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Background: Stroke-associated pneumonia (SAP) contributes to highmortality

rates in spontaneous intracerebral hemorrhage (sICH) populations. Accurate

prediction and early intervention of SAP are associated with prognosis. None of

the previously developed predictive scoring systems are widely accepted. We

aimed to derive and validate novel supervised machine learning (ML) models

to predict SAP events in supratentorial sICH populations.

Methods: The data of eligible supratentorial sICH individuals were extracted

from the Risa-MIS-ICH database and split into training, internal validation,

and external validation datasets. The primary outcome was SAP during

hospitalization. Univariate and multivariate analyses were used for variable

filtering, and logistic regression (LR), Gaussian naïve Bayes (GNB), random

forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme

gradient boosting (XGB), and ensemble soft votingmodel (ESVM)were adopted

for ML model derivations. The accuracy, sensitivity, specificity, and area under

the curve (AUC) were adopted to evaluate the predictive value of each model

with internal/cross-/external validations.

Results: A total of 468 individuals with sICH were included in this work.

Six independent variables [nasogastric feeding, airway support, unconscious

onset, surgery for external ventricular drainage (EVD), larger sICH volume,

and intensive care unit (ICU) stay] for SAP were identified and selected for
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ML prediction model derivations and validations. The internal and cross-

validations revealed the superior and robust performance of the GNB model

with the highest AUC value (0.861, 95% CI: 0.793–0.930), while the LR model

had the highest AUC value (0.867, 95% CI: 0.812–0.923) in external validation.

The ESVM method combining the other six methods had moderate but robust

abilities in both cross-validation and external validation and achieved an AUC

of 0.843 (95% CI: 0.784–0.902) in external validation.

Conclusion: The MLmodels could e�ectively predict SAP in sICH populations,

and our novel ensemble model demonstrated reliable robust performance

outcomes despite the populational and algorithmic di�erences. This attempt

indicated that ML application may benefit in the early identification of SAP.

KEYWORDS

pneumonia, predict, machine learning, ensemble model, intracerebral hemorrhage,

stroke

Introduction

Stroke-associated pneumonia (SAP) is the most common

infectious complication in spontaneous intracerebral

hemorrhage (sICH) individuals, with an estimated incidence

of 15–25% in overall stroke populations (1–3). SAP is usually

adversely associated with increased mortality, prolonged

hospital stays, and poor prognosis (3–5). The current large

phase III clinical trials have not found the benefits of routine

antibiotic prevention for general stroke individuals (6, 7).

Therefore, the accurate prediction and early intervention of SAP

might contribute to improving the prognosis. Thus, a reliable

model is needed for predicting and monitoring potential SAP, so

that exact prophylactic interventions or therapeutic antibiotics

can be tailored promptly.

In recent decades, a few studies have indicated several

independent risk factors for SAP, including older age (5, 8–13),

male sex (8, 9, 13, 14), severe stroke (4, 5, 8–16), intubation

(4, 15), nasogastric feeding or dysphagia (4, 8, 16), and deeper

location and larger volume of sICH (4, 11, 15). Some of these

variables were included in several predictive scoring systems for

SAP risk stratifications, such as the A2DS2 and PNA scores in

Germany (9, 12), and the AIS/ICH-APS scores in China (10, 11),

and the ISAN score in the UK (13). However, most scoring

systems are designed for acute ischemic stroke (AIS) populations

(9, 10, 12, 13), and none of the SAP prediction scoring systems

are widely accepted in routine clinical practice.

At present, prediction models based on machine learning

(ML) have been applied to predict the occurrence and

prognosis of various diseases, which greatly promoted diagnostic

performance and facilitated more responsive health systems

(17–19). In clinical applications, ML algorithms are applied for

risk stratification and prognosis prediction of disease and guide

clinicians to apply corresponding measures timely. Compared

to traditional scoring systems, ML models show smarter, more

accurate, more timely, and more convenient characteristics (18–

21). While there is currently no ML model for SAP forecasting.

Thus, we aim to derive and validate novel supervised ML

models to predict SAP events in supratentorial sICHpopulations

and expect to develop a superior and automatic tool for

clinical practice.

Materials and methods

Study design and participants

The data for this analysis were obtained from the

retrospective database of the Risk Stratification and Minimally

Invasive Surgery in Acute Intracerebral Hemorrhage Patients

(Risa-MIS-ICH) study (Clinical Trials Identifier: NCT03862729,

https://www.clinicaltrials.gov), which was a multicenter

ambispective cohort study. Two centers were involved in the

retrospective cohort for this work, including the First Affiliated

Hospital, Fujian Medical University (FAHFMU, Fuzhou,

Fujian), and Anxi County Hospital (ACH, Quanzhou, Fujian).

The FAHFMU subcohort (from January 2015 to July 2020) was

for the variable filtrations and model derivations/validations.

The ACH subcohort (from June 2019 to April 2021) was

introduced into this work for external validation. The study

protocol followed the principles of the Declaration of Helsinki

and was approved by the ethics committee of FAHFMU (GN:

MRCTA, ECFAH of FUM [2018]082) and documented in each

center. No informed consent was required for the retrospective

cohort. This work was reported in accordance with the

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) statement (22).

