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Background: Cerebral microbleeds (CMBs) may have a di�erential impact

on clinical outcome in stroke patients with atrial fibrillation (AF) treated with

di�erent types of oral anticoagulation (OAC).

Methods: Observational single-center study on AF-stroke-patients

treated with OAC. Magnetic-resonance-imaging was performed to assess

CMBs. Outcome measures consisted of recurrent ischemic stroke (IS),

intracranial hemorrhage (ICH), death, and their combined analysis. Functional

disability was assessed by mRS. Using adjusted logistic regression and Cox

proportional-hazards models, we assessed the association of the presence of

CMBs andOAC type (vitamin K antagonists [VKAs] vs. direct oral anticoagulants

[DOACs]) with clinical outcome.

Results: Of 310 AF-stroke patients treated with OAC [DOACs: n = 234 (75%);

VKAs: n= 76 (25%)], CMBs were present in 86 (28%) patients; of these, 66 (77%)

received DOACs. In both groups, CMBs were associated with an increased risk

for the composite outcome: VKAs: HR 3.654 [1.614; 8.277]; p= 0.002; DOACs:

HR 2.230 [1.233; 4.034]; p = 0.008. Patients with CMBs had ∼50% higher

absolute rates of the composite outcome compared to the overall cohort, with

a comparable ratio between treatment groups [VKAs 13/20(65%) vs. DOACs

19/66(29%); p < 0.01]. The VKA-group had a 2-fold higher IS [VKAs:4 (20%)
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vs. DOACs:6 (9%); p = 0.35] and a 10-fold higher ICH rate [VKAs: 3 (15%) vs.

DOACs: 1 (1.5%); p = 0.038]. No significant interaction was observed between

type of OAC and presence of CMBs. DOAC-patients showed a significantly

better functional outcome (OR 0.40 [0.17; 0.94]; p = 0.04).

Conclusions: In AF-stroke patients treated with OAC, the presence of CMBs

was associated with an unfavorable composite outcome for both VKAs

and DOACs, with a higher risk for recurrent IS than for ICH. Strokes were

numerically higher under VKAs and increased in the presence of CMBs.

Clinical trial registration: http://www.clinicaltrials.gov, Unique

identifier: NCT03826927.

KEYWORDS

stroke, atrial fibrillation, anticoagulation, direct-acting oral anticoagulant, cerebral

microbleeds, small vessel disease, vitamin K anticoagulants

Introduction

Due to the more favorable safety profile regarding

intracranial hemorrhage (ICH), direct oral anticoagulants

(DOACs) and not vitamin K antagonists (VKAs) have

emerged as first-line treatment in secondary ischemic stroke

(IS) prevention related to non-valvular atrial fibrillation

(AF) (1). The prevalence of cerebral microbleeds (CMBs)—

small brain hemorrhages associated with cerebral small

vessel disease (SVD) upon heme-sensitive magnetic resonance

imaging (MRI)—increases with age and in patients with

AF (2–4).

The presence of CMBs in stroke patients receiving

antithrombotic medication for secondary prevention

has been shown to be associated with an increased risk

of both ICH and recurrent IS, with the absolute risk

being higher for IS (5–9). However, in these studies,

patients with different stroke etiologies and thus different

antithrombotics for secondary stroke prevention—i.e.,

antiplatelet therapy or oral anticoagulation (OAC)—

were included and data on the impact of CMBs on

prognosis in different types of OAC, i.e., DOAC vs. VKA,

are limited.

Thus, it remains unclear whether the type of OAC in AF-

related stroke has a different impact on the clinical course in

patients with CMBs than those without. The aim of our study

is to address this issue.

Abbreviations: CMBs, Cerebral microbleeds; AF, Atrial fibrillation; OAC,

Oral anticoagulant; IS, Ischemic stroke; ICH, Intracranial hemorrhage;

mRS, modified Rankin Scale; VKA, Vitamin K antagonist; DOAC, Direct

oral anticoagulant; SVD, small vessel disease; MRI, magnetic resonance

imaging; SWI, susceptibility-weighted imaging.

Methods

We included consecutive patients between April 2013 and

August 2016 from our prospective, ongoing registry on Novel

Oral Anticoagulants in Ischemic Stroke Patients (NOACISP)-

LONGTERM, which was conducted at the Stroke Center of the

University Hospital Basel. The registry has been approved by the

local ethics committee (BASEC PB_2016_00662).

