
TYPE Study Protocol

PUBLISHED 16 September 2022

DOI 10.3389/fneur.2022.954142

OPEN ACCESS

EDITED BY

Sanae Fukuda,

Kansai University of Welfare

Sciences, Japan

REVIEWED BY

Christina Mueller,

University of Alabama at Birmingham,

United States

Selvakumar Govindhasamy

Pushpavathi,

The University of Iowa, United States

*CORRESPONDENCE

Zack Y. Shan

zshan@usc.edu.au

SPECIALTY SECTION

This article was submitted to

Neuroinfectious Diseases,

a section of the journal

Frontiers in Neurology

RECEIVED 27 May 2022

ACCEPTED 30 August 2022

PUBLISHED 16 September 2022

CITATION

Shan ZY, Mohamed AZ, Andersen T,

Rendall S, Kwiatek RA, Fante PD,

Calhoun VD, Bhuta S and

Lagopoulos J (2022) Multimodal MRI

of myalgic encephalomyelitis/chronic

fatigue syndrome: A cross-sectional

neuroimaging study toward its

neuropathophysiology and diagnosis.

Front. Neurol. 13:954142.

doi: 10.3389/fneur.2022.954142

COPYRIGHT

© 2022 Shan, Mohamed, Andersen,

Rendall, Kwiatek, Fante, Calhoun,

Bhuta and Lagopoulos. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Multimodal MRI of myalgic
encephalomyelitis/chronic
fatigue syndrome: A
cross-sectional neuroimaging
study toward its
neuropathophysiology and
diagnosis

Zack Y. Shan1*, Abdalla Z. Mohamed1, Thu Andersen1,

Shae Rendall1, Richard A. Kwiatek1, Peter Del Fante1,

Vince D. Calhoun2, Sandeep Bhuta3 and Jim Lagopoulos1

1Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia, 2Tri-institutional

Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State

University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States, 3Medical

Imaging Department, Gold Coast University Hospital, Parklands, QLD, Australia

Introduction:Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS),

is a debilitating illness a�ecting up to 24 million people worldwide but

concerningly there is no known mechanism for ME/CFS and no objective

test for diagnosis. A series of our neuroimaging findings in ME/CFS, including

functional MRI (fMRI) signal characteristics and structural changes in brain

regions particularly sensitive to hypoxia, has informed the hypothesis that

abnormal neurovascular coupling (NVC) may be the neurobiological origin

of ME/CFS. NVC is a critical process for normal brain function, in which

glutamate from an active neuron stimulates Ca2+ influx in adjacent neurons

and astrocytes. In turn, increased Ca2+ concentrations in both astrocytes and

neurons trigger the synthesis of vascular dilator factors to increase local blood

flow assuring activated neurons are supplied with their energy needs.

This study investigates NVC using multimodal MRIs: (1) hemodynamic

response function (HRF) that represents regional brain blood flow changes in

response to neural activities and will be modeled from a cognitive task fMRI;

(2) respiration response function (RRF) represents autoregulation of regional

blood flow due to carbon dioxide and will be modeled from breath-holding

fMRI; (3) neural activity associated glutamate changes will be modeled from

a cognitive task functional magnetic resonance spectroscopy. We also aim to

develop a neuromarker for ME/CFS diagnosis by integrating the multimodal

MRIs with a deep machine learning framework.

Methods and analysis: This cross-sectional study will recruit 288 participants

(91 ME/CFS, 61 individuals with chronic fatigue, 91 healthy controls with

sedentary lifestyles, 45 fibromyalgia). The ME/CFS will be diagnosed by

consensus diagnosis made by two clinicians using the Canadian Consensus
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Criteria 2003. Symptoms, vital signs, and activity measures will be collected

alongside multimodal MRI.

The HRF, RRF, and glutamate changes will be compared among four groups

using one-way analysis of covariance (ANCOVA). Equivalent non-parametric

methods will be used for measures that do not exhibit a normal distribution.

The activity measure, body mass index, sex, age, depression, and anxiety will

be included as covariates for all statistical analyses with the false discovery rate

used to correct for multiple comparisons.