The inclusion and exclusion criteria of the participants are

shown as follows:
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Inclusion criteria:

• Diagnosed with spontaneous sICH by computed

tomography (CT)/CT angiography (CTA) scan, and

the interval time from onset to recorded CT/CTA scan

≤ 48 h;

• Glasgow Coma Scale (GCS) score > 5 and no cerebral

herniation at admission;

• Onset age ≥ 18 years.

Exclusion criteria:

• With any intracranial etiology of supratentorial

hemorrhage of arteriovenous malformation (AVM),

arterial aneurysm, hemorrhagic cerebral tumor stroke,

hemorrhagic infarction, coagulation disorders, or any other

potential organic lesions indicating nonspontaneous sICH;

• Occurrence of infratentorial hemorrhage;

• Evidence of pregnancy, or pre-stroke life expectancy <

3 months.

Additional criteria for SAP prediction model

derivations/validations in this work:

• Interval time from onset to admission ≤ 24 h;

• Hospital stay ≥ 48 h;

• Receiving no mechanical ventilation or ventilation time ≤

24 h before SAP events;

• Underwent recent pulmonary infectious disease or received

any antibiotic therapy ≤ 4 weeks;

• Critical data loss about SAP in the laboratory, imaging, or

other important clinical information.

According to the present guideline, the diagnosis of sICH

participants required radiologic records and exclusion of

other organic lesions causing hemorrhage. Only supratentorial

sICH participants were enrolled in the Risa-MIS-ICH study,

and the participants with the cerebral herniation or low

GCS scores usually indicated poor prognosis, which was

excluded from the study scope. The exclusion of the juvenile

and the pregnant population is for ethical consideration.

Furthermore, for the unbiased diagnosis of SAP and the

precise analysis, the strict additional criteria had to exclude

short-term hospitalization, infection associated with mechanical

ventilation, and undefined participants.

The screening process of this work is presented in Figure 1A.

Variable extractions and primary
outcomes

Relevant information about participants were retrieved

from the electronic medical record (EMR) systems from each

neurological research center. The electronic data capture

(EDC, http://61.154.9.209:8090/, RealData Corporation,

Ningbo, Zhejiang, China) system was employed for database

establishment and data collection. The trained professional

clinical research coordinators (CRCs) were commissioned for

data entry and follow-up. The Risa-MIS-ICH database included

665 variables and involved information on demographics, pre-

stroke comorbidities, onset details, imaging features, laboratory

results, complications during hospitalizations, interventions,

discharge status, and follow-up information. The collation

of the database was performed by professional statisticians,

and data analysis was carried out after passing the third-party

quality control.

The primary outcome of the current analysis was the

occurrence of SAP events during hospitalization, and SAP

was defined as a pneumonia not incubating during hospital

admission and occurring ≥ 48 h after admission in acute stroke

populations. Referring to the diagnostic criteria for hospital-

acquired pneumonia (HAP), the diagnostic criteria for SAP were

as follows (23, 24): the presence of a new or progressive infiltrate

in a chest X-ray or CT scan, plus at least two of the following

clinical manifestations: (1) fever (T > 38◦C) or hypothermia

(T < 36◦C), (2) leukocytosis [white blood cell (WBC) count

> 10 × 109/L] or leukopenia (WBC count < 4 × 109/L),

and (3) nursing-recorded purulent airway secretion. Ventilator-

acquired pneumonia (VAP), defined as a pneumonia event after

ventilation time > 24 h, was excluded from this work.

Statistical analysis and variable filtration

All statistical analyses were performed using the SPSS

software (version 22.0, IBM Corporation, Armonk, NY, USA)

and Python (version 3.8.3, Anaconda Distribution, Austin,

TX, USA). The current work mainly used the development

environment of Jupyter Notebook (version 6.0.3) and invoked

the key packaged libraries of NumPy (version 1.18.5), Pandas

(version 1.1.5), Scikit-learn (version 0.24.2), SciPy (version

1.5.0), Matplotlib (version 3.4.3), and Lifelines (version 0.26.4).

The continuous variables and categorical variables are presented

as the mean and standard deviation (SD) or median and

interquartile range (IQR) and quantities and percentages.

The screening of variables was performed in the FAHFMU

subcohort. As shown in Figure 1B, the study variables were

initially screened by univariate analyses. The independent

sample Student’s t-test was used for normally distributed data,

the Mann-Whitney U test was used for nonnormally distributed

data, and the chi-square test or Fisher’s exact test was used

for categorical data. All tests in this work were two-sided, and

P < 0.05 was considered statistically significant. To prevent

overfitting, the least absolute shrinkage and selection operator

(LASSO) regression was used in multivariate analysis and

further performed after univariate analyses. Each continuous

variable was standardized before performing LASSO regression
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FIGURE 1

Flowchart of the current work. (A) Participant enrollment in the retrospective cohort of the Risa-MIS-ICH study; (B) Data flow from the FAHFMU

subcohort; (C) The prediction model derivations and internal/cross-/external validations for SAP events. sICH, supratentorial intracerebral

hemorrhage; ML, machine learning; LASSO, least absolute shrinkage and selection operator; SAP, stroke-associated pneumonia.

to improve generalizability. LASSO regression selects the

optimal penalty value via the internally installed k-fold cross-

validation module (k = 3) and recursively removes the least

important variables by vanishing coefficients. Through the

above steps, the independent significant variables had nonzero

coefficients in LASSO regression and were selected as candidate

variables for ML model derivations.

