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Muscle weakness is common in many neurological, neuromuscular, and

musculoskeletal conditions. Muscle size only partially explains muscle strength

as adaptions within the nervous system also contribute to strength. Brain-

based biomarkers of neuromuscular function could provide diagnostic,

prognostic, and predictive value in treating these disorders. Therefore, we

sought to characterize and quantify the brain’s contribution to strength by

developing multimodal MRI pipelines to predict grip strength. However, the

prediction of strength was not straightforward, and we present a case of

sex being a clear confound in brain decoding analyses. While each MRI

modality—structural MRI (i.e., gray matter morphometry), di�usion MRI (i.e.,

white matter fractional anisotropy), resting state functional MRI (i.e., functional

connectivity), and task-evoked functional MRI (i.e., left or right handmotor task

activation)—and a multimodal prediction pipeline demonstrated significant

predictive power for strength (R2 = 0.108–0.536, p ≤ 0.001), after correcting

for sex, the predictive power was substantially reduced (R2 = −0.038–0.075).

Next, we flipped the analysis and demonstrated that each MRI modality and

a multimodal prediction pipeline could significantly predict sex (accuracy

= 68.0%−93.3%, AUC = 0.780–0.982, p < 0.001). However, correcting the

brain features for strength reduced the accuracy for predicting sex (accuracy

= 57.3%−69.3%, AUC = 0.615–0.780). Here we demonstrate the e�ects of

sex-correlated confounds in brain-based predictive models across multiple

brain MRI modalities for both regression and classification models. We discuss
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implications of confounds in predictive modeling and the development of

brain-based MRI biomarkers, as well as possible strategies to overcome

these barriers.
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neuroimaging, magnetic resonance imaging, brain, muscle strength, sex, machine

learning, confounding variables, biomarkers

Introduction

The neuromuscular system is highly adaptable. Given

appropriate training, muscle strength can increase to meet

the physical demands placed on the body. Morphometric

adaptations associated with strength training include changes

in the contractile elements of the muscles and the non-

contractile tissues—the most visible being the increase in muscle

size, muscle hypertrophy, which typically accompanies gains

in strength (1). Strength, however, is only partially explained

by the structural and architectural properties of the muscles.

Adaptions within the central nervous system are understood

to be a factor in force generation (2). Early gains in strength

can precede any evidence of hypertrophy, and strength training

in one limb can increase strength in the contralateral limb

(3). Neural adaptations may increase force generation through

improved intra- and inter-muscular coordination or more

complete activation of the motoneuron pool. Thus, in addition

to the muscles, the brain plays a role in strength as well (2).

Magnetic resonance imaging (MRI) has become a key tool

for the non-invasive mapping of the human brain. With MRI,

we can quantitatively characterize both structural and functional

properties of the brain. From T1-weighted and T2-weighted

structural imaging, the morphometry of the cortical and

subcortical gray matter can be measured. Diffusion-weighted

imaging can probe the integrity of the white matter tracts

connecting gray matter regions. With functional MRI, dynamic

fluctuations in neural signaling can be extracted to assess

network-level neural processing across the brain and identify

brain regions activated during experimental tasks. Together

these complementary measures provide a valuable multimodal

macroscale representation of the human brain.

Multivariate predictive modeling and machine-learning

techniques are increasingly being adopted in the brain MRI field

to develop and implement brain-based biomarkers of health

and disease. These models are beginning to show promise in

extracting patterns of information from the high-dimensional

set of brain features to make predictions across individuals. A

biomarker, broadly defined, is an indicator of normal biological

processes, pathogenic processes, or responses to therapeutic

intervention (4). Muscle weakness is a common finding in many

neurological, neuromuscular, and musculoskeletal diseases. The

pattern of weakness can help localize the site of pathology or

injury and inform care; however, when weakness is identified,

the contributing component, muscular or neural, may not be

clear. A valid brain-based MRI biomarker of strength could be

helpful for clinical and research communities in several ways: (1)

prognosis (i.e., for indicating the likely progression of health or

disease; (2) identifying patients likely to respond to a particular

treatment (i.e., prediction); (3) identifying a specific disorder

based on the pattern of brain pathology (i.e., diagnosis); and (4)

identifying targets for therapeutic intervention (4).

However, the interpretation of multivariate prediction

models can be problematic in the presence of confounds—

variables that are not of direct interest but correlated with

the predicted variable (5–7). Confounds create ambiguity in

the source of the information driving the prediction. While a

model may accurately predict a measure, the neurobiological

information driving the prediction could be related to the

confound and not the target measure itself. We sought to

use multimodal brain MRI and grip strength measures to

characterize and quantify the brain’s contribution to strength

through multivariate predictive modeling. While each MRI

modality and a multimodal model significantly predicted

strength in an independent testing dataset, the prediction of

strength was not straightforward. Here we present a case of

sex being a clear confound in the brain decoding analyses,

obfuscating the relationship between the brain features and

strength and creating ambiguity in the interpretation of the

measure being predicted: strength or sex.

Materials and methods

Dataset

Multimodal 3T brain MRI datasets were acquired from the

Washington University, University of Minnesota, and Oxford

University (WU-Minn) Human Connectome Project (HCP)

1,200 subjects release, which contains structural MRI (T1-

weighted and T2-weighted), diffusion MRI, resting state fMRI,

and task fMRI in healthy young adults (8). For the 3T datasets,

imaging was performed supine in 1,113 participants (average

age ± one standard deviation = 28.8 ± 3.7 years, 606 females)
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using a Siemens 3T Connectome Skyra magnetic resonance

scanner (location Washington University, St. Louis, MO, USA)

equipped with a standard 32-channel Siemens receive head

coil and a specially designed Siemens body transmission coil

to accommodate the specialized gradients of the connectome

scanners (56 cm bore, maximum gradient strength 100 mT/m).