Methodological details have been previously described (8).

In brief, patients were treated with OAC for secondary

prevention for IS or TIA related to AF. All patients

were included in this study, even if they had, e.g., renal

insufficiency, mechanical heart valve or active tumor disease.

Of note, the decision to treat with a DOAC or a VKA

was made based on clinical grounds. Study procedure

included a minimum follow-up of at least 3 months and

an available brain MRI from the index event, including

susceptibility-weighted imaging (SWI) with whole-brain

coverage allowing to assess the presence, number and

localization of CMBs. We assessed relevant demographic

and clinical measures as well as the type of OAC. Outcome

measures were: (i) recurrent IS, (ii) ICH, and (iii) death,

analyzed separately and as composite outcome. Furthermore,

we assessed functional disability based on the modified

Rankin Scale (mRS), an ordinal scale measuring the

degree of neurological disability, ranging from 0—“no

symptoms” to 6—“death,” 3, 6, 12, and 24 months after the

qualifying event.

Baseline demographics and clinical data are presented by

type of OAC. Continuous data was presented as mean or median

and interquartile ratio (IQR) in case of skewed data. Categorical

data was presented as count and frequency. Categorical variables

were compared using a Chi-square test, continuous variables

using a t-test, or in case of skewed data a Mann–Whitney U

test. Written informed consent was obtained from all patients.
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Number of events was summarized by type of OAC and presence

of CMBs.

The association of CMBs and OAC type with the composite

outcome was analyzed using Cox proportional-hazards models.

First, we fit a simple model including presence or absence of

CMBs, type of OAC (DOAC or VKA) adjusting for the following

risk factors: age, sex, hypertension, diabetes, smoking, alcohol

consumption, hyperlipidemia, baseline stroke severity (NIHSS),

renal function (glomerular filtration rate), as well as additive

antiplatelet therapy.

Second, we refit the model adding an interaction term

between CMBs and type of OAC to assess whether the

type of OAC modifies the effect of CMBs. A survival curve

was estimated non-parametrically for the composite outcome

stratified to type of OAC and CMBs. The number of each

event separately was summarized by type of OAC and presence

of CMBs. The number of events in patients treated with

DOACs and VKAs was compared using a Chi-square test with

continuity correction.

Finally, we assessed the mRS at 3, 6, 12, and 24 months in a

mixed-effects ordered logistic regression model using the same

two steps approach as described above, additionally adjusted

for the pre-mRS. We also assessed the interaction between

the mRS, type of OAC and CMB burden with a mixed-effects

ordered logistic regression model. Our analysis was conducted

in accordance with the STROBE criteria for observational

studies (10).

Results

Baseline demographics and clinical data are shown in

Table 1. Overall, we included 310 patients treated with OAC

(aged 78.1 ± 9.2years, 46.1% female), with a median follow-

up time of 735.5 days (IQR = [498; 814]). Of these, 234 (75%)

were treated with DOACs and 76 (25%) with VKAs. CMBs

were present in 86 (28%) patients; of these, 66 (77%) were

treated with DOACs and 20 (23%) with VKAs, thus comparable

to the overall cohort (Supplementary Figure 1). There were no

differences between the two treatment groups regarding baseline

characteristics, including demographics and vascular risk factors

(Table 1), except for renal function (GFR (mean [SD]): VKA 59.1

ml/min/1.7 m2 [± 23.7] vs. DOAC 70.2 ml/min/1.7 m2 [± 18.3];

p < 0.001). In addition, the CHA2DS2-VASc-score differed by

one point in the overall cohort (VKA 6.0 [5.0, 7.0] vs. DOAC

5.0 [4.0, 6.0]; p = 0.003), but was the same between treatment

groups with CMBs [VKAs: 6 (4.25–6) vs. DOACs: 6 (5–6.75);

p = 0.32]. The VKA and DOAC groups did not differ regarding

presence or localization of CMBs [DOAC 66 (28%) vs. VKA 20

(26%); p= 0.863].

Within the cohort of 310 patients, recurrent IS (n = 21)

occurred more frequently than ICH (n = 7) during the follow-

up period. A comparable ratio was observed within the subgroup

of patients with CMBs: 10 recurrent IS vs. 4 ICH. Overall,

48 patients died during the follow-up period; of these, 18

had CMBs.