Survival analysis was additionally performed in this work,

in which all-cause death after stroke onset was defined as the

observed indicator. The survival time was defined as the time

interval from stroke onset to all-cause death or follow-up. The

survival curves were plotted using the Kaplan–Meier method,

and survival rates were compared using the log-rank test.

Model derivations and validations

The flow diagram of the model derivations and validations

is presented in Figure 1C. The FAHFMU subcohort was

randomly split into the training and validation datasets

(7:3), which were used for the model derivations and

the internal validation, respectively. The model derivations

were performed on the candidate variables by six common

basic ML algorithms and one additional ensemble model,

of which these six well-established algorithms represented

various ML frames and are widely accepted at present

(19). The ML models were invoked with mature Python

packages, including logistic regression (LR), Gaussian naïve

Bayes (GNB), random forest (RF), K-nearest neighbor (KNN),

support vector machine (SVM), extreme gradient boosting

(XGB), and ensemble soft voting model (ESVM). None of

these models was uncertain about demonstrating the optimal

performance beforehand. In the training process, six basic

ML algorithms were independently fitted with the candidate

variables and virtual SAP classifications from the training

dataset, and model hyperparameters were optimized with

the grid-search algorithm to promote model performance. In

detail, the grid-search algorithms tune optimal parameters

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.955271
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al. 10.3389/fneur.2022.955271

by internally evaluating model performance repeatedly via

the nested k-fold cross-validation module (k = 3 in this

work). Before the above steps, ML prediction models with

different characteristics were generated, and these processes

were termed supervised ML. To improve the robustness of ML

models, the additional ESVM was derived by incorporating

the aforementioned six algorithms. The ESVM is simply

a voting system on the weighted classified outputs of

the six basic algorithms, and these processes were termed

soft voting.

After model derivations, the validation dataset was

automatically inputted into the seven models to obtain the

predicted classifications in the internal validation. Receiver

operating characteristic (ROC) curves were plotted, and the

metrics of accuracy, sensitivity, specificity, and area under

the curve (AUC) along with 95% CIs were calculated to

evaluate the disease discrimination ability of each model.

Further supplementary internal evaluation with advanced

robustness was performed with n-repeated k-fold cross-

validation (n = 3 and k = 5 in this work). This method

repartitions the FAHFMU subcohort into k nonoverlapping

folds, where the k-1 folds are used for the model derivations and

the other fold is used for validation. After n repetitions,

n × k combinations are finally generated for robust

validation (25).

Furthermore, this work also introduced the external

subcohort, which was not involved in variable filtrations

and model derivations. In this process, the entire FAHFMU

subcohort was considered the training dataset to retrain the

predictionmodels, and the external subcohort was introduced as

the exclusive validation dataset. The technical avenue of training

and evaluating the models remained the same as above.

Results

Participants and characteristics

From January 2015 to April 2021, a total of 909

participants were included in the retrospective cohort of

the Risa-MIS-ICH study, and 441 of these individuals were

excluded due to ventilation > 24 h, ineligible time window,

or incomplete data. Finally, 468 individuals (nFAHFMU =

324, nACH = 144) were included in this work. The overall

average age was 60.44 (±12.51) years, and 308 (65.8%) of the

individuals were male sex. SAP events during hospitalizations

occurred in 135 (28.8%) [nFAHFMU = 97 (29.9%), nACH
= 38 (26.4%)] individuals. The demographic characteristics,

clinical manifestations, imaging features, laboratory tests, and

prognostic indicators in the FAHFMU and external subcohorts

are summarized in Tables 1, 2, respectively. Differences in

the analyzed variables between the two centers are shown in

Supplementary Table 1.

Variable filtration and importance

According to previous literature and clinical experience

(3–5, 8–16), 70 variables related to the study were retained

for subsequent analyses. Twenty-five variables were identified

as potential predictive factors for SAP by univariate analysis

and further LASSO regression was performed (Tables 1, 2).

LASSO regression showed that nasogastric feeding (coefficient

= 0.14687), airway support (coefficient= 0.09609), unconscious

onset (coefficient = 0.05304), surgery for external ventricular

drainage (EVD, coefficient = 0.01923), larger sICH volume

(estimated with the ABC/2 formula in imaging, coefficient =

0.00625), and intensive care unit (ICU) stay (coefficient =

0.00586) were considered independent influencing factors of

SAP (Figures 2, 3).

Model performance

The ROC curves of the seven models built on the

internal validation set were shown in Figure 4A. Among the

seven models, GNB demonstrated the optimal efficiency to

predict SAP with the highest AUC value (0.861, 95% CI:

0.793–0.930), while the ESVM presented the highest accuracy

(0.837, 95% CI: 0.764–0.910) and specificity (0.917, 95% CI:

0.862–0.971). The XGB was the most sensitive, with the

highest value (0.692, 95% CI: 0.601–0.784) (Table 3A). The

decision curve analyses were performed on both training

and validation datasets with seven models, as shown in

Supplementary Figure 1. The learning curves presented the

evolutions of models with different characteristics and are

illustrated in Supplementary Figure 2.

