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Introduction: Dual-tasking (DT) while walking is common in daily life and

can a�ect both gait and cognitive performance depending on age, attention

prioritization, task complexity and medical condition. The aim of the present

study was to investigate the e�ects of DT on cognitive DT cost (DTC) (i)

in a dataset including participants of di�erent age groups, with di�erent

neurological disorders and chronic low-back pain (cLBP) (ii) at di�erent levels

of cognitive task complexity, and (iii) in the context of a setting relevant to daily

life, such as combined straight walking and turning.

Materials and methods: Ninety-one participants including healthy younger

and older participants and patients with Parkinson’s disease, Multiple Sclerosis,

Stroke and cLBP performed a simple reaction time (SRT) task and three

numerical Stroop tasks under the conditions congruent (StC), neutral (StN) and

incongruent (StI). The tasks were performed both standing (single task, ST) and

walking (DT), and DTC was calculated. Mixed ANOVAs were used to determine

the e�ect of group and task complexity on cognitive DTC.

Results: A longer response time in DT than in ST was observed during SRT.

However, the response time was shorter in DT during StI. DTC decreased with

increasing complexity of the cognitive task. There was no significant e�ect of

age and group on cognitive DTC.

Conclusion: Our results suggest that regardless of age and disease group,

simple cognitive tasks show the largest andmost stable cognitive e�ects during

DT. This may be relevant to the design of future observational studies, clinical

trials and for clinical routine.

KEYWORDS

dual task cost, Parkinson’s disease, stroke, Multiple Sclerosis, low back pain, Stroop

test, reaction time, dual task

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.964207
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.964207&domain=pdf&date_stamp=2022-10-03
mailto:w.maetzler@neurologie.uni-kiel.de
https://doi.org/10.3389/fneur.2022.964207
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.964207/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bianchini et al. 10.3389/fneur.2022.964207

Introduction

In daily life, it is very common to encounter situations

that require performing two tasks simultaneously, such as

walking and talking on the phone. In research conditions, this is

referred to as dual-task (DT), as opposed to single-task (ST). In

particular, a large body of research has focused on the interaction

between cognitive tasks (e.g., serial subtractions) and motor

tasks (e.g., walking), showing that DT can affect the performance

of one or even both of the tasks involved compared to ST (1).

The effect of DT can be calculated as the percentage change in

the parameters on interest between DT and ST and has been

termed DT cost (DTC). A positive value of DTC means that

performance worsens in DT compared with ST and vice versa

(1). In motor-cognitive DT paradigms, DTC can be calculated

for both cognitive and motor tasks, reflecting an improvement

or decrease in either motor or cognitive performance or both.

The DTC has been widely used to study the interaction between

movement and cognition as a reliable measure of the effect of

DT in both physiological (2) and pathological conditions (3–5).

In addition, it has been shown to be a useful outcome measure

for assessing response to training programs and rehabilitation

interventions (6–10). Indeed, a reduction in DTC reflects better

motor-cognitive integration and attentional capacity (1).

Walking is one of the most common motor activities

performed daily, and a large number of situations involving DT

occur during walking. In addition, factors that negatively affect

the ability to walk, such as neurological disorders, orthopedic

impairments, and balance disorders, have a profound impact

on people’s independence and quality of life (11). Several

studies have reported deterioration in gait parameters, such as

reduced gait speed (4, 12–14), cadence (4, 12) and increased

gait variability (4, 12, 15, 16), in DT compared with ST. These

effects can be observed in different age groups such as healthy

older (12) and younger adults (16), and disease populations

such as Parkinson’s Disease (PD) (14), Multiple Sclerosis (MS)

(13), stroke (4) and chronic low-back pain (cLBP) patients (15).

Several mechanisms have been proposed to explain the effect of

DT, such as attention allocation theory and the bottleneck theory

(1). The attention allocation theory states that people have a

limited attention capacity. When, as in multitasking, attention

demands exceed this capacity, performance on one or more of

the simultaneously performed tasks decreases. The bottleneck

theory states that above a certain threshold of processing load,

only one task can be completed at a time due to limited

cognitive resources, resulting in a decline in performance (1).