Healthy was defined broadly in the HCP to be representative

of the variability in behavior, ethnicity, and socioeconomic

status of the population. The exclusion criteria were limited

to diabetes, hypertension, severe neurodevelopmental disorders,

and diagnosed neuropsychiatric disorders and neurological

conditions. The HCP has released preprocessed datasets that

follow the HCP standard processing pipelines (9). The HCP

preprocessed images were used as inputs into the analyses. Any

processing steps in addition to the standard HCP pipeline are

described in the corresponding sections.

Gray matter features

The HCP preprocessing pipeline for the T1-weighted and

T2-weighted structural images included averaging of the T1-

weighted or T2-weighted images if multiple images were

collected; distortion correction; alignment with MNI152 space;

bias field correction; and spatial normalization to 0.7 mm3

MNI152 space. The processed T1-weighted image is considered

the native volume space for each subject. In preprocessing,

the T2-weighted image and processed diffusion MRI and fMRI

datasets were registered to the T1-weighted space prior to

normalization to MNI152 space. Cortical (i.e., pial and white

matter surfaces) and subcortical regions were automatically

segmented with FreeSurfer (version = 5.2) using both the

T1-weighted and T2-weighted images to estimate the cerebral

cortical ribbon (10). The extracted and tabulated FreeSurfer

measures included in the HCP 1,200 subjects release were used

as the features in the gray matter prediction pipelines. The

features included 68 cortical thickness and 68 cortical area

measures from 34 regions (17 left and 17 right regions) based

on the Desikan-Killiany cortical atlas and subcortical volumes

from 19 regions (nine left and nine right subcortical regions and

one midline brainstem region) totaling 155 gray matter features

(Supplementary Table 1) (11, 12).

White matter features

The HCP preprocessing pipeline for diffusion MRI included

b0 image intensity normalization, distortion correction, eddy-

current correction, motion correction, gradient non-linearity

distortion correction, and registration to the T1-weighted image.

The spatial transformation from the T1-weighted registration

was also applied to the diffusion vectors and gradient field

tensors. The Oxford Center for fMRI of the Brain’s (FMRIB)

Software Library (FSL) was used to calculate the diffusion

metrics and perform normalization to MNI152 space (13, 14).

Fractional anisotropy (FA) maps were generated by fitting

diffusion tensors to the processed diffusion MRI dataset

registered to the T1-weighted structural images using’s FSL’s

dtifit with correction for gradient non-linearities. FSL’s tract-

based spatial statistics (TBSS) was then used to non-linearly

normalize the FA images (FNIRT) to the FMRIB58 FA template

in 1 mm3 MNI152 space. The white matter features were

extracted using Nilearn (version = 0.5.2), an open-source

Python module for statistical learning on neuroimaging data

(15). Nilearn’s NiftiLabelsMasker (resampling target = data)

was used to extract the mean fractional anisotropy within 48

white matter regions from The Johns Hopkins University-

International Consortium for Brain Mapping’s white-matter

labels 1 mm3 atlas (JHU-ICBM-DTI-81) included with FSL (16),

which were used as features in the white matter prediction

pipelines (Supplementary Table 2).

Resting state features

Resting state timeseries were acquired in two sessions with

eyes open and relaxed fixation on a crosshair. Within each

session, two runs (14min and 24 s each) were completed with the

images acquired with alternated phase encoding directions (i.e.,

left-right and right-left). If resting state data from two sessions

were present, only the data from the first complete session were

analyzed. The HCP preprocessing pipeline for resting state fMRI

consisted of distortion correction, motion correction, denoising

using FMRIB’s ICA-based X-noiseifier (FIX), registration to

the T1-weighted image, and spatial normalization to 2 mm3

MNI152 space (17). Nilearn’s NiftiLabelsMasker (resampling

target = data, spatial smoothing = none, band-pass temporal

filter = 0.008–0.100Hz) was used to extract the mean time

series from the regions of the asymmetric bootstrap analysis

of stable clusters (BASC) 122 region brain parcellation from

the preprocessed resting state images in MNI152 space for

each phase encoding direction run (18). We chose the 122

region BASC parcellation because it performed the best of the

predefined atlases and almost as well as the best data-driven

brain parcellation methods (i.e., Dictionary Learning ℓ1) in the

recent study by Dadi et al. (19), which completed an exhaustive

comparison of 240 resting state fMRI classification prediction

pipelines across multiple datasets and conditions. We chose

a predefined atlas to increase the efficiency of the analyses

as well as the interpretability of the functional connectivity

measures, which otherwise vary depending on the sampling

(e.g., when using a data driven parcellation method). Tangent

pairwise functional connectivity was calculated using Nilearn’s

ConnectivityMeasure for each phase encoding direction, and

then averaged resulting in 7,381 resting state features per

connectivity measure (20, 21).
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Motor task features

The task-evoked fMRI experiments followed the resting

state fMRI sessions. The motor task was adapted from Buckner

et al. and designed to map brain motor areas (22, 23). Each

run consisted of alternating 12 s blocks of tapping the left or

right fingers, squeezing of the left or right toes, and movement

of the tongue. Each movement block was performed twice

and preceded by 3 s visual cues. Each run also contained

three 15 s fixation blocks for a total of 3min and 24 s per

run. Two motor task runs were performed with the images

acquired using alternated phase encoding directions (i.e., left-

right and right-left). The HCP preprocessing pipeline for task

fMRI consisted of distortion correction, motion correction,

registration to the T1-weighted image, and spatial normalization

to 2 mm3 MNI152 space. Statistical maps of the preprocessed

images in MNI152 space were generated for each run using FSL’s

Improved Linear Model (FILM) with prewhitening (24, 25).