Three repeated five-fold cross-validation were established,

and a total of 15 combinations were generated from three

splits and five-folds. The AUC values of different models from

combinations are summarized and presented as heatmaps in

Supplementary Figure 3, and all quantified metrics are listed

in Supplementary Table 2. In most random states, the ESVM

(frequency = 9/15) and XGB (frequency = 8/15) models

remained the optimal models in terms of accuracy and

sensitivity, respectively. Unlike the results in internal validation,

the LR (frequency = 6/15) and RF (frequency = 10/15)

models most often had the highest AUC and specificity values,

respectively, with robustness.

External validation

The metrics and ROC curves of each model in external

validation are shown in Table 3B and Figure 4B. The LR was

superior in AUC value (0.867, 95% CI: 0.812–0.923) in the

external validation. While GNB had the highest accuracy (0.833,
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TABLE 1 Baseline characteristics.

Variables FAHFMU subcohort External subcohort

Without SAP With SAP P-value Without SAP With SAP P-value

(n = 227) (n = 97) (n = 106) (n = 38)

Age (years) 58.6 (±11.8) 60.0 (±12.6) 0.370 62.7 (±12.7) 66.0± (13.5) 0.182

Sex

Male (n) 155 (68.3%) 69 (71.1%) 0.694 59 (55.7%) 25 (65.8%) 0.339

Female (n) 72 (31.7%) 28 (28.9%) 47 (44.3%) 13 (34.2%)

Pre-stroke history

Hypertension (n) 163 (71.8%) 74 (76.3%) 0.416 65 (61.3%) 27 (71.7%) 0.329

Diabetes mellitus (n) 29 (12.8%) 13 (13.4%) 1.000 4 (3.8%) 3 (7.9%) 0.381

Heart disease (n) 8 (3.5%) 4 (4.1%) 1.000 2 (1.9%) 2 (5.3%) 0.284

Smoking (n) 59 (26.0%) 24 (24.7%) 0.890 - - -

Alcohol abuse (n) 59 (26.0%) 23 (23.7%) 0.679 - - -

Previous surgery (n) 48 (21.1%) 19 (19.6%) 0.768 2 (1.9%) 4 (10.5%) 0.042

Onset form

Neurological dysfunction (n) 201 (88.5%) 72 (74.2%) 0.002 91 (85.8%) 31 (81.6%) 0.600

Unconsciousness (n) 54 (23.8%) 71 (73.2%) <0.001 27 (25.5%) 27 (71.1%) <0.001

Epileptic attack (n) 4 (1.8%) 4 (4.1%) 0.246 2 (1.9%) 0 1.000

Headache (n) 71 (31.3%) 24 (24.7%) 0.287 91 (85.8%) 21 (55.3%) <0.001

Others (n) 93 (41.0%) 39 (40.2%) 0.903 94 (88.7%) 29 (76.3%) 0.105

Interval time from onset to admission (h) 12.0 (7.0, 24.0) 10.0 (6.5, 16.0) 0.022 3.0 (2.0, 8.3) 3.0 (2.0, 4.5) 0.103

Admission examination

Temperature (◦C) 36.5 (36.5, 36.8) 36.7 (36.5, 36.9) 0.115 36.6 (36.5, 36.8) 36.6 (36.5, 36.7) 0.667

Heart rate (min−1) 77 (±14) 83 (±17) 0.002 81 (±12) 84 (±14) 0.237

Respiratory rate (min−1) 20(19, 20) 20(19, 21) 0.008 20 (20, 20) 20 (20, 20) 0.998

Systolic BP (mmHg) 158 (±24) 162 (±25) 0.145 170 (±24) 174 (±27) 0.473

Dilated BP (mmHg) 93 (±15) 92 (±14) 0.610 100 (±15) 101.8 (±16) 0.453

Admission GCS Score

15 (n) 106 (46.7%) 12 (12.4%) <0.001 80 (75.5%) 10 (26.3%) <0.001

13–14 (n) 77 (33.9%) 33 (34.0%) 8 (7.5%) 5 (13.2%)

9–12 (n) 31 (13.7%) 19 (19.6%) 14 (13.2%) 15 (39.5%)

5–8 (n) 13 (5.7%) 33 (34.0%) 4 (3.8%) 8 (21.1%)

Hospital costs (thousand CNY)* 17.0 (12.5, 25.8) 49.7 (34.4, 91.0) <0.001 7.7 (6.5, 10.8) 25.1 (14.6, 35.7) <0.001

Hospital stay (d)* 15 (11, 20) 17 (13, 24) 0.003 14 (12, 15) 23 (15, 29) <0.001

Discharge status*

Home/nursing or rehabilitation (n) 96 (42.3%) 46 (47.6%) 0.463 97 (91.5%) 29 (76.3%) 0.022

Care withdrawal or hospital death (n) 131 (57.7%) 51 (52.6%) 9 (8.5%) 9 (23.7%)

Mortality (since onset)*

Survival ≥ 1 year (n) 168 (74.0%) 63 (64.9%) 0.009 77 (72.6%) 20 (52.6%) 0.013

3 Months−1 year (n) 4 (1.8%) 6 (6.2%) 2 (1.9%) 2 (5.3%)

<3 Months (n) 7 (3.1%) 10 (10.3%) 1 (0.9%) 4 (10.5%)

Loss of follow-up (n) 48 (21.1%) 18 (18.6%) 26 (24.5%) 12 (31.6%)

*These prognostic variables were not included in further multivariate analysis and model derivations/validations.