However, many studies have reported no relevant or even

negative cognitive DTC, both in healthy participants (17–23)

and in patients with cLBP (15) and neurological conditions

(24–31). Based on these observations, Plummer and colleagues

proposed a classification of the motor-cognitive interactions of

DT into 9 possible outcomes based on the combination of effects

(i.e., improvement, no change or worsening compared with

ST) in cognitive and motor performance, respectively (32). The

variability in the results reflects the complexity of interactions

between motor and cognitive tasks, and several explanations

have been proposed. One possible explanation is that the two

tasks do not compete for the same resource pool, resulting in

little or no interference between the two. Another hypothesis

suggests that a cross-talk interaction might exist and that the

two tasks interact in a facilitative manner when they derive from

similar cognitive domains and use similar neural populations

(1, 33).

Another factor involved in the interaction between gait

and cognitive tasks is task complexity, but only a few

studies have investigated its influence on cognitive DTC, with

variable results. Some studies have reported higher cognitive

DTC as cognitive task complexity increases (34–36). The

effect seems to be influenced by age and cognitive domains

involved (35–39). However, another study did not find this

effect (40).

Requiring demanding attentional skills and the integrity of

executive functions (1), DT has been used to study cognitive

and motor interaction in various physiological and pathological

conditions, such as aging, neurological disorders and cLBP. It

has been reported that older participants have a reduced ability

to process multiple tasks simultaneously, resulting in a higher

cognitive DTC compared with younger adults (2) and this is

probably related to reduced processing speed and cognitive

reserve (37, 41, 42). Some studies have also investigated the effect

of motor-cognitive DT on cognitive DTC in various neurological

disorders such as PD (43), MS (6, 44) and stroke (4). However,

these studies have focused only on single neurologic conditions

or age groups.

Recently, cLBP has been shown to be associated with

impaired attention and working memory (45) and altered

connectivity of the attentional network (46), and DT have led

to impairment of gait and balance parameters in these patients

(15, 47, 48). Only one study has reported data on cognitive

DTC in patients with cLBP, showing little or no effect of DT

on verbal fluency (15). However, it is unclear whether more

challenging concomitant cognitive tasks can unmask an effect

of DT on cognitive performance. Based on clinical experience,

we hypothesized that this cohort might show low DTC or even

an improvement in cognitive performance in DT with more

challenging cognitive tasks due to a pain distraction effect.

Therefore, the aim of the present study was to investigate

the effects of DT on cognitive DTC (i) in a dataset including

participants of different age groups, with different neurological

conditions and cLBP, (ii) at different levels of cognitive task

complexity, and (iii) in the context of a setting relevant to daily

life, such as combined straight walking and turning. The idea

for the experimental paradigm was based on the fact that short

walking episodes combined with turns better reflect everyday

situations than the straight walking paradigms used in previous

studies (49) and that we assumed that such combined straight
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walking and turning movements are often performed under DT

conditions in daily life.

Methods

In the present study we analyzed a dataset from a cross-

sectional study designed to develop and validate mobility

algorithms. This included participants with different age groups,

with different neurological disorders and cLBP. Detail of the

dataset protocol can be found in (50).

Population

Participants were longitudinally recruited through flyers

placed in public facilities (healthy participants) and in

neurology departments and outpatient clinics at University

Hospital Schleswig-Holstein (UKSH), Kiel Campus, Germany

(neurological patients). Inclusion criteria were (i) age 18 years

or older and (ii) ability to walk independently without walking

aids. Exclusion criteria were (i) Montreal Cognitive Assessment

score <15 and (ii) other movement disorders affecting mobility

performance, as judged by the assessor. Participants were

divided into 6 groups according to age and diagnosis. Healthy

participants were divided into “younger” (age 18–45 years) and

“older” (age≥ 60 years). Participants with neurological disorders

included patients with PD [according to the UK Brain Bank

criteria (51)], MS [according to McDonalds criteria (52)], recent

symptomatic stroke (<4 weeks), and cLBP, diagnosed on the

basis of the patient’s medical history and examination (53).

Ethics

The study was approved by the ethical committee of the

Medical Faculty of Kiel University (D438/18) and was conducted

in accordance with the principles of the Declaration of Helsinki.

All participants provided written informed consent before the

start of measurements. The study is registered in the German

Clinical Trials Register (DRKS00022998).