The functional images were spatially smoothed with a 4 mm3

full width half maximum (FWHM) Gaussian smoothing kernel

and then high-pass temporally filtered (cutoff = 200 s). The

task was modeled using the hemodynamic response function

(double-gamma, phase 0 s) convolved vectors for the visual

cue and the left fingers, right fingers, left toes, right toes, and

tongue movements as explanatory variables. We included the

temporal derivatives of the task blocks as covariates of no

interest. We then generated average activation maps across the

two runs in a second-level fixed effects analysis. The contrast

parameter estimates (COPE) for the movement blocks relative

to the fixation blocks were extracted voxelwise from the second-

level analyses for the left and right finger tapping movements

using Nilearn’s NiftiMasker and a gray matter mask. The gray

mattermask included the cortical graymatter, subcortical nuclei,

brainstem, and cerebellum resulting in 194,807 features for each

finger tapping movement (i.e., left and right hands), which were

used in the motor task prediction pipelines. The left and right

finger tapping movements were each assessed separately in their

own prediction pipelines.

Strength

Grip strength from the dominant hand was used as the

measure of strength. Strength testing was performed using the

National Institutes of Health (NIH) Toolbox Grip Strength Test

and measured seated using a Jamar Plus Digital dynamometer

with the feet on the ground, the elbow bent at 90◦, the arm

against the trunk, and the wrist in neutral (26). For each hand,

the participant performed a less than full force practice trial

followed by a full force trial, in which the participant squeezed

as hard as possible for a count of three. We used the raw

grip strength values normalized to the entire NIH Toolbox

Normative Sample (age ≥18 years) without adjusting for sex

or age. A score of 100 indicates performance that was at the

national average, and a score of 115 or 85 indicates performance

one standard deviation above or below the national average,

respectively (27). The grip strength testing protocol has been

shown to have good to excellent test-retest reliability and good

validity compared to a Biodex System 3 Isokinetic Dynamometer

(Biodex Medical Systems, Inc. Shirley, New York, USA).

Training and testing datasets

From the HCP 1,200 subjects release 3T data, 1,047

participants had complete MRI datasets. A complete dataset

included at least one T1-weighted structural image, one T2-

weighted structural image, completion of 50% of the diffusion

MRI acquisition, and completion of one set of the left-right

and right-left phase encoding runs for both the motor task and

resting state fMRI acquisitions. Of the complete MRI datasets,

one participant’s data were excluded for a missing grip strength

score, and another participant was excluded for having an

outlier grip strength score of 55.3, which was more than five

standard deviations below the HCP’s average grip strength score.

The final dataset consisted of 1,045 participants (age = 28.7

± 3.7, 514 females) with an average grip strength score of

116.7 ± 11.2. The final dataset was then split into training

and testing datasets. The training dataset was used to train

the prediction pipeline, and the testing dataset was used as an

independent, holdout dataset to provide an unbiased estimate

of the prediction pipeline performance. The HCP 1,200 subjects

release 3T dataset contains 143 pairs of monozygotic and 85

pairs of dizygotic twins confirmed by genotyping as well as

non-twin siblings. To preserve independence of the training

and testing datasets from genetic and environmental factors,

the 75 non-related participants from unique families, based

on the mother, father, and family identifiers, were assigned to

the testing dataset (age = 28.5 ± 3.7 years, 38 females, grip

strength score= 117.5± 10.4). The remaining 970 participants,

which included twin and sibling participants, were assigned to

the training dataset (age = 28.8 ± 3.7 years, 525 females, grip

strength score= 116.6± 11.2). The training and testing datasets

did not significantly differ on age (t = 0.677, p= 0.499), sex (X2

= 0.335, p= 0.563), handedness (X2 = 2.909, p= 0.088), or grip

strength (U = 34,177.5, p= 0.383; Table 1).

Prediction pipelines

Analyses were performed using Scikit-learn (version =

0.21.2), an open-source python package for machine-learning

(28). For the first-level modeling, we used linear regression

(LinearRegression), which is a statistical method that determines

the best linear function for all points (X, y) that minimizes

the sum of the squared errors via ordinary least squares.
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TABLE 1 Summary of training and testing datasets.

Training

(n = 970)

Testing

(n = 75)

p-Value

Age (years) 28.8± 3.7 28.5± 3.7 0.499

Female (n) 525 38 0.563

Right-handed (n) 885 64 0.088

Grip strength score 116.6± 11.2 117.5± 10.4 0.383

Because of the small size of the dataset in comparison to

the high-dimensional feature space, especially for the resting

state and motor task prediction pipelines, the regression model

is prone to overfitting. Therefore, we used non-sparse (ℓ2)

models to penalize excessive model complexity and encourage

generalizability. As the number of features (p) for the resting

state and motor task fMRI greatly exceeded the number of

participants (n) (i.e, p >> n), dimensionality reduction was

performed using principal components analysis (PCA). Using

PCA, we transformed the features to the set of uncorrelated

principal components (n – 1), each a linear combination

of the original features using singular value decomposition.

The features were winsorized (average ± 3 SD) to limit

extreme values, and then each feature was mean centered

and scaled to unit variance. Winsorizing and scaling were

performed prior to PCA, based on the training data, and

then used to transform the testing data, which kept the

processing independent of the testing data. This was similarly

done for PCA and the calculation of the tangent functional

connectivity measure, which requires the calculation of a group

average covariance matrix. Hyperparameter tuning of the ℓ2

regularization parameter (C = 0.00001, 0.0001, 0.001, 0.01, 0.1,

1, 10, 100, 1,000, 10,000, 100,000) was performed via nested five-

fold cross-validation using grid search and the mean squared

error as the performance metric. We then repeated the grid

search again using a finer range of regularization parameters.