SAP, stroke-associated pneumonia; BP, blood pressure; GCS, Glasgow Coma Scale; CNY, Chinese yuan.

95% CI: 0.772–0.894) and sensitivity (0.553, 95% CI: 0.471–

0.634), the RF was the most specific (0.962, 95% CI: 0.931–

0.993). There was no single algorithm with dominant ability and

robustness in the external validation. It is worth mentioning

that the ESVM had moderate but robust abilities and achieved

AUC, accuracy, sensitivity, and specificity values of 0.843 (95%
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TABLE 2 Variables of laboratory results, imaging features, and early clinical interventions.

Variables FAHFMU subcohort External subcohort

Without SAP With SAP P-value Without SAP With SAP P-value

(n = 227) (n = 97) (n = 106) (n = 38)

RBC (1012 L−1) 4.66 (4.30, 4.94) 4.59 (4.15, 4.87) 0.097 4.66 (4.29, 5.08) 4.64 (4.30, 5.11) 0.928

Hemoglobin (g·L−1) 142.2 (±14.2) 140.2 (±15.3) 0.278 139.9 (±17.2) 137.9 (±20.2) 0.553

Hematocrit 0.41 (±0.04) 0.41 (±0.04) 0.681 0.42 (±0.05) 0.41 (±0.05) 0.335

WBC (109 L−1)* 8.52 (6.61, 10.64) 10.17 (7.54, 13.01) <0.001 8.27 (6.62, 10.83) 9.95 (7.77, 12.28) 0.014

Neutrophil (109 L−1) 6.46 (4.42, 8.72) 8.46 (5.49, 11.61) <0.001 5.86 (4.41, 8.45) 7.49 (5.03, 10.38) 0.016

Lymphocyte (109 L−1) 1.29 (0.86, 1.66) 1.04 (0.70, 1.39) 0.001 1.37 (0.99, 1.82) 1.46 (0.99, 1.90) 0.724

Platelet (109 L−1) 217.4 (±62.3) 214.8 (±63.3) 0.897 235.1 (±62.4) 221.2 (±55.7) 0.227

PT (s) 11.1 (10.8, 11.7) 11.1 (10.6, 11.9) 0.925 11.3 (10.9, 11.8) 11.4 (10.9, 12.2) 0.307

PT-INR 0.97 (0.94, 1.02) 0.97 (0.93, 1.04) 0.554 0.98 (0.94, 1.03) 0.99 (0.94, 1.07) 0.294

APTT (s) 25.0 (22.2, 27.9) 24.1 (21.8, 27.2) 0.200 25.3 (23.9, 27.1) 24.8 (23.2, 26.8) 0.385

Fibrinogen (g·L−1) 2.64 (2.23, 3.04) 2.69 (2.30, 3.13) 0.677 2.62 (2.20, 3.12) 2.68 (2.35, 3.18) 0.607

Serum creatinine (µmol·L−1) 67.0 (54.0, 78.3) 66.0 (54.7, 78.2) 0.769 66.0 (57.0, 82.0) 71.5 (58.8, 95.0) 0.098

Serum urea nitrogen (mmol·L−1) 5.02 (4.13, 5.94) 5.15 (4.27, 6.59) 0.259 4.85 (4.00, 5.83) 5.10 (4.28, 6.85) 0.276

Serum sodium (mmol·L−1) 139.5 (±3.9) 139.9 (±4.6) 0.486 138.7 (±3.5) 138.1 (±3.1) 0.386

Serum potassium (mmol·L−1) 3.80 (±0.42) 3.84 (±0.47) 0.474 3.88 (±0.53) 3.92 (±0.61) 0.723

Serum calcium (mmol·L−1) 2.28 (±0.54) 2.20 (±0.13) 0.158 2.36 (±0.12) 2.36 (±0.15) 0.802

Serum chloride (mmol·L−1) 102.0 (99.0, 105.0) 102.6 (99.0, 105.0) 0.743 100.6 (97.8, 102.5) 99.4 (96.3, 101.4) 0.058

sICH volume (cc) 8.7 (3.9, 17.2) 22.5 (9.4, 37.9) <0.001 6.8 (3.5, 13.4) 21.7 (6.3, 40.4) <0.001

Lobar Involvement (n)* 38 (16.7%) 25 (25.8%) 0.067 23 (21.7%) 12 (31.6%) 0.271

Frontal lobe (n) 17 (7.5%) 14 (14.4%) 0.063 8 (7.5%) 5 (13.2%) 0.328

Parietal lobe (n) 15 (6.6%) 13 (13.4%) 0.054 10 (9.4%) 4 (10.5%) 1.000

Temporal lobe (n) 17 (7.5%) 14 (14.4%) 0.063 10 (9.4%) 9 (23.47%) 0.047

Occipital lobe (n) 7 (3.1%) 3 (3.1%) 1.000 5 (4.7%) 2 (5.3%) 1.000

Deep Involvement (n)* 204 (89.9%) 87 (89.7%) 1.000 87 (82.1%) 31 (81.6%) 1.000

Basal ganglia (n) 174 (76.7%) 74 (76.3%) 1.000 66 (62.3%) 29 (76.3%) 0.162

Thalamus (n) 56 (24.7%) 33 (34.0%) 0.103 33 (31.1%) 11 (28.9%) 0.841

Corona radiata (n) 5 (2.2%) 4 (4.1%) 0.552 6 (5.7%) 6 (15.8%) 0.082

Insular lobe (n) 4 (1.8%) 1 (1.0%) 1.000 9 (8.5%) 6 (15.8%) 0.223

Intraventricular involvement (n)* 60 (26.4%) 47 (48.5%) <0.001 37 (34.9%) 15 (39.5%) 0.695