Demographic and clinical data

Demographic data including age, sex, weight, and height

were collected. Overall cognitive function was assessed with the

Montreal Cognitive Assessment (54). Mobility was assessed with

the Short Physical Performance Battery (SPPB) (55). Disease-

specific evaluations included the MDS Unified Parkinson’s

Disease Rating Scale part III (MDS-UPDRS-III) (56) and the

Hoehn and Yahr Scale (57) for PD patients; the Expanded

Disability Status Scale (58) for MS patients; the NIH Stroke Scale

(59) for patients with stroke; a visual analog scale of pain (60)

and the German Funktionsfragenbogen Hannover Scale (61) for

patients with cLBP.

Experimental procedure

Participants performed two smartphone-based cognitive

tasks of different complexity. The first task consisted of a

simple reaction time test (SRT) in which participants had to

tap the screen as fast as possible after the appearance of a

black square. Six time intervals ranging from 1,000 to 2,000ms

(in 200ms increments) were used for the appearance of the

black square. Each condition appeared 4 times for a total of

24 trials, administered in random order. The response time in

ms was recorded for each trial, and the average of all trials

was calculated for each participant. The second task consisted

of a numerical Stroop test in which participants had to choose

the higher number from two options (62). The Stroop test

was administered in 3 conditions: (i) Congruent, in which the

number with a higher value had a larger character size (StC); (ii)

Neutral, in which the character size of both numbers was equal

(StN); (iii) Incongruent, in which the number with a higher value

had a smaller character size (StI). Each condition consisted of 8

trials for a total of 24 total trials in random order. The SRT and

Stroop tasks were performed consecutively. Response times were

recorded inms and the average for each condition was calculated

for each participant. Both the SRT and Stroop numerical tests

were performed on a smartphone while standing quietly (ST

condition) and while walking up and down a 5-meter walkway

(DT condition). For the DT condition, participants were not

given any instruction regarding task prioritization.

Movement and rotation analysis

Participants were measured with a 3D optical motion

capture system (Qualisys AB, Gothenburg, Sweden). Reflective

markers were placed on the head, sternum, pelvis, and feet.

The exact placement of the markers is described elsewhere (50).

Data were recorded at 200Hz. To detect turns during walking,

pelvis angles were calculated according to Euler’s method. The

beginning and end of a turn were detected by the change in the

standard deviation of the angular signal around the vertical axis,

using the Matlab’s built-in function findchangepts.

Data analyses

Turning phases were extracted by the method described

above, the total time spent during turning was computed

and used to calculate the turning ratio according to the
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TABLE 1 Demographics and clinical scores of the enrolled participants.

Younger (N = 26) Older

(N = 16)

PD (n = 19) Stroke (N = 9) MS (N = 16) cLBP (N = 5)

Age 28.2± 8.8 72.3± 6.4 63.5± 11.8 62.4± 19.2 38.1± 12.9 62.8± 19.8

Sex M 11 (42%) 8 (50%) 7 (37%) 2 (22%) 10 (62%) 2 (40%)

F 15 (58%) 8 (50%) 12 (63%) 7 (78%) 6 (38%) 3 (60%)

Height 180.6± 8.7 172.9± 9.4 174.8± 9.0 177.3± 10.5+ 8 177.3± 11.6 174.0± 8.8

Weight 75.1± 14.5 79.1± 17.1 81.8± 16.4 79.4± 15.9 77.4± 11.2 76.6± 11.9

BMI 22.9± 3.0 26.4± 5.1 26.6± 4.1 25.1± 3.9 24.7± 3.7 25.2± 2.6

MoCA 29 (28–29.75) 22.5 (21–27.25) 25 (23–26.5) 24 (22.5–26.25) 28 (26–28.25) 25 (24–27)

SPPB 12 (12–12) 11 (9–11) 10 (8–11) 11 (11–11) 9 (7–11) 12 (7–12)

H&Y - - 2 (1–3) - - -

MDS-UPDRS-III - - 20 (12–28) - - -

EDSS - - - - 1 (1–3.5) -

NIHSS - - - 0 (0–1) -

pVAS 3.5 (1.5–5.75)

FFbH 30 (29–31)

MoCA, Montreal Cognitive Assessment; SPPB, Short Physical Performance Battery; H&Y, Hohen and Yahr scale; MDS-UPDRS-III, MDS Unified Parkinson’s Disease Rating Scale part III;

EDSS, Expanded Disability Status Scale; NIHSS, NIH Stroke Scale; pVAS, Pain Visual Analog Scale; FFbH, Funktionsfragenbogen Hannover. Values are reported as Mean± SD or Median