Multimodal model

A stacked ensemble of prediction pipelines was used to

combine the first-level prediction pipelines for the gray matter,

white matter, resting state, and motor task features. The left and

right motor task prediction pipelines were included separately.

In a standard stacking ensemble, the training dataset is used to

fit a first-level model, and then the training dataset predictions

from the first-level models are used to train a second-level

model. The use of the same training dataset to fit and generate

the regressors for the second-level model can lead to overfitting,

especially for datasets that have a large number of features

relative to the number of samples, which is the case for

the resting state and motor tasks. To overcome this barrier,

we used a 10-fold cross-validation framework for each first-

level prediction pipeline and passed the out-of-fold predictions

as regressors to the second-level model (i.e., pre-validation)

(29). Linear regression without regularization was used for the

second-level multimodal modeling.

Testing performance

We assessed the performance of the prediction pipelines

for each of the first-level models as well as the second-level

multimodal model in the independent, holdout testing dataset

to provide an unbiased estimate of model of performance and

generalizability. Testing performance was assessed using the

mean absolute error (MAE), root mean squared error (RMSE),

and R-squared (R2) calculated with scikit-learn. The following

equation was used for R2:

R2 = 1−

∑

i

(

yi − pi
)2

∑

i

(

yi − ȳ
)2

In this equation, yi = the measured grip strength scores, pi =

the predicted grip strength scores, and ȳ = the average of the

measured grip strength scores. When using a model fit to a

training dataset to make a prediction on a testing dataset, R2

can be negative if the model performs worse than a baseline

model that always predicts ȳ. Permutation testing was used

to validate the unbiased nature of the prediction pipelines in

which the first-level training dataset grip strength scores were

randomly permuted prior to entering the prediction pipeline

(30). We recorded theMAE, RMSE, and R2 of the testing dataset

predictions for 10,000 permutations of the training dataset to

create a null distribution of performance metrics. From the

null distribution, we calculated a p-value (one-tailed) for the

performance of the prediction pipeline fit to the unpermuted

training dataset to provide an estimate of statistical significance

relative to chance.

Sex as a confound

Strength was significantly greater in males than females

(Figure 2 and Table 3), making sex a potential confound in

the analyses, so we then investigated the performance of the

prediction pipelines after correcting the brain features and

grip strength scores for sex. Sex correction was performed

by demeaning each feature and the strength scores using the

mean values of the corresponding sex. Demeaning as applied

is equivalent to using linear regression to correct for a binary

variable. To further investigate strength and sex in brain

prediction, we flipped the analyses and explored the power of

the brain features to predict sex by using a logistic regression

classification model with ℓ2 penalization (LogisticRegression).
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We performed the feature selection and model training similar

to the strength regression prediction pipelines for the first-

level models as well as the multimodal classification model (i.e.,

10-fold cross-validated stacked classification ensemble). The

sex prediction pipeline performance was compared with and

without correcting the brain features for grip strength. Strength

correction was performed using linear regression and then

training on the residuals. For sex prediction, testing performance

was assessed using percent accuracy and the area under the

receiver operating characteristic curve (AUC) calculated with

scikit-learn. The AUC was calculated by plotting the true

positive rate (TPR) as a function of the false positive rate (FPR)

at varying threshold settings. The strength and sex correction

parameters were calculated on the training dataset and then

applied to the testing dataset. Finally, we assessed the ability

to predict sex using the grip strength measures alone and

logistical regression.

Visualization of first-level prediction
pipeline features

To visualize and compare the brain features that made

reliable contributions to the prediction of strength and sex,

bootstrapping was performed. For each first-level model, p-

values for the model coefficients were calculated by fitting

the models to 10,000 bootstrapped samples from the training

dataset (hyperparameter tuning same as that determined from

model fit to entire training dataset), then converting the model

coefficient to Z-values (bootstrapped mean of each coefficient

/ bootstrapped standard deviation of each coefficient), and

finally transforming the Z-values to p-values using a two-tailed

normal distribution. The coefficient p-values were corrected

with a false discovery rate (FDR) of q < 0.05 to correct

for multiple comparisons (31). When PCA was employed,

the model coefficients for these pipelines were first inverse

transformed back to the original feature space before conversion

to p-values. The significant model coefficients (FDR-corrected)

were visualized to assess the contributions of the first-level

features to the prediction of strength and sex. We performed

the FDR correction using the MNE Python package (version

= 0.21.0).

The labeling of the 122 regions in the BASC parcellation,

used to calculate functional connectivity, is unordered and does

not correspond to any particular resting state functional brain

network. To assist in interpretation of the resting state functional

networks underlying prediction, each of the 122 regions was

assigned to a resting state functional network based on the

maximum percent overlap between the region and binary maps

of the visual, somatomotor, dorsal attention, ventral attention,

limbic, frontoparietal, and default mode networks as well as

subcortical and cerebellar networks. The cortical networks were

defined using the seven network parcellation developed by

Yeo et al. (23). The subcortical network was defined used the

Harvard-Oxford subcortical atlas and contained the thalamus,

caudate, putamen, globus pallidus, hippocampus, amygdala, and

brainstem (11, 32–34). The cerebellar network was defined

using the probabilistic human cerebellum atlas developed by

Diedrichsen et al. (35). Both the subcortical and cerebellar

atlases are included with FSL. The FDR-corrected model

coefficients weights for the resting state prediction pipeline

were visualized using circular graphs plotting both the positive

and negative connections within and between the resting state

functional networks using Circos (36). The FDR-corrected white

matter and task model coefficients were visualized overlaid

the MNI152 T1-weighted brain template. Finally, we used

Spearman correlations to directly compare the non-corrected

model coefficients and quantify the similarity between the

strength and sex prediction models.