The data will be randomly divided into a training (N = 188) and a

validation (N = 100) group. Each MRI measure will be entered as input

for a least absolute shrinkage and selection operator—regularized principal

components regression to generate a brain pattern of distributed clusters

that predict disease severity. The identified brain pattern will be integrated

using multimodal deep Boltzmann machines as a neuromarker for predicting

ME/CFS fatigue conditions. The receiver operating characteristic curve

of the identified neuromarker will be determined using data from the

validation group.

Ethics and study registry: This study was reviewed and approved by

University of the Sunshine Coast University Ethics committee (A191288)

and has been registered with The Australian New Zealand Clinical Trials

Registry (ACTRN12622001095752).

Dissemination of results: The results will be disseminated through peer

reviewed scientificmanuscripts and conferences and to patients through social

media and active engagement with ME/CFS associations.

KEYWORDS

translational neuroimaging, MRI, ME/CFS, neuromarker, neurovascular coupling

Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome

(ME/CFS) is a serious, long-term illness for which the

underlying disease process remains unknown, and no

objective diagnostic test exists. The disease is characterized

by profound fatigue for more than 6 months, cognitive and

motor dysfunction, unrefreshing sleep, and/or orthostatic

intolerance (1). There are 17 to 24 million people affected by

ME/CFS, with 25% of them housebound (2). In addition to

enduring the disease itself and its economic burden, 80% of

ME/CFS patients struggle to get a diagnosis and are often left

depressed by the lack of a diagnostic certainty and medical

understanding of the disease processes. Although the etiology of

ME/CFS remains unresolved, the well-documented autonomic

dysfunction, sleep disturbance, cognitive impairments, altered

sensory and pain perception, and reduced motor speed suggest

that abnormal brain function plays a crucial role in the

underlying disease process of ME/CFS (3). As such, ME/CFS has

been classified as a neurological disease (ICD code 10 G93.3)

by the WHO.

Additional brain area recruitment associated with cognitive

tasks during task fMRI is one of the most frequently observed

differences between patients with ME/CFS and controls (4).

The task fMRI signal was based on neurovascular coupling

(NVC), the dynamic regulation of blood flow induced by neural

activity. NVC is a critical process for normal brain function,

in which glutamate from an active neuron stimulates Ca2+

influx in adjacent neurons and astrocytes. In turn, increased

Ca2+ concentrations in both astrocytes and neurons trigger

the synthesis of vascular dilation factors to increase local blood

flow, ensuring activated neurons are supplied with their energy

needs (5, 6). Previous genetic and electrophysiological studies

showed that transient receptor potential melastatin subfamily

3 (TRPM3) activity and Ca2+ mobilization were reduced in

ME/CFS (7–9). Reduced Ca2+ mobilization may delay NVC

and result in the less responsive fMRI signals (i.e., coupled

less tightly with tasks with lower sample entropies) that were

observed in our previous neuroimaging study (10). The delayed

NVC ensues subtle brain changes, culminating in chronic brain

injury and associated cognitive impairment (5), presenting

as structural changes in brain regions (11–16) susceptible to
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hypoxia. Moreover, we postulate that a higher level of glutamate

is released because of delayed NVC in ME/CFS patients and

results in additional brain area recruitment during tasks (4, 10).

Excess glutamate may cause excitotoxicity, which is consistent

with increased expression of the vasoactive intestinal peptide

receptor 2 observed in ME/CFS (17). The intestinal peptide

receptor 2 is a neuroprotective agent against excitotoxicity and

is released in response to high levels of glutamate (18). Thus,

we hypothesize that delayed NVC may explain hypoxia-related

brain structural changes and excess glutamate inME/CFS, which

further impairs the brain because of excitotoxicity.

