prospective, multicenter cohort study. Second, the

median interval between ICH onset and MRI imaging in

our study population was 6 days, the time at which PHE

is known to reach its peak volume. Moreover, PHE was

measured as EED which is relatively independent of hematoma

volume unlike absolute and relative PHE volume. This study

also has limitations. First, the relatively small sample size

may have resulted in a limited power. Additionally, this

hampered subgroup analysis regarding additional factors that

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.949133
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Cliteur et al. 10.3389/fneur.2022.949133

may influence PHE formation (e.g., cSVD subtype, blood

glucose levels, blood pressure). Second, although MRI is the

imagingmodality of choice when assessing cSVD characteristics,

including only patients who underwent MRI has led to a

selection bias, as MRI was not performed in patients who died in

the early acute phase or experienced severe clinical deterioration.

This may have led to underrepresentation of patients with the

highest PHE volumes in our study. Nevertheless, we found a

relatively normal distribution of EED values in our dataset in

which both low and high volumes of PHE were represented.

Conclusion

We found no association between cSVD severity and PHE

volume measured as EED. Perihematomal edema formation is

considered a radiological marker of BBB disruption in ICH

and has been proposed as a surrogate endpoint in clinical

trials aimed at ameliorating secondary brain injury after ICH.

Improved understanding into the mechanisms that underly

the formation of PHE and the role of BBB dysfunction

therein could help to develop new treatment strategies. Studies

focused at elucidating these mechanisms in PHE formation are

therefore warranted.
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