(Q1–Q3) for numerical variables and N (%) for categorical variables.

following formula:

Turning ratio =
Turning time

Total trial time
× 100

To assess the impact of DT on cognitive performance, DTC was

calculated using the following formula (63, 64):

DTC =
Dual task− Single task

Single task
× 100

Statistical analysis

Statistical analyses were performed using JASP v0.16.1

(JASP Team, University of Amsterdam), R v4.0.3 and RStudio

v2022.02.2+433 for Windows (R Foundation for Statistical

Computing, Vienna, Austria). Descriptive statistics were

calculated for the examined variables. To assess the difference

in DTC across the 6 groups and different cognitive tasks,

a mixed ANOVA test was used, with the factors “task” and

“group.” To assess the difference in response times across the 6

groups between ST and DT, separate mixed ANOVA tests were

used, one for each cognitive task, with the factors “condition”

and “group.” Post-hoc t-tests with Bonferroni’s correction for

multiple tests were performed in case of significant ANOVA

main effects. If necessary, Greenhouse-Geisser’s correction

for non-sphericity were applied. Partial eta squared (η2p) were

reported as measure of effect size. The significance threshold was

set at α < 0.05. All data were reported as mean ± SD or median

(Q1–Q3) for numerical data and N (%) for categorical variables.

Results

A total of 91 participants were enrolled in the study.

Table 1 shows the demographic and clinical data of the included

population. The average turning ratio was 23%.

E�ect of complexity of the cognitive
tasks

Mixed ANOVA showed a significant effect of factor “task”

[F(3, 177) = 48.630; p < 0.001; η2p = 0.452] (Figure 1) and post-

hoc analysis showed significantly higher cognitive DTC in SRT

than in all Stroop conditions (all p < 0.001), with no significant

differences among these in the overall group and in all subgroups

except in patients with cLBP (Figure 2).

A significant effect of factor “condition” [F(1, 85) = 71.999;

p < 0.001; η
2
p = 0.459] was found on the response time for

the SRT task with an overall higher response time in DT than

in ST condition. Considering Stroop test, a significant effect

of factor “condition” was found only for StI [F(1, 71) = 9.411;

p = 0.003; η
2
p = 0.117] with an overall decrease in response

time in DT compared to ST condition. Post-hoc analysis showed

that response time was significantly higher in DT than in ST

in all groups in SRT. On the other hand, in StI, response time

was significantly lower in DT than in ST only in the younger

participants, while no significant difference was found in the

other groups (Figure 3).

Cognitive DTC values for all groups in each cognitive task

are shown in Supplementary Table 1.
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FIGURE 1

Cognitive DTC in each cognitive task. A negative value means a

reduced response time and a consequently better performance

and vice versa. A dashed line to mark the zero was added.

Significant pairwise comparisons are marked with an asterisk.

SRT, Simple Reaction Time; StC, Congruent Stroop Test; StN,

Neutral Stroop Test; StI, Incongruent Stroop Test.

FIGURE 2

Cognitive DTC across the di�erent cognitive tasks in each

group. A negative value means a reduced response time and a

consequently better performance and vice versa. A dashed line

to mark the zero was added. SRT, Simple Reaction Time; StC,

Congruent Stroop Test; StN, Neutral Stroop Test; StI,

Incongruent Stroop Test.

E�ect of age and disease group

No significant effects of factor “group” or interaction

between the two factors were found on cognitive DTC

(Figure 4).

A significant effect of factor “group” was found [F(5, 85) =

8.000; p < 0.001; η2p = 0.320] on the response time for the SRT

task and a significant interaction between factor “condition” and

FIGURE 3

Response time in ms between ST and DT, across the di�erent

cognitive tasks in the overall group. Significant di�erences

between ST and DT are marked with an asterisk. SRT, Simple

Reaction Time; StC, Congruent Stroop Test; StN, Neutral Stroop

Test; StI, Incongruent Stroop Test.

FIGURE 4

Cognitive DTC across the di�erent groups in each cognitive

task. A negative value means a reduced response time and a

consequently better performance and vice versa. A dashed line

to mark the zero was added. SRT, Simple Reaction Time; StC,

Congruent Stroop Test; StN, Neutral Stroop Test; StI,

Incongruent Stroop Test.