Unilateral ventricle (n) 26 (11.5%) 13 (13.4%) <0.001 21 (19.8%) 7 (18.4%) 0.227

Bilateral ventricles (n) 33 (14.5%) 33 (34.0%) 15 (14.2%) 8 (21.1%)

Third ventricle (n) 29 (12.8%) 26 (26.8%) 0.003 17 (16.0%) 10 (26.3%) 0.224

Fourth ventricle (n) 24 (10.6%) 22 (22.7%) 0.006 14 (13.2%) 7 (18.4%) 0.593

Subarachnoid involvement (n) 7 (3.1%) 8 (8.2%) 0.050 3 (2.8%) 1 (2.6%) 1.000

ICU Stay (n) 14 (6.2%) 39 (40.2%) <0.001 0 8 (21.1%) <0.001

Nasogastric feeding (n) 59 (26.0%) 84 (86.6%) <0.001 11 (10.4%) 24 (63.2%) <0.001

Airway support

None (n) 215 (94.7%) 48 (49.5%) <0.001 105 (99.1%) 30 (78.9%) <0.001

Endotracheal Intubation ≤ 24 h or Naso-/oropharyngeal airway (n) 2 (0.9%) 13 (13.4%) 0 4 (10.5%)

Endotracheal intubation > 24 h or tracheotomy (n) 10 (4.4%) 36 (37.1%) 1 (0.9%) 4 (10.5%)

Surgery* 18 (7.9%) 50 (51.5%) <0.001 14 (13.2%) 22 (57.9%) <0.001

Only sICH evacuation (n) 11 (4.8%) 20 (20.6%) <0.001 0 4 (10.5%) 0.004

Only endoscopic sICH evacuation (n) 1 (0.4%) 1 (1.0%) 0.510 0 0 -

Only sICH catheter evacuation (n) 0 2 (2.1%) 0.089 9 (8.5%) 7 (18.4%) 0.089

Only EVD approach (n) 4 (1.8%) 15 (15.5%) <0.001 3 (2.8%) 9 (23.7%) <0.001

Ensemble approaches (n) 2 (0.9%) 12 (12.4%) <0.001 2 (1.9%) 2 (5.3%) 0.573

*These prognostic variables were not included in further multivariate analysis and model derivations/validations.

RBC, red blood cell; WBC, white blood cell; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; sICH, supratentorial intracerebral

hemorrhage; ICU, intensive care unit; EVD, external ventricular drainage.
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FIGURE 2

Importance ranking of six independent variables selected by LASSO regression: (1) nasogastric feeding, (2) airway support, (3) unconscious

onset, (4) surgery for EVD, (5) larger sICH volume, and (6) ICU stay. EVD, external ventricular drainage; ICU, intensive care unit.

CI: 0.784–0.902), 0.812 (95% CI: 0.749–0.876), 0.447 (95% CI:

0.366–0.529), and 0.943 (95% CI: 0.906–0.981), respectively, in

the external validation. The decision curves for predicting SAP

on both FAHFMU and external subcohorts with seven models

are illustrated in Supplementary Figure 1.

Outcome and survival analysis

In both the FAHFMU and external subcohorts, participants

with SAP suffered from significantly higher hospital costs and

prolonged hospital stays (both P < 0.001). Three hundred sixty-

four (77.8%) of all eligible 468 participants were followed for

survival, and 83 (25.3%) of them had experienced SAP during

hospitalization. The mean survival times of participants in the

two groups were 44.95 ± 2.78 (95% CI: 39.50–50.40) and 55.77

± 1.26 (95% CI: 53.30–58.25) months, respectively. The median

survival times were not available because mortality was < 50%.

The 3-month and 1-year survival rates after onset were 86.9

and 78.3% in SAP participants and 96.7 and 94.2% in non-SAP

participants. The Kaplan-Meier curves are plotted in Figure 5.

There was a significant difference in survival times between the

two groups (log-rank χ
2 = 20.34, P < 0.001).

Discussion

It is critical to identify individuals at high risk for SAP and

to further tailor timely prophylactic interventions or therapeutic

antibiotics. However, for now, the early prediction of SAP

in sICH populations is challenging due to the lack of widely

accepted prediction tools, which are important for modern

precision medicine and evidence-based medicine (EBM) in

this field. Thus, we aimed to derive more effective and

automatic sICH-SAP prediction tools in this work. The novel

ML prediction models were derived and validated as an attempt

to combine artificial intelligence (AI) medical engineering and

clinical practice in this field. The major findings were as follows.

(1) The incidence rate of sICH-SAP was close to 30%, and

the sICH-SAP events significantly contributed to prolonged

hospital stays, increased hospital costs, and higher mortality.