Our previous studies have described brain differences

in ME/CFS, related to the brain structure, functional

networks (11–13, 15, 16, 19), and BOLD signal changes

(10, 20). Although none of these differences alone can

differentiate ME/CFS from normal and other disorders,

they suggested that a unique brain signature for ME/CFS

may be identifiable. Thus, we will also use the least absolute

shrinkage and selection operator—regularized principal

components regression (LASSO-PCR) (21), to identify

brain signatures that contribute to reliable prediction. Then

multimodal deep Boltzmann machine (DBM) (22) will be

used to integrate multimodal signatures with cross-modality

information to develop a neuromarker for objective diagnosis

of ME/CFS.

The present paper summarizes the research protocol that

addresses the aforementioned aims. We report the analysis

plans here to reduce the file-drawer effect and improve the

study reproducibility, which is currently solicited in translational

research (23) and more urgently required in ME/CFS because of

the controversy associated with this ill-defined disease (24).

Methods and analysis

The study design

The multimodal MRIs of ME/CFS is a cross-sectional

study that commenced in January 2020 and will be completed

in December 2024. Participants who express an interest will

be screened for eligibility according to inclusion/exclusion

criteria. Symptom scores, activity levels, MRIs (detailed below)

will be collected after receiving written consent from eligible

participants (Figure 1).

The primary outcomes

Aim 1

To establish group differences in Hemodynamic Response

Function (HRF) and its relationship to fatigue severity in

ME/CFS patients using functional MRI (fMRI).

Aim 2

To establish group differences in dynamic glutamate activity

during cognitive tasks and its relationship to fatigue severity

in ME/CFS patients using functional magnetic resonance

spectroscopy (fMRS).

Aim 3

To develop a neuromarker for ME/CFS diagnosis. The

neuromarker will be relevant brain features integrated from

multiple MRI modalities using a deep learning framework and

validated using independent data.

The secondary outcomes

i To compare brain structural and functional differences and

associations with symptoms among ME/CFS, fibromyalgia,

chronic fatigue, and healthy controls (HCs).

ii To establish group differences in high-frequency heart rate

variability and associated fMRI signal changes in ME/CFS.

iii To establish group objective sleep quality differences

and associated brain structure and function differences

in ME/CFS.

iv To establish group differences in sleep measures and

changes low- and high-frequency heart rate variability

during awake and sleep before and after MRI scanning.

v To establish the repeatability of fMRS measures.

The recruitment and selection of the
sample population

We will recruit 288 adult participants (18–65 years old),

including 91 patients with ME/CFS, 61 individuals with chronic

fatigue, 91 HCs with sedentary lifestyles, and 45 patients with

fibromyalgia. The risk of an ill-defined ME/CFS patient cohort

will bemitigated by employing a consensus diagnosis ofME/CFS

from two clinicians (R.A.K and P.D., both have over 10 years

of experience in ME/CFS) and using the Canadian Consensus

Criteria (CCC) 2003 (1). This study will also include groups

of fibromyalgia, a frequent co-morbidity of ME/CFS. The

American College of Rheumatology (ACR) 2016 fibromyalgia

criteria (25) will be used for screening and followed by clinic

diagnosis by a rheumatologist (R.A.K.). The chronic fatigue

is defined as self-identified ME/CFS but not confirmed by

the two clinicians (i.e., present with other conditions or lack

core ME/CFS symptoms) or with other disorders (not ME/CFS

or fibromyalgia) that fatigue is a significant symptom. These

two groups are included to ensure specificity of the identified

neuromarker. Patients with ME/CFS have reduced daily activity

because of their illness. However, a sedentary lifestyle itself
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FIGURE 1

Flowchart for data collection.

may affect brain structure and function. Therefore, there is

a risk of identifying brain structural or functional differences

from ME/CFS sequelae, rather than from the illness per se.

This study will mitigate against this problem by selecting HCs

with sedentary lifestyles. A sedentary lifestyle will be defined

as spending <60min in moderate or high-intensity activity

(i.e., exercise) per week (26). Furthermore, activity level will be

monitored by the Actigraph GT3X-BT device (ActiGraph LLC.,

United States) for 14 days. The recorded activity level will be

included as covariates for all statistical analyses but will not

change participants’ eligibility.