“group” [F(5, 85) = 3.022; p = 0.015; η2p = 0.151]. A significant

effect of factor “group” was found for StC [F(5, 70) = 10.626; p

< 0.001; η
2
p = 0.432], StN [F(5, 68) = 10.663; p < 0.001; η

2
p =

0.439] and StI [F(5, 71) = 15.337; p < 0.001; η
2
p = 0.519]. No

significant interaction was found between the two factors for

all three conditions of Stroop test (Figure 4). Post-hoc pairwise

comparisons for factor “group” and details of response time in

ST and DT are shown in detail in Supplementary Table 2.
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Discussion

This analysis on a cross-sectional dataset aimed to evaluate

the effect of motor-cognitive DT at different cognitive task

complexities on cognitive DTC during turning and walking

in healthy participants, patients with different neurological

conditions, and patients with cLBP.We found a significant effect

of cognitive task complexity on cognitive DTC while age and

disease did not have a significant effect on cognitive DTC in the

population studied here. These results are discussed in detail in

the following.

E�ect of complexity of the cognitive
tasks

Cognitive DTC depended on cognitive task complexity, both

in the overall group and at the subgroup level, with DTC

decreasing as task complexity increased. This is in contrast

to what we expected. A significant difference in response

time between ST and DT was found during SRT and StI,

but not during StC and StN. During SRT, a higher response

time was observed in DT, compared with ST (Figure 3) and

this can be seen in all subgroups (Supplementary Table 2). In

contrast, during StI, we observed a lower response time in DT,

compared to ST (Figure 3). Our results on SRT are in line with

previous studies showing a deterioration in reaction time when

performing another task simultaneously, such as contralateral

movements (65), a secondary cognitive task (66), a postural

task (67) or walking (68, 69). However, previous studies have

reported that cognitive DTC is highly variable depending on

several factors such as attention (70), age and gender (18, 35,

36, 38, 71–74), task type and difficulty (35, 36, 39, 63, 70, 75),

and these variables show a complex interaction. In addition,

several studies have shown that cognitive performance in DT

did not change compared to ST (17, 19–21) or even improved

(17, 18, 20, 29). This has been demonstrated in both healthy

participants and patients with neurological conditions and cLBP

(15, 24–28, 30, 31). The opposite results between SRT and StI,

found in this study, could be due to several mechanisms, such as

(i) attention prioritization; (ii) the different cognitive functions

involved in the two tasks; and (iii) the interaction between the

learning processes within sessions and task complexity.

Attention and task prioritization have been shown to have

an important effect on motor-cognitive DT involving walking

(18, 24, 64, 67, 76). In our study, the task context was similar for

each condition, but participants were not instructed to prioritize

the cognitive task or walking and turning, thus they may have

adopted a “cognitive first” strategy in StI and a “mobility first”

strategy in SRT. A similar strategy adaptation has already been

described for older adults (77). In accordance with our results,

previous studies have also suggested a role of task complexity in

the choice of different attentional strategies, with more complex

cognitive tasks resulting in lower DTC and simpler cognitive

tasks resulting in higher DTC (78).

SRT and Stroop tasks require different cognitive functions.

The SRT is a measure of processing speed (79), while the

Stroop test is a more complex task involving executive functions

(80, 81). Previous studies have demonstrated an important role

of executive functions in gait, and their impairment has been

associated with reduced performance in walking tasks (82).

According to the cross-talk model (1), the greater involvement

of executive functions in both StI and walking could explain

the lower DTC during this condition. In contrast, during SRT,

the different cognitive functions involved might have led to a

negative effect and a higher DTC with a significant difference

compared to all Stroop conditions, both in the overall group

(Figure 1) and at a the subgroup level (Figure 2).

As SRT is a simple task, it is also possible that the learning

curve was so fast that DT effects were well-presented with

this paradigm, but that the learning curve was substantially

lower for the Stroop tasks which may have led to better results

during the DT sessions (which were always performed after the

ST sessions).