Statistical testing

Student t-tests and correlation analyses were performed

using the SciPy Python package (version = 1.2.1). An α <

0.05 was considered statistically significant. Correlation and

AUC plots were generated using the Matplotlib Python package

(version= 3.1.0).

Results

We assessed the performance of each modality on the

independent testing dataset (n = 75), providing an unbiased

estimate of performance. Each modality had predictive power

for strength that exceeded chance accuracy (p ≤ 0.001) with the

resting state prediction pipeline having the highest performance

of the individual modalities, explaining more than 45% of the

variance in strength (R2 = 0.452). The gray matter and white

matter prediction pipelines performed comparably to each other,

both explaining more than 30% of the variance in strength.

The left and right hand prediction pipelines had the lowest

performance, each explaining < 15% of the variance in strength

(Figure 1 and Table 2). The multimodal prediction pipeline

outperformed the individual modality prediction pipelines

explaining more than 50% of the variance in strength (R2 =

0.535, MAE= 5.95, and RMSE= 7.09; Figure 1 and Table 2).

Grip strength, however, was significantly higher in males

than in females in both the training (p < 0.001) and testing

(p < 0.001) datasets, and sex was identified as a potential

confound (Figure 2 and Table 3). After correcting for sex, the

predictive power was substantially reduced for each first-level

model (Figure 1 and Table 2). While the resting state prediction

pipeline continued to have the highest performance of the

individual modalities, resting state functional connectivity only

explained slightly more than 7% of the variance in strength after

correcting for sex (R2 = 0.073, p < 0.001). The performance
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FIGURE 1

We used multimodal brain MRI and grip strength scores to characterize and quantify the brain’s contribution to strength through multivariate

predictive modeling. Multimodal brain MRI provides measures on gray matter (GM) morphometry, white matter (WM) fractional anisotropy,

resting state (RS) functional connectivity, and left hand (LH) and right hand (RH) motor task activation. We trained a prediction pipeline for each

MRI modality on the training dataset (n = 970) using non-sparse (ℓ2) linear regression (LR) models with principal component analysis (PCA) for

dimensionality reduction, when applied, and nested five-fold cross-validation for hyperparameter tuning. We then used stacked ensembles of

the prediction pipelines to combine the first-level models into second-level multimodal models. (A) Each MRI modality and a multimodal model

(Continued)
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FIGURE 1 (Continued)

significantly predicted strength in an independent testing dataset (n = 75). (B) However, sex was identified as a potential confound, and

correcting for sex substantially reduced the predictive power for each MRI modality and the multimodal model (female = ×, male = �). (C)

Next, we flipped the analysis and investigated the use of multimodal brain MRI to predict sex. Each of the MRI modalities and a multimodal

model significantly predicted sex. (D) Correcting the brain features for strength, however, reduced the accuracy of each MRI modality and a

multimodal model for predicting sex. GT, ground truth; TPR, true positive rate; FPR, false positive rate; AUC, area under the curve. L, left; R, right;

A, anterior; P, posterior.

TABLE 2 Grip strength prediction testing performance (n = 75).

Pipeline MAE p-Value RMSE p-Value R2 p-Value

Not sex corrected

Gray matter 6.92 <0.001 8.27 <0.001 0.369 <0.001

White matter 6.41 <0.001 8.44 <0.001 0.342 <0.001

Resting state 6.18 <0.001 7.71 <0.001 0.452 <0.001

Left hand 8.11 0.002 9.67 0.002 0.137 <0.001

Right hand 7.89 0.004 9.83 0.001 0.108 0.001

Multimodal 5.95 <0.001 7.09 <0.001 0.536 <0.001

Sex corrected*

Gray matter 5.20 0.126 6.04 0.014 −0.038 0.014

White matter 4.89 0.087 5.89 0.066 0.013 0.069

Resting state 4.82 0.005 5.71 <0.001 0.073 <0.001

Left hand 4.99 0.026 5.89 0.003 0.015 0.003

Right hand 5.07 0.071 6.04 0.018 −0.037 0.018

Multimodal 4.78 0.001 5.71 <0.001 0.075 <0.001

*Testing performance assessed using grip strength scores corrected for sex.

of the second-level multimodal prediction pipeline was likewise

reduced with similar performance as the resting state prediction

pipeline (R2 = 0.075, p < 0.001).

Next, we flipped the analysis and investigated the use

of multimodal brain MRI to predict sex. Each of the MRI

modalities significantly predicted sex (p < 0.001). The resting

state prediction pipeline had the highest performance of the

individual modalities, predicting sex with 89.3% accuracy (AUC

= 0.956). The gray matter and white matter prediction pipelines

performed comparably to each other, both having accuracies

> 80%. The left and right hand prediction pipelines had the

lowest performance, each with accuracies lower than 80%. The

second-level multimodal prediction pipeline had an accuracy

of 93.3% (AUC = 0.982; Figure 1 and Table 4). Correcting the

brain features for strength, however, reduced the accuracy of

predicting sex for each modality, the resting state prediction

pipeline had the lowest accuracy of the individual modalities

(accuracy = 57.3%, AUC = 0.672). The multimodal prediction

accuracy dropped to < 70% after correction for strength (AUC

= 0.780; Figure 1 and Table 4). In comparison, using grip

strength alone predicted sex with 94.7% accuracy (AUC= 0.985,

p < 0.001).