Overall, the composite outcome occurred half as often in

DOACs treated patients compared to those on VKAs [46/234

(20%) vs. 30/76 (39%); p < 0.01]. The same significant ratio,

just with ∼50% higher absolute rates compared to the overall

cohort, was observed in the subgroups with CMBs [DOACs:

19/66 (29%) vs. VKAs: 13/20 (65%); p < 0.01].

Three patients in the VKA group had a mechanical heart

valve as an important concomitant diagnosis; each of them had

at least one CMB. One of them had an ischemic stroke.

Patients with CMBs had a more than doubled hazard

ratio for the combined outcome measure compared to patients

without CMBs in the adjusted time-to-event analysis (HR

2.629 [1.616; 4.277]; p < 0.001). Treatment with a DOAC was

associated with a decreased hazard for the combined outcome of

approximately half compared to a VKA (HR 0.482 [0.290; 0.801];

p= 0.005).

In patients treated with VKAs, presence of CMBs was

associated with a more than 3-fold hazard increase compared

to absence of CMBs in the adjusted analysis (HR 3.654 [1.614;

8.277]; p = 0.002; Figure 1, red line vs. purple line). To a lesser

extend this was also the case for DOAC treated patients (HR

2.230 [1.233; 4.034]; p= 0.008; Figure 1, blue line vs. green line).

In line with these findings for both treatment groups, we did not

observe a significant interaction between the type of OAC and

CMBs in the adjusted analysis, but treatment with DOACs in

the presence of CMBs reduced the hazard compared to VKAs by

factor 0.610 (HR 0.610 [0.224; 1.660]; p= 0.333).

Looking at the outcome events separately, we observed a 2-

fold increased rate of recurrent IS in the VKA-group with CMBs

compared to the DOAC-group with CMBs [4 (20%) vs. 6 (9%);

p = 0.35], while the rate of ICH—which was absolutely lower

than for recurrent IS—was 10-fold higher in the VKA-group in

the presence of CMBs [VKAs: 3 (15%) vs. DOACs: 1 (1.5%);

p= 0.038].

We did not observe any association of presence or absence

of CMBs on functional outcome assessed by mRS, but there was

a significantly better functional outcome in patients treated with

DOACs (OR 0.40 [0.17; 0.94]; p < 0.04) in the adjusted analysis.

When including the interaction between the type of OAC and

presence of CMBs, no effect modification was found (OR 0.62

[0.10; 3.84]; p= 0.61).

Discussion

In the present study, we observed that the presence of CMBs

in patients treated with OAC was associated with a more than 2-

fold increased risk for the occurrence of the combined outcome

of recurrent IS, ICH or death over a treatment period of 2 years,

for both types of OAC, DOACs, and VKAs. Anticoagulation
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TABLE 1 Patient characteristics by anticoagulation at baseline.

VKA

(n = 76)

DOAC

(n = 234)

p-Value

Demographics

Age, years (mean) [SD] 79.4 [9.1] 77.7 [9.2] 0.172

Sex=male, n (%) 35 (46.1) 132 (56.4) 0.149

Medication

Only DOACs, n (%) – 216 (92.3)

DOACs/antiplatelet, n (%) – 18 (7.7)

Only VKAs, n (%) 61 (80.3) –

VKAs/antiplatelet, n (%) 15 (19.7) –

Vascular risk factors

Hypertension, n (%) 61 (80.3) 175 (74.8) 0.413

Diabetes, n (%) 15 (19.7) 47 (20.1) 1.000

Hyperlipidemia, n (%) 31 (40.8) 89 (38.0) 0.770

Kidney function, GFR (CKD-EPI: ml/min/1.7) [SD] 59.1 [23.7] 70.2 [18.3] <0.001

Smoking, n (%) 5 (6.6) 15 (6.4) 0.822

Alcohol consumption, n (%) 5 (6.6) 17 (7.3) 0.816

NIHSS at baseline (median [IQR]) 4.0 [2.0, 7.2] 3.0 [1.0, 7.0] 0.447

Follow-up time, days (median [IQR]) 740 [645; 821] 716.5 [179; 784]