The inclusion criteria include adult individuals who express

an interest, meet each group definition, and are confirmed

by clinicians.

The exclusion criteria include individuals (1) out of the

age range, (2) pregnant, (3) with severe intellectual or mental

impairment preventing them from fully understanding the

study to give consent, (4) with mental disorders including

post-traumatic stress disorder, obsessive compulsive disorder,

schizophrenia, and bipolar disorder, (5) with a known other

neurological disorder, (6) who cannot read and communicate

in English, (7) recruited by supervising relationship or

where a conflict of interest exists, (8) with alcohol or

substance related disorder, (9) with BMI >35, (10) smoking

(including marijuana or substance usage), (11) with diabetes,

hypertension, or uncontrolled hyperlipidaemia, (12) currently

on medication acting on the brain, (13) with a clinical

diagnosis of hemochromatosis, (14) with a double copy of

the Haemochromatosis gene, (15) who experienced migraines

more than six times a year before the onset of their

symptoms. A researcher will check the exclusion criteria at

the screening stage. After the screening process, a differential

diagnostic list will be completed by each participant and

discussed with two clinicians for diagnosis of ME/CFS during

clinical interviews.

Additional exclusion criteria for HCs include individuals

(1) with a chronic disease, i.e., a condition that last 1 year or

more and require ongoing medical attention or limit activities

of daily living or both, including heart disease, stroke, lung

cancer, colorectal cancer, depression, type 2 diabetes, arthritis,

osteoporosis, asthma, chronic obstructive pulmonary disease,

chronic kidney disease, and (2) who experience migraines more

than six times a year, and (3) who do more than 60min in

moderate or high-intensity activity per week.

Data collections

Symptom questionnaires

After informed consent has been obtained, the following

assessments will be undertaken: (1) symptom information

relevant to establishing CCC ME/CFS classification (1); (2) the

36-item Short-Form Health Survey; (c) Hospital Anxiety and

Depression Scale questionnaire; (d) the Bell disability score;

(e) The Assessment of Quality of Life questionnaire; (g) the

Pittsburgh sleep quality index questionnaire.

Clinical interviews

Two clinicians (R.A.K and P.D.) will perform a remote

interview independently with patients. Prior to the clinical

interviews, height, weight, BMI, blood pressure, pulse rate,

oxygen saturation, weighted standing time for evaluation

of postural orthostatic tachycardia syndrome (POTS) (27),

and the Beighton scores (a measure of generalized joint

hypermobility) (28) for each participant will be collected

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.954142
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shan et al. 10.3389/fneur.2022.954142

and shared with the clinician. The clinician requested

the POTS and the Beighton scores to assist diagnosis

of ME/CFS. None of the POTS or the Beighton scores

alone differentiates ME/CFS but will be used with other

measures by clinicians.

Actigraphy

Participants will be given a GT3X-BT device with a heart

rate monitor to wear 7 days before the MRI. The heart

rate monitor is to be worn for 24 h. After the MRI scan,

participants will be given another GT3X-BT device to wear

for 7 days with a 24-h heart rate monitor to be worn on

the next morning of the MRI scan. We will collect actigraphy

data before and after the MRI scanning (i) to obtain a robust

estimations of activity levels, sleep qualities, and heart rate

variabilities and (ii) to investigate sleep quality and heart rate

variability changes after a moderate exertion (MRI scanning)

in ME/CFS.

Multimodal MRI

Brain images are acquired using a 3TMRI scanner with a 64-

channel head coil (Skyra, Siemens) at the Thompson Institute

(TI), University of the Sunshine Coast (UniSC). A fatigue state

questionnaire that measures current fatigue levels (29) will be

completed before and after the MRI for each participant. The

MRIs will include:

I Structural MRI (sMRI) using a T1-weighted magnetization

prepared rapid gradient-echo sequence (MPRAGE): 208

slices, dimension 256 × 256, voxel size 1mm × 1mm ×

1mm, TR/TE 2,200/1.71ms, flip angle 7◦.