Finally, we compared the coefficients between the strength

prediction and sex prediction models without correction for sex

or strength, respectively, to assess the similarity in the brain

features driving the predictions. The FDR-corrected coefficient

maps between the strength and sex prediction show substantial

overlap for each modality, indicating that both models are

using similar information in their predictions (Figures 3, 4). To

quantify the level of similarity, we used Spearman correlations

to directly compare the model coefficients between the strength

and sex prediction models. The model coefficients were

moderately to strongly correlations with the white matter

models having the greatest correlation (ρ = 0.762, p < 0.001)

and the resting state models having the lowest correlation (ρ =

0.482, p < 0.001), further demonstrating a substantial but not

complete degree of similarity in the information underlying the

prediction of strength and sex (Table 5).

Discussion

We initially sought to characterize and quantify the brain’s

contribution to strength by developing multimodal brain-based

MRI pipelines to predict grip strength. Sex, however, was

identified as a clear confound in the analyses, complicating the

prediction of strength. Each MRI modality and a multimodal

prediction pipeline could accurately predict strength; however,
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FIGURE 2

Histograms of grip strength scores by sex for the training and

testing datasets.

correcting for sex substantially reduced the accuracy. When

flipping the analyses and classifying sex from brain MRI, each

MRI modality and a multimodal prediction pipeline could

accurately predict sex; however, correcting the brain features

for strength reduced the accuracy of predicting sex. Comparing

the coefficients between the models, we identified substantial

but not complete similarities between the brain features driving

the prediction of strength and sex. As demonstrated by our

results, the interpretation of brain-based prediction models

can be problematic in the presence of confounds: are the

models predicting strength or sex? In the following, we discuss

confounds in brain decoding analyses, their implications in the

development of brain-based biomarkers, and possible strategies

to overcome these challenges and improve interpretation.

Confounds are a well-known issue in statistical modeling

and machine-learning applications (5–7). Confounds create

ambiguity in the source of the information driving the

prediction and uncertainty in the measure being predicted.

In other words, confounds affect the relationship between the

features and the predicted measure. In the case of strength

prediction, sex is a clear confound in this sample. While males in

this sample have only ≈ 15% greater grip strength than females

on average, the distribution of strength is clearly bimodal, with

highly significant differences in the distribution of strength

between the sexes (Cohen’s d > 2.0). In fact, grip strength

alone predicted sex with > 90% test accuracy. Considering the

substantial reduction in strength prediction after correcting

for sex, the ability to predict sex with high accuracy using

the multimodal brain features, and the similarity between the

strength and sex prediction models, the strength prediction

model, at least in part, is likely learning patterns of features

associated with sex. If the accuracy of strength prediction was

the only aim, then sex being a confound is less of a concern.

However, the initial goal of this study was to uncover the brain’s

contribution to strength to develop models that may be used

as brain-based biomarkers in conditions affecting strength. We

are not interested in using features for strength prediction that

are related to sex but invariant to strength. Therefore, for the

intended application, the interpretation of the models becomes

as important as accuracy.

Sex is a recognized confound in neuroimaging. Males on

average have larger total brain size than females (37). In addition

to global differences in brain size, localized alterations in cortical

thickness and subcortical volumes have also been identified

between sexes, and gray matter morphometry has been used

to predict sex as well as white matter characteristics and both

resting state and task-evoked fMRI measures (38–43). Recently,

sex differences in brain-based biomarkers of intelligence have

been uncovered, suggesting that the generation of intelligence

in males and females may utilize distinct brain networks

(44). Debate exists regarding the interpretation, meaning,

and importance of sex differences in the brain (45–48). A

recent quantitative synthesis by Eliot et al. (49) challenges the

importance of sex differences in the human brain, arguing that

many structural and functional sex differences identified with

MRI are largely negligible after correcting for brain size. A more

recent large-scale brain-based MRI study from the UK Biobank

with more than 40,000 participants uncovered sex differences

in two-thirds of the gray matter brain measures investigated,

which were independent of brain size when accounting for non-

linear relationships between local brain region morphometry

and brain size (50). While the effect of sex was small after

correction, structural and functional differences in the brain,

even if small, could have meaningful consequences on brain

function, especially in aggregate (51, 52). Overall, the meaning

of these sex differences and their role in human behavior,

mental health, and the brain in health and disease remain to

be uncovered. When taken together and with respect to the

present findings, identifying and interpreting sex differences in

the brain is complex, especially when considering sex-correlated

confounds such as strength and brain size.

Age is another important confound in neuroimaging. The

brain is not a static organ but changes over the lifespan (50).

Similarly to sex prediction, graymatter, white matter, and resting

state and task-evoked fMRI brain measures can predict age

(53–58). The aging, cognition, and dementia fields have made

substantial progress in developing biomarkers of normal and

pathological age-related changes in the brain. The difference

between predicted and actual brain age, the brain age gap, is
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TABLE 3 Grip strength scores by sex.

Female Male Cohen’s d p-Value

Training (n= 970) 109.1± 6.0 125.5± 9.1 2.1 <0.001

Testing (n= 75) 109.0± 5.2 126.1± 6.6 2.9 <0.001

TABLE 4 Sex prediction testing performance (n = 75).