(2) Six independent predictors for sICH-SAP were identified—

nasogastric feeding, airway support, unconscious onset, surgery

for EVD, larger sICH volume, and ICU stay. (3) ML prediction

models were successfully derived and showed good disease

discrimination ability. (4) There was no certain single algorithm

with the dominant ability and robustness in cross- and external

validations, while the ESVM was considered averaged in

metrics and better in robustness in different populations after

multiple validations.

Various predictors for SAP were identified in prior literature

(4, 5, 8–16). This work screened for independent variables

for sICH-SAP events by using univariate and multivariate

analyses in the FAHFMU subcohort. Nasogastric feeding, airway

support, and unconscious onset were identified as strongly

associated risk predictors, which overlapped with the results

of previous studies (4, 8–16). Nasogastric feeding and airway

support measurement were recognized as SAP predictors, which
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FIGURE 3

Multivariate analysis and variable filtrations with LASSO regression. The tuning parameter (λ) was selected for the minimized MSE in the LASSO

model using 10-fold cross-validation. Features with nonzero coe�cients were selected while the previous λ value was applied. (A) The MSE was

plotted vs. log λ. An optimal λ value of 0.02477 was chosen via the minimum criteria and presented as a black vertical dashed line. (B) LASSO

coe�cient profiles of the features. Each colored line represents the coe�cient of each feature, and six of them were selected as independent

variables when λ equals 0.02477. MSE, mean-square error.

might bring about secretion disturbances in nasal/oral/tracheal

cavities, decreased air filtrations, and even aspiration events

(4, 8, 15, 16). These early interventions were secondary to

the manifestation of unconsciousness. Previous studies mainly

included the ranked variable of the GCS score and rarely

adopted the onset manifestations (4, 10, 11, 14–16). In this

work, the admission GCS score and unconscious onset were

simultaneously introduced into the analyses, and the categorical

variable of unconscious onset was independently significant for

sICH-SAP. The predictors of larger sICH volume and ICU stay

were also reported in previous studies (4, 11, 15) and contributed

the least to predicting SAP in this work. The larger sICH volume

is a primary factor influencing stroke severity, and ICU stay

was a comprehensive intervention secondary to stroke severity
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FIGURE 4

ROC curves for SAP on the (A) internal and (B) external validation datasets. A greater AUC value indicated a higher predictive ability of the

models. ROC, receiver operating characteristic; AUC, area under the curve.

and resulted in infectious environments. These aforementioned

predictors are usually uncontrollable for actively preventing SAP

in clinical practice. However, there were still novel findings in

the subgroup analysis that only the surgery for EVD was a

significant independent predictor (P < 0.001 in FAHFMU/P =

0.001 in external subcohorts) of all surgical approaches in this

work, while EVD was only previously reported as a univariate

factor for overall infections (4). On the other hand, the surgery

for sICH catheter evacuation did not significantly contribute

to SAP events in any univariate analyses (both P = 0.089 in

FAHFMU/external subcohorts), which was in accordance with

the undifferentiated non-neurologic infections in theMISTIE III

trial (26). This suggests that we should continuously focus on the

stratification of surgical approaches in the prospective cohort of

the Risa-MIS-ICH study for convincing evidence.

To date, apart from the ICH-APS score, none of the

SAP prediction models is widely available in clinical practice

(8–13). The validation dataset for the ICH-APS score was

obtained from the Chinese National Stroke Registry (CNSR)

with an AUC value of 0.74 (95% CI: 0.72–0.75). Both our

optimal ML prediction models [internal validation: 0.861

(95% CI: 0.793–0.930); 0.867 (95% CI: 0.812–0.923)] and

robust ESVM classifiers [internal validation: 0.830 (95%

CI: 0.756–0.904); external validation: 0.843 (95% CI: 0.784–

0.902)] achieved higher AUC values, indicating greater

predictive ability.

Li et al. (26) developed ML models to predict SAP

events in Chinese AIS populations, which presented better

performance with the highest AUC value of 0.843 (95% CI:

0.803–0.882) than other AIS-SAP prediction scores (0.835

for A2DS2, 0.786 for PNA, 0.785 for AIS-APS, and 0.78

for ISAN scores). According to metrics from the literature

and this work (27–32), the ML prediction models for SAP

showed better performance metrics than traditional scoring

systems in both sICH and AIS populations. However, due

to incomplete variable collections, horizontal comparisons of

different prediction models on the same validation dataset

were not possible. Despite the defects, the prediction models

usually performed better in internal validation than in external

validation due to the intrinsic consistency of original datasets

and populational heterogeneity, and the comparisons on their

respective original validation datasets usually explained the

significance (33).

The published research mainly focused on the mutually

separated algorithms. Notably, only the optimal algorithm

was mentioned in those articles, although ensemble ML

models were reported as successful classifiers with greater

performance outcomes in the literature (31, 32). The six basic

algorithms used in this work have different characteristics

as SAP predictors. RF and LR could identify non-SAP

participants better, while XGB could identify SAP participants

better. We noted that the predictive ability of one single
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TABLE 3 Performance metrics of the ML models in the FAHFMU validation dataset and external subcohort.