II A set of resting-state fMRI (rsfMRI, 192 volumes) using

a multiband EPI sequence: 108 slices, dimension 126

× 126, multiband = 4, dimension 138 × 138, 1.6

mm3 isotropic voxel, TR/TE 2,500/42ms, flip angle 75◦.

Participant will be instructed to keep their eyes open with

fixation of a cross for 8min acquisition. Heart rate will

be recorded simultaneously using pulse oximetry from the

MRI scanner.

III A set of task fMRI (tfMRI, 800 volumes) using a

multiband EPI sequence (60 slices, multiband = 8,

dimension 74 × 74, 3 mm3 isotropic voxels, TR/TE

800/33ms, flip angle 65◦) while participants perform a

symbol digit modalities test (SDMT), which is widely used

for cognitive evaluation of information processing speed.

A semi-random design, which simultaneously achieves

maximum estimation efficiency and detection power, (30)

was used (Figure 2). The paradigm is incorporated into

the scanner’s fMRI sequence for general linear modeling

of BOLD signal changes associated with tasks. Brain

regions with BOLD signal changes associated tasks are

FIGURE 2

The semi-random design of task fMRI paradigm. The

semi-random task paradigm (maximizing both estimation

e�ciency and detection power) includes two alternative tasks

and resting conditions blocks (640 sec). Each task block has 30

symbol digit modalities task (SDMT) trials. Each trial takes 5s with

a random inter-trial interval ranging from 1–5s (average of 3s).

The SMDT requires participants to determine if the lower symbol

digit pair agrees with upper symbol-digit references and

respond with yes and no keys. Participants keep their eyes open

with a cross fixation during the inter-trial intervals and the

resting blocks.

used for voxel location of functional magnetic resonance

spectroscopy (fMRS).

IV A set of breath-holding fMRI (BH fMRI, 324 volumes)

will be acquired using the same pulse sequence and

parameters as tfMRI above. Participants perform 6 BH

tasks; each BH task consists of 14.4 s (18 fMRI volumes)

natural breath, 3 paced breathing (4.8 s each with 2.4 s

breath in and out, respectively) of 14.4 s and a 14.4 s end-

expiration breath-hold.

V A set of fMRS using the HERMES (Hadamard Encoding

and Reconstruction of MEGA-Edited Spectroscopy)

acquisition method with TR/TE = 2,000/23ms. The task

paradigm is the same as the tfMRI paradigm (Figure 2),

during which 16 and 5 measurements (averaged from

8 volumes per measurement) are collected for task and

resting block, respectively. A single cuboid voxel, 20mm

(superior-inferior), 27mm (anterior-posterior), and

12mm (left-right), covering the left dorsal prefrontal

cortex, is adjusted according to individual BOLD activation

maps (Figure 3).

VI A set of diffusion tensor images (DTI) using a multiband

EPI sequence (72 slices, multiband factor 3, dimension

= 114 × 114, voxel size 2 × 2 × 2 mm3, TR/TE =

4,500/123ms; free diffusion mode, 96 diffusion directions,

bipolar diffusion scheme with two diffusion weighting of b

= 0 and b = 2,500, phase encoding direction = anterior
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FIGURE 3

Real-time task fMRI guided functional magnetic resonance spectroscopy (fMRS). A general linear model determined BOLD signal changes

associated with the symbol digit modalities test implemented on the MRI scanner with a threshold of uncorrected P < 0.001. A cuboid voxel

covering the left dorsal prefrontal cortex (20mm from superior to inferior, 27mm from anterior to posterior, and 12mm from left to right) is

adjusted according to BOLD activation maps, (A) coronal and (B) sagittal views, and (C) T1-weighted anatomic images to cover left dorsal

prefrontal cortex. (D) An example of a measurement averaged from 8 volumes from another participant shows the exact anatomical location

and the acceptable signal-to-noise ratio for estimating the glutamate level.

to posterior). Six volumes of b = 0 with phase encoding

direction in posterior to anterior are also collected for the

eddy current correction.

VII A final set of rsfMRI will be collected using the same

setting as II.