Pipeline Accuracy (%) p-Value AUC p-Value

Not strength corrected

Gray matter 84.0 <0.001 0.932 <0.001

White matter 85.3 <0.001 0.930 <0.001

Resting state 89.3 <0.001 0.956 <0.001

Left hand 68.0 0.005 0.780 <0.001

Right hand 78.7 <0.001 0.824 <0.001

Multimodal 93.3 <0.001 0.982 <0.001

Strength corrected

Gray matter 68.0 0.001 0.732 <0.001

White matter 69.3 <0.001 0.715 <0.001

Resting state 57.3 0.121 0.672 0.005

Left hand 58.7 0.057 0.615 0.051

Right hand 61.3 0.043 0.660 0.015

Multimodal 69.3 <0.001 0.780 <0.001

the most commonly used measure, providing a single metric

to assess brain health with respect to normal aging (59). Brain

age biomarkers are already showing potential diagnostic and

prognostic value in several conditions including schizophrenia

and Alzheimer’s disease (60–65). Disease-related processes as

well as genetic, lifestyle, and health factors are thought to affect

brain aging, but the impact of these factors are still unclear

(See Wrigglesworth et al. (66) for review). Sex differences in

the brain that accompany aging have also been identified (67–

69). A recent study demonstrated differences in the predicted

age gap between males and females with a family history of

Alzheimer’s disease. Sex, APOE genotype status, and physical

activity demonstrated a significant interaction. Males with

+APOE4 genotype who engage in physical activity had younger

predicted brain age than the corresponding females, suggesting

that physical activity influences brain aging differentially in

+APOE4 males and females (70). In the prediction of age, sex

is not likely a significant confound that impacts interpretability

as long as sex is balanced across the age groups. However, if

the older participants were disproportionately male and the

younger participants were disproportionately female, sex would

be a confound, similar to strength in the present study. Sex

differences in brain structure and function over the lifespan

could impact the accuracy of the age prediction models and

substantiate correcting the features for sex or modeling each sex

separately. In regards to age as a confound in the prediction

of strength, participants in the HCP were healthy young adults

(age = 22–37 years), so we were not concerned about age

being an important confound. Strength, however, on average

declines with age (71–73), and even within the HCP dataset,

grip strength was weakly negatively correlated with age (n =

1,045, r = −0.104, p < 0.001). If we were developing predictive

models of strength across a broader age range, age would become

a confound in the analyses making it difficult to determine

whether we are predicting strength or age.

So far, we have discussed participant-related confounds of

sex and age and their potential confounding effects in brain-

based predictions. Additional participant-related confounds

include anatomical variability (e.g., brain size and shape),

arousal level (e.g., sleep and caffeine use), mental and emotional

state, head movement (i.e., ability to stay still), and overall health

status (e.g. presence of medical conditions, medication use,

and comorbidities) (74). Procedure-related confounds occur

from factors within the study design that can influence the

participant measures and include experimental instructions

(e.g., eyes open or closed in resting state fMRI), time of

day, auditory and visual noise, and image acquisition (e.g.,

imaging parameters, software, and hardware) and processing

methods (e.g., spatial normalization methods) (75–77). Brain

shape and size are known to vary across populations, change

with age, and be affected by diseases (78–82). For example,

ventricular enlargement and cortical atrophy often present in
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FIGURE 3

Visualization of the bootstrapped FDR-corrected (q < 0.05) first-level model coe�cients of each MRI modality for strength prediction without

correction for sex. Note the similarity between these models and the sex prediction models without correction for strength shown in Figure 4.

The outer bands in the resting state connectivity graph show the sum of the positive and negative connections passing FDR-correction. VIS,

visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode; SC, subcortical; CB,

cerebellar. L, left; R, right; A, anterior; P, posterior; S, superior; I, inferior.

elderly patients, and standard spatial normalization algorithms

may not be adequate for this population (83). This could lead

to age-related biases in the measurements of cortical structures.

A model that predicts age using the measurement error vs.

actual age-related neurophysiological changes may accurately

predict age, but the model would not likely be a strong candidate

biomarker. Additionally, even when developing a brain-based

diagnostic marker between participants with a specific condition

and an age- and sex-matched group of healthy controls, other

confounds may still be present. For example, in chronic pain,

comorbidities such as anxiety and depression are often present,

and the patients may be taking medications for their conditions

(84). The presence of comorbidities and medication use could

be considered confounds in the development of chronic pain

markers as each of the three factors (chronic pain, comorbidities,

and medication use) may differ from the control group. Similar

issues can arise when combining datasets across multiple sites,

where site could be a confound (77, 85). Overall, if any factors

vary with respect to the predicted measure, these factors may

be potential confounds. The degree of concern regarding these

factors will depend on the goal of the biomarker andmay require

additional interrogation to interpret the features driving the

prediction and further validate the model (86). As an example,

Liem et al. (53) were concerned that head motion may confound
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TABLE 5 Correlation between strength and sex prediction model

coe�cients*.

Pipeline ρ p-Value

Gray matter 0.653 <0.001

White matter 0.762 <0.001

Resting state 0.482 <0.001

Left hand 0.686 <0.001

Right hand 0.689 <0.001

*Models not corrected for sex or strength, respectively.

age prediction because head motion affects brain imaging and

motion may be higher in older participants. Therefore, the

authors included additional analyses to be confident that motion

was not driving the prediction of age (53).

In conventional univariate analyses, controlling for

confounds can be done statistically by including them as

covariates in the model. For example, motion regressors

are commonly modeled as covariates when generating

subject-level task-evoked fMRI activation maps to account

for signal correlated with subject motion, and for group-level

fMRI analyses, sex and age can be included to remove their

effects when comparing activity between groups. Including

confounds as features in decoding models, however, would

be counterproductive because confounds contain information

that by definition we do not want to use in prediction, so

alternative strategies need to be employed. With sampling-based

approaches you train models on subsamples of the dataset

in which the sampling removes the correlation between the

confound and predicted measure and the overall effect of the

confound (7). For example, you could match males and females

on strength, and only include those matched pairs in the training

dataset. This would eliminate the sex differences in strength.