Microbleeds, n (%) 20 (26.3) 66 (28.2) 0.863

Superficial 13 (17.1) 41 (17.5)

Deep 13 (17.1) 37 (15.8)

Cerebellum 8 (10.5) 15 (6.4)

Brainstem 4 (5.3) 9 (3.8)

SD, Standardized difference; VKAs, Vitamin K antagonists; DOAC, direct oral anticoagulants; GFR, glomerular infiltration rate.

with DOACs was associated with an ∼50% reduction of the

event rate compared to VKAs. The presence of CMBs increased

this risk for both groups, more so in the VKA-group, however,

without significant interaction between the type of OAC and the

presence of CMBs. Overall, IS emerged more often than ICH,

with ICH especially occurring in patients with CMBs treated

with VKAs. Finally, treatment with DOACs was associated with

a more favorable functional outcome, while the presence of

CMBs did not have an impact.

Our study extends previous findings on the impact of

the presence of CMBs on outcome in stroke patients on

antithrombotic treatment (5–9, 11). While previous studies

included various subtypes of strokes treated with different

antithrombotics, including OAC but also antiplatelet treatment,

we focused on AF-related stroke patients on OAC, looking at the

different types of OAC in more detail. Both treatment groups

had similar baseline characteristics, except—as expected—

regarding renal function.

Recent studies did not report a clear influence of the type of

OAC on the risk of ICH in subjects with CMBs (5, 7). In contrast

to a meta-analysis of observational studies (9), recent post hoc

analysis of the RCT NAVIGATE ESUS found no indication

of interaction between the effects of rivaroxaban and CMBs

for the outcome of ICH (12). Patients in NAVIGATE ESUS

had an embolic stroke of unknown primary (ESUS) and were

randomized for treatment of aspirin vs. rivaroxaban. The post

hoc analysis investigated the influence of CMBs. The authors

report a 1.5-fold increased risk of recurrent stroke (hazard

ratio [HR], 1.5; 95%CI, 1.0–2.3), a 4-fold risk of intracerebral

hemorrhage (HR, 4.2; 95%CI, 1.3-13.9), and a 2-fold risk of all-

cause mortality (HR, 2.1; 95%CI, 1.1-4.3) in patients with at least

one CMB at baseline.

In difference to our study, NAVIGATE ESUS did not

differ significantly regarding the risk of recurrent stroke among

patients with CMBs (HR, 1.68; 95%CI, 0.79–3.56) and those

without CMBs (HR, 0.99; 95% CI, 0.73–1.35). No significant

interaction was observed (P = 0.33), therefore the authors

concluded that CMBs did not appear to influence effects of

rivaroxaban on the outcome of ICH.

In our study, besides ICH, we also included recurrent IS and

death as outcome measures in our analyses. Of note, we found a

comparable association of CMBs for both treatment groups, yet

with a higher hazard ratio in the VKA treated patients.

Overall, as illustrated in Figure 1, the clinical course was

most unfavorable in subjects with CMBs treated with VKA (red

line). In contrast, the course of patients without CMBs treated
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FIGURE 1

Non-parametric estimation of the survival curves for combined outcome events by type of OAC and CMBs.

with VKA (Figure 1, purple line) was very much comparable

to that observed in patients with CMBs on DOACs (Figure 1,

blue line). Overall—since the effect of CMBs was observed for

both types of OAC—there was no clear interaction. Still, Figure 1

illustrates a shift toward a more unfavorable course for both,

type of OAC and presence of CMBs, underscoring the potential

benefits of DOACs over VKAs in the light of CMBs. In our real-

life data, the composite outcome occurred twice as often in the

VKA treated group, with an ∼50% higher absolute rate in the

presence of CMBs. In line with this, CMBs approximately double

the risk for an outcome event in the time-to-event analysis, while

it was halved in the DOAC- compared to the VKA-group. In

the presence of CMBs, the effect of a DOAC treatment was

especially observed for ICH, being aware that the numbers of

this outcome event were overall low. In the CROMIS-2 study,

there also was a lower proportion of DOAC-exposed patients

among those who suffered an ICH compared to VKA exposure

(14% vs. 86%), however, without reaching statistical significance

(5). The MOASIS-AF study investigated 393 AF-patients with

an acute IS and present CMBs, of whom 285 were treated with

VKAs and 108