Data analysis plan

The measured variables will firstly be tested for normal

distribution. Equivalent non-parametric methods will be used

if any variable does not exhibit a normal distribution. The

activity measure, body mass index, age, depression, and anxiety

will be included as covariates for all statistical analyses.

The false discovery rate (FDR) will be used to correct for

multiple comparisons.

Actigraphy data

The metabolic equivalent of the task from the GT3X_BT

watch will be averaged over 14 days as the activity measure

for each participant. The sleep outputs of the GT3X-BT watch,

including latency, efficiency, total time in bed, total sleep time,

wake after sleep onset, number of awakenings, and averaged

awakening time calculated using the Cole-Kripke algorithm

(31), will be averaged as objective sleep measurements for

each participant. The 24-h heart rate will be downloaded and

averaged to generate low- (< 0.1Hz) and high-frequency (>

0.2Hz) during awake and sleep for each participant.

Preprocessing of MRIs

sMRI data will be processed using an optimized SPM12

(Statistical Parametric Mapping, Wellcome Trust Center for

Neuroimaging, London, United Kingdom) procedure validated

in our previous study (15) to generate the gray matter (GM) and

white matter (WM) density maps (for Aim3). With the notion

that our scanner delivers 5 pulses without image acquisition for

signal stabilization, standard preprocessing of fMRI data will be

used, including motion, distortion, and slice timing corrections,

normalization to standard space, and motion scrubbing and

physiological noise removal using the RETROICOR approach

(32). Pre-processing of fMRS will include phase-, shift-,

and eddy current correction and removal of the first fMRS

measurement for each condition. Two consecutive spectra in

each condition will be averaged to increase the signal-to-noise

ratio. Pre-processing of DTI will include correction of image

distortions from eddy currents and detection and replacement

of outliers due to the head and cardiac pulsatile motion. The

HRF features (for Aim 1 and Aim 3) will be modeled using sHRF

toolkit developed in our previous study (33) based on tfMRI.

The sample entropy (SampEn) map of BOLD signal changes (for

Aim 3) will be calculated as in our previous study (10) based

on tfMRI. The fractional amplitude of low-frequency fluctuation

(fALFF) map of task residue BOLD signal changes (for Aim 3)

will be calculated as the power within the low-frequency range

(0.01–0.1Hz) divided by the total power in the entire detectable

frequency range (34) after removing task-related activity with

the general linear modeling (35). Resting glutamate levels and

dynamic glutamate changes in task conditions (for Aim 2) will

be calculated using ‘LCModel’ (version 6.3) with a simulated

basis set for prior knowledge (36). The apparent diffusion

coefficient and fractional anisotropy maps (for Aim 3) will be

calculated using the FMRIB Software Library (FSL) based on

diffusion MRI data. The RRF (for Aim 1 and 3) will be modeled

similarly to our previous study (33) with an RRF which is slower

than neuronally-induced BOLD signal changes (37) based on the

breath-holding tfMRI.
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Group di�erence in hemodynamic response
function (HRF) (Aim 1)

The HRF features will be compared using one-way analysis

of covariance (ANCOVA) among the four groups. The

respiration response function (RRF) will be modeled in the

breath-holding tfMRI data. This will enable us to disentangle

non-neuronally-induced cerebrovascular reactivity from the

neurovascular coupling effects. The RRF will be summarized

similarly to the HRF by amplitude (H), time to peak (T), onset

(O), and width (W). The RRF features at the same brain location

will be used as a covariate in the HRF ANCOVA analysis to

exclude confounding cerebrovascular reactivity (e.g., RRF-H as

a covariate for HRF-H comparison, etc.,). Group differences in

each RRF feature will also be tested using ANCOVA among the

four groups. The bivariate correlation will be tested between the

HRF/RRF features and the health scores. Additionally, the extent

to which these correlated features explain variance in the health

scores after accounting for all other variables will be evaluated

using hierarchical regression.