E�ect of age and disease group

Differently from what we expected, we found no significant

differences across groups in cognitive DTC (Figure 4). This

result suggests that neurologic diseases and cLBP, at the level

of severity and age included in the present study, might have

no relevant effect on cognitive DTC. Previous findings have

shown higher cognitive DTC in older adults compared with

younger ones (2). This has been linked to reduced cognitive

reserve and slowed processing capacity, with some cognitive

domains (e.g., executive functions) more involved than others

(37, 41, 42). The greater cognitive demands of walking in older

participants may also play a role in these observations. Indeed, at

a younger age, walking is a task with a high level of automaticity,

whereas this decreases with age, leading to more active control

and, consequently, a higher cognitive load (42). This is also

demonstrated by the higher level of activation of the prefrontal

cortex during walking with increasing age (83). Previous studies

also reported higher cognitive DTC in PD (43, 84) and stroke

patients (4) compared with healthy participants. This has been

linked to physical and cognitive impairment related to these

disorders and to reduced attention and cognitive reserve (85).

In MS patients, on the other hand, studies have shown a

negative effect of DT on cognitive performance (6, 86), but

only a few studies have reported data on cognitive DTC and it

remains unclear whether this differs between MS patients and

healthy participants (3). Finally, only one study reported data on

cognitive DTC in patients with cLBP showing little or no effect

of DT on cognitive performance (15).
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Finally, we found no interaction between the factor

“complexity” and “group” on cognitive DTC. Previous studies

have reported an influence of age on the effect of task complexity

on DTC, with younger participants showing a significant DTC

on cognitive performance only in the most challenging cognitive

tasks, whereas older participants were reported to bemore prone

to DT effect at a lower level of cognitive task complexity (37).

The domain-specific effect of DT on cognitive performance

also appears to differ between younger and older adults (38,

39). The discrepancies between the previous results and ours

might lie in the low disease severity of our patients and their

overall good cognitive and physical function. Therefore, we

might hypothesize that at the disease severity included in our

study, the specific features of the disorders in terms of physical

and cognitive impairment have little impact in cognitive DTC.

However, most studies have focused on single conditions or

age groups and, to our knowledge, there has been no study

in which participants with different neurological conditions,

cLBP and of different ages have been included in the same

experimental protocol.

Limitations

We acknowledge that this study has limitations. First, the

sample size of some groups, in particular the cLBP group, is

low. This is explained by the basic design of the cross-sectional

study, which provided the dataset used in the present article.

However, we believe it is still useful to show data on the entire

spectrum of diseases studied to open the possibility of generating

new hypotheses for future studies. Second, participants had, on

average, relatively high levels of physical and cognitive abilities.

This may limit the generalizability of our results, and further

studies including participants with lower functional scores may

be needed. Third, in DT, participants were not instructed to

prioritize any of the tasks. This could have led to different

attentional strategies. However, we argue that this problem is

difficult to avoid. For example, we cannot exclude that the

instruction “Please do not prioritize any of the tasks” does not

lead to the activation of another (cognitive) task during the

experiment. Fourth, standing while performing a cognitive task

might be considered an (additional) resource-consuming task.

Indeed, this paradigm has been used in previous studies as a

DT postural paradigm (87–89). In future studies, the possibility

of performing cognitive tasks while sitting could be considered.

Fifth, although none of the participants reported attentional

deficit as a specific symptom, we did not assess this aspect

in a standardized and structured way, thus an effect cannot

theoretically be ruled out. Sixth, we focused our analysis on

disease and age groups therefore we did not test the independent

effect of age across neurological diseases and cLBP. However,

we do not expect this to have substantially affected our data,

as we consistently compared disease groups with both older

and younger adults in our calculations. Similarly, we focused on

the differences across groups without assessing the independent

effect of disease severity or functional scores. Future studies will

be useful to address this issue. Finally, ST and DT, as well as SRT

and Stroop conditions, were performed consecutively. Thus, we

cannot rule out that at least some improvement between ST and

DT may be explained by a learning effect.

Conclusion

DT while walking has a different effect on cognition

depending on the complexity of the cognitive task. Cognitive

tasks that are more complex and involve executive functions

showed lower cognitive DTC and even better cognitive

performance in DT than in ST. The underlying mechanisms

could involve task prioritization, cross-talk interaction, or a

combination of learning processes and interference between

the two tasks. Age and disease group did not have a

relevant effect on cognitive DTC in our cohort. These findings

could help movement disorder specialists, neurologists, general

practitioners, allied health therapists and patients to interpret

the interaction between cognitive abilities and walking in a

context that more closely reflects everyday walking conditions,

and could be useful to industry and academic principal

investigators to design effective assessment batteries that focus

on DTC.
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