However, in the case of strength with strong sex differences,

a large portion of the data at the high and low strength

levels would be discarded using sampling-based approaches,

reducing power and also limiting the domain and range on

which the model was trained. Sampling-based approaches

can be performed within a cross-validated framework using

a stratification factor (e.g., StratifiedKFold). While typically

performed post hoc, controlling for confounds can be done a

priori as done in prospective trials where groups are commonly

matched on age and sex at enrollment in a study.

While sampling-based approaches may be feasible for one

and maybe two confounds, accounting for multiple confounds

becomes increasingly complicated and costly (i.e., dropping of

unmatched data) and is largely not feasible. Regression-based

approaches statistically remove the variance attributed to the

confounds from the dataset by fitting a model containing the

confound variables to the dataset (7). The modeling is then

performed on the residuals, in which the confounding signal

has been removed. Regression-based approaches were used in

the current study to correct for sex and grip strength. After

correcting for sex, only the resting state and the multimodal

strength prediction models significantly predicted strength

better than a random model. A drawback to regression-based

approaches is that they increase the complexity of the prediction

pipeline in that the regression-based confound correction model

is another step within the prediction pipeline with its own

parameters. Another recent alternative proposed by Zhao et al.

(87) uses a deep-learning approach with generative adversarial

networks that models confounding effect in the feature-learning

process such that the model learns patterns of features that

are invariant to confounds. The authors validate their method

with classification and regression models with continuous and

categorical confounds, and the code is openly available on

GitHub (https://github.com/qingyuzhao/br-net) (87).

Inherent to our goal of developing brain-based biomarkers

of strength is that we need the models to be based on features

that underlie the production of force as we want the predictions

to be sensitive to changes in strength over time. Sex is a non-

modifiable factor, and a strength model based on sex-correlated

features invariant of strength would not likely be sensitive to

changes in strength. As described and demonstrated, sex is a

major confound in the prediction of strength. When accounting

for sex, the accuracy for predicting strength from multimodal

brain MRI is largely lost. As discussed, males have larger

brains than females on average, and the magnitude of the sex

differences decreases after correcting for brain size. Sex and

brain size are not the only factors that covary. Strength and

muscle mass also strongly covary with sex and brain size (88).

Strength, muscle mass, and brain size are known to decrease in

older age (71–73, 89, 90). Also, physical exercise can decrease

age-related losses in the brain’s gray and white matter (91–93).

While less studied than in the brain and human studies are

lacking, sex differences may also present in the spinal cord. Male

rats have larger spinal cords by weight and a greater number

of motoneurons (94) as well as differences in skeletal muscle

fiber morphometry, spindle density, and innervation (95, 96).

When taken together, it is not too great of a leap to suggest

that a component of the neuromuscular system, such as skeletal

muscle mass, could mediate the relationship between sex and

brain size. The larger brain size in males could be to support the

larger skeletal muscle mass (97).

The cross-sectional nature of the HCP limits the current

study to (repeat imaging is only available in a small subset of the

dataset, n < 50) associations between the brain imaging features

and strength. Longitudinal studies with a strength training

exercise intervention could determine whether the strength

prediction pipelines track increases in strength. If so, this would

indicate that the strength prediction models are relying on some

information related to strength and provide evidence that the

brain features predictive of strength are causally linked to force

production. If not, then the models may be relying more on sex-

correlated features for the prediction of strength. Longitudinal
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FIGURE 4

Visualization of the bootstrapped FDR-corrected (q < 0.05) first-level model coe�cients of each MRI modality for sex prediction without

correction for strength. Note the similarity between these models and the strength prediction models without correction for sex shown in

Figure 3. The outer bands in the resting state connectivity graph show the sum of the positive and negative connections passing

FDR-correction. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode; SC,

subcortical; CB, cerebellar. L, left; R, right; A, anterior; P, posterior; S, superior; I, inferior.

studies employing within subject models can also help address

the issue of confounds allowing us to develop models that

predict change in strength from the changes in brain features.

A similar argument supporting the use of longitudinal studies

has been made by Vidal-Pineiro et al. (98) in the age-prediction

field where models developed from cross-sectional studies did

not predict longitudinal changes in brain age. The authors

suggest that brain age may relate more to early-life factors

than longitudinal brain changes, leading to the recommendation

that future studies use longitudinal designs when predicting

individual changes in brain age is the goal.

Additional improvements can also be made from the

current study. The fMRI experiment used to map task-evoked

left- and right-hand motor activity was a finger tapping

task and not designed to capture signals related to strength.

An experiment tuned to force generation may have greater

predictive power (99). Similarly, a more diverse sample with

greater variation in strength should improve our ability to

predict strength. While the use of HCP dataset provided a

large, homogenous dataset for this study, future work should

include data across sites with varying imaging equipment,

imaging parameters, and sample characteristics to generate
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models that generalize across sites and to the population

at large.

The application of multivariate predictive modeling to

neuroimaging is increasing our ability to extract clinically

relevant information from the brain and make predictions

across individuals. While brain-based predictive models have

great potential as biomarkers for neurological, neuromuscular,

and musculoskeletal conditions, the presence of confounds

creates ambiguity in the source of the information driving

the prediction and the interpretation of the measure being

predicted, decreasing their potential clinical utility. Here we

focused on the effects of sex-correlated confounds in brain-

based predictive modeling across multiple MRI modalities for

both regression and classification models. In addition to sex,

other patient-related and procedural confounds are well-known

in neuroimaging. Methods to better assess the influence of

these confounds on the predicted measure and the development

of strategies to mitigate the effects of confounds will increase

the interpretability and validity of brain-based biomarkers and

further promote their translation to clinical practice.
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