AUC (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)

(A) Internal validation

LR 0.838 (0.765, 0.911) 0.827 (0.752, 0.901) 0.615 (0.519, 0.712) 0.903 (0.844, 0.961)

GNB 0.861 (0.793, 0.930) 0.816 (0.740, 0.893) 0.615 (0.519, 0.712) 0.889 (0.827, 0.951)

RF 0.837 (0.763, 0.910) 0.816 (0.740, 0.893) 0.462 (0.363, 0.560) 0.944 (0.899, 0.990)

KNN 0.807 (0.729, 0.885) 0.786 (0.704, 0.867) 0.500 (0.401, 0.599) 0.889 (0.827, 0.951)

SVM 0.770 (0.687, 0.854) 0.786 (0.704, 0.867) 0.500 (0.401, 0.599) 0.889 (0.827, 0.951)

XGB 0.839 (0.766, 0.912) 0.827 (0.752, 0.901) 0.692 (0.601, 0.784) 0.875 (0.810, 0.940)

ESVM 0.830 (0.756, 0.904) 0.837 (0.764, 0.910) 0.615 (0.519, 0.712) 0.917 (0.862, 0.971)

(B) External validation

LR 0.867 (0.812, 0.923) 0.812 (0.749, 0.876) 0.447 (0.366, 0.529) 0.943 (0.906, 0.981)

GNB 0.856 (0.798, 0.913) 0.833 (0.772, 0.894) 0.553 (0.471, 0.634) 0.934 (0.893, 0.975)

RF 0.844 (0.784, 0.903) 0.806 (0.741, 0.870) 0.368 (0.290, 0.447) 0.962 (0.931, 0.993)

KNN 0.734 (0.662, 0.806) 0.778 (0.710, 0.846) 0.395 (0.315, 0.475) 0.915 (0.870, 0.961)

SVM 0.730 (0.658, 0.803) 0.778 (0.710, 0.846) 0.395 (0.315, 0.475) 0.915 (0.870, 0.961)

XGB 0.856 (0.799, 0.913) 0.792 (0.725, 0.858) 0.421 (0.340, 0.502) 0.925 (0.881, 0.968)

ESVM 0.843 (0.784, 0.902) 0.812 (0.749, 0.876) 0.447 (0.366, 0.529) 0.943 (0.906, 0.981)

AUC, area under the curve; LR, logistic regression; GNB, Gaussian naïve Bayes; RF, random forest; KNN, K-nearest neighbor; SVM, support vector machine; XGB, extreme gradient

boosting; ESVM, ensemble soft voting model.

FIGURE 5

Kaplan–Meier curves of participants with/without SAP over 1-year follow-up. The colored area represents the 95% confidence intervals of the

survival rates.
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algorithm was uncertain due to the inconsistent ML algorithmic

performance outcomes among the internal/cross-/external

validations, and the indeterminacy probably restricted

the aforehand model selection and implementation in

clinical practice. Therefore, a general and robust model is

required for stable predictive ability. Based on the principle

of soft voting, we additionally derived ESVM classifier

incorporating six basic ML algorithms, which was moderate

but surprisingly robust in each metric. Notwithstanding

that the occupied machine sources of the ESVM equals the

summation of the six basic algorithms, this disadvantage

could be ignored by timed training and then pro re

nata invoking.

Our current work explored the ML for SAP prediction

in sICH individuals. During hospitalization, the clinicians

could collect the predictive variables and input these

variables into an ML model for a predictive suggestion, so

that appropriate precautions and interventions would be

timely tailored. While the present ML models are semi-

automatic and required manual variable input for now. In

the coming decades, the internally installed sophisticated

algorithms in the EMR system would ceaselessly learn

and then calculate the prediction for high-risk individuals

in the prospect via dynamically evaluating the keyed-in

clinical manifestations from clinicians, the resulting values

from the laboratory information system (LIS), and the

captured data from the picture archiving and communication

system (PACS) (29, 34). The ML application may greatly

improve the work efficiency of clinicians and the accuracy of

judgment results.

We have strengths that deserve comments. An external

subcohort and multiple forms of validation were introduced

in this work. Therefore, there was populational and

algorithmic robustness of convincing results. Based on the

aforementioned circumstances, we derived novel ensemble

models for generalizability, which showed moderate but robust

predictive abilities in different populations and were fit for real-

world practice. However, there are limitations that should be

acknowledged in this work. First, the observational retrospective

design might introduce unmanageable bias. Uncontrollable

baseline characteristics in the observational study might

confound SAP risks and further model derivations/validations.

Second, some important variables were missing due to the

retrospective collection of data in this work. The National

Institute of Health Stroke Scale (NIHSS) score, uniform CT

scan parameters, scanning timing, and other unrecorded

details were unreachable in the retrospective cohort of the

Risa-MIS-ICH study and resulted in the inability to perform

horizontal comparisons with external models in this work.

Third, not all variables were balanced across the centers,

which may bias the results. Although we obtained consistent

results based on these imbalanced variables, the influence

of the heterogeneity still should not be underestimated.

Fourth, there are defects in the deep analyses for SAP.

The subgroup analyses on pneumonia severity, radiological

features, or pathogenic agents were all absent. A simple

overall SAP analysis might be rather rough for complex

and heterogenetic pulmonary infections. Future studies

on our prospective cohort should continue to resolve the

aforementioned problems.

Conclusions

In this work, the authors derived SAP prediction models

with ML algorithms in supratentorial sICH populations from

multiple centers and performedmultiple validations for effective

and robust confirmations. The ensemble model was a novel

application in this work and showed robust performance

outcomes in different populations. Our attempt indicated that

ML application may benefit in the early identification of SAP.
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