Group di�erence in dynamic glutamate
response induced by cognitive task (Aim 2)

To directly test our hypothesis of an elevated dynamic

glutamate response to cognitive tasks, dynamic glutamate

response will be compared among the four groups using

ANCOVA. In addition, dynamic glutamate response provides

another measure of neural activity, which is considerably less

sensitive to vascular changes. Establishing these differences will

enable us to further elucidate NVC abnormality in ME/CFS.

Bivariate correlations will be tested between the dynamic

glutamate responses and health scores. In addition, the extent to

which these correlated responses explain variance in the health

scores after accounting for all other variables will be evaluated

using hierarchical regression.

Neuromarker identification and validation
(Aim 3)

The data will be randomly divided into a model group

(168 samples from 51 ME/CFS, 41 fatigue conditions, 51

HCs, and 25 fibromyalgia), as well as a validation group

(120 samples from 40 ME/CFS, 20 fatigue conditions, 40

HCs, and 20 fibromyalgia). The region-based HRF features,

RRF features, sample entropy, and fractional amplitude of

low-frequency fluctuations will be converted into whole-brain

voxel-wise maps by assigning regional measures to each voxel

within the region and zeros outside. Each MRI measure (GM

and WM density map, HRF features, etc.) will be entered

as input for least absolute shrinkage and selection operator—

regularized principal components regression (LASSO-PCR) (21)

to generate a brain pattern of distributed clusters that predict

disease severity. The identified brain pattern will be integrated

using multimodal deep Boltzmann machines (DBM) (22) as

a neuromarker to predict ME/CFS. The importance of each

cluster in the brain pattern will be determined by the Kullback-

Leibler divergence of the prediction distributions with and

without it. Clusters with no significant information gain will be

removed. The receiver operating characteristic (ROC) curve of

the identified neuromarker will be determined using data from

the validation group.

Power analysis

The HRF features and dynamic glutamate changes

associated with a cognitive task in individuals with fatigue and

ME/CFS will be tested for the first time. Therefore, there are no

preliminary results on these two groups’ variances and means

of these measures. This study’s total sample size (N = 288) was

determined to detect the effect size of 0.25 (Figure 4). For the

same reason, the learning curve for neuromarker identification

cannot be determined. However, one previous study determined

that a test sample size of 100 would be needed to test a classifier

to achieve reasonable precision in the validation (38).

Discussion

To the best of our knowledge, this is the first large-scale

(N = 288) multimodal MRI study of ME/CFS worldwide.

While preliminary studies with a small sample size have

shed some light on potential mechanisms of and factors

associated with ME/CFS, a large scale study with well-

established methodological principles is required for decisive

conclusions (23), which is more critical for ME/CFS because

of the controversy associated with this ill-defined disease

(24). The recommendation for improving reproducibility, fully

reporting analysis plans to reduce the file-drawer effect (23), has

culminated in this protocol paper.

Controlling confounding factors

ME/CFS is an illness currently defined by consensus criteria

and questionnaires completed by patients. Thus, there is a risk of

an ill-defined ME/CFS patient cohort. The proposed study will

mitigate this problem by following CCC ME/CFS criteria and

diagnosis agreed by two experienced clinicians (R.A.K and P.D.).

Patients with ME/CFS or fibromyalgia may have ongoing

medications, which is logistically unavoidable for the study.

We mitigate this risk by following steps. (1) Individuals using

marijuana or substance were excluded because their known

alteration of brain structure and function. (2) Each medication

will be determined individually by agreement of investigators

(Z.Y.S., R.A.K. and P.D.) on whether it affects the NVC. We
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FIGURE 4

Power analysis. The theoretic sample size was determined by the sensitivity value (e�ect size = 0.25) that further decreasing the e�ect size from

0.25 to 0.2 requires appreciably increasing the sample size from 251 to 390. The sample size assumes that 87% of data are valid (N = 251/0.87 ∼

288). Invalid data include MRI images with excessive motions and new conditions found after completion of the study, and the percentage was

estimated empirically. The analysis of covariance (ANCOVA) will be used to determine the mean di�erence among four groups with 5 covariates

of age, gender, activity levels, body mass index, depression, and anxiety. We assumed both type I and II errors of 0.05.

include individuals on medication that does not affect the NVC.

(3) Two clinicians (R.A.K. and P.D.) will assess individuals on

medication affecting the NVC to determine if it is safe to stop

medication for 3 weeks. Individuals considered safe to stop

medication will further seek professional opinions from their

caring physicians and then stop medication 2 weeks before and

1 week after MRI. We will exclude individuals who are at risk to

stop medication affecting the NVC.

Both ME/CFS and fibromyalgia predominantly affect

females (39). Thus, we may recruit more females than males.

Indeed, our current sample includes 82% female and 18% male

in all groups, including HCs. This unequal sex ratio risk cannot

be avoided because of diseases’ inherent features.Wewill include

sex as a covariate in all statistical analyses.

This project started when the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) occurred before the

long Covid (post-acute sequelae of SARS-CoV-2 infection) was

recognized. We decided to keep the study protocol and follow

the CCC ME/CFS criteria while considering SAR-CoV-2 as an

infection similar to other infections that occurred before the

manifestation of ME/CFS.

Disentangling NVC

The brain accounts for 20% of total body energy

consumption but has limited or no energy reservoir

(40). Thus, normal brain function relies critically on the

timely matching of local blood flow to neural energy

demand. If this matching is not achieved, then subtle

brain changes ensue, culminating in chronic brain injury

and associated cognitive impairment (6). The HRF

indirectly measures NVC and is determined by neuronal

activity, the brain vasculature, and Ca2+ signaling

pathways. This study will combine HRF measurement

with task-induced glutamate fluctuations (less affected by

vasculatures) and breath-hold response functions (less

affected by neuronal activities) to disentangle the NVC

in ME/CFS.

Abnormal NVC has been observed in other brain disorders

(5, 6). Promoting NVC function has already been explored

from multiple aspects, including increasing global brain blood

flow (41), modifying dietary (42), modulating calcium channels

(43), and transcranial electrical stimulation (44). Therefore, the

hypothesis of the proposed study, if confirmed, may lead to new

evidence-based treatment design for ME/CFS.

Neuromarker validation

Validation of a diagnosis marker should be capable of

differentiating disease from HCs and, more importantly,

differentiating disease from its comorbidity. Thus, this study

will include groups of chronic fatigue and fibromyalgia. The

chronic fatigue group in this study was defined as self-diagnosed

or previously diagnosed CFS not confirmed by the two clinicians
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following CCC criteria. Fibromyalgia is the most frequent illness

co-occurring with ME/CFS.

Progress and plan

This study commenced in January 2020. The participant

recruitment commenced in August 2020 and to date (20 May

2022), we have received and processed 902 expressions of

interest and recruited 110 participants.

We will start preliminary analysis in July 2022 and

disseminate preliminary results in October 2022. The final

results and data release will be available in 2024.

Ethics and dissemination

Ethics statement

This study was reviewed and approved by University

of the Sunshine Coast Ethic committee with the approval

number A191288.

This project was registered with The Australian New

Zealand Clinical Trials Registry (ACTRN12622001095752).

Results dissemination

The data from the study will be stored and archived

by the UniSC library research data management plan. The

full access of data will be limited to approved investigators

only. Anonymised data will be transferred to password-

protected computers in the USC computers for processing

and analysis.

The disseminating results will not contain any personal

information, and no participant will be able to be identified

in any presentation or publication. Those results will be

disseminated to researchers through scientific manuscripts

and scientific conferences; to clinicians through clinician

investigators; and to patients through social media such as

Facebook and Twitter from our Institute and active engagement

with ME/CFS associations.

The proposed neuromarker for diagnosis of ME/CFS

requires MRI and differs from vital signs and blood tests. We

acknowledge that its application into clinical practices may take

a longer timeframe and extra effort. However, we also argue

that many neurological disorders, such as vascular dementia

(45) and multiple sclerosis (46), include MRI as an essential

component. Indeed, MRI has become readily available, and 57

per 1,000 people in Australia have had an MRI scan between

2017 and 2021 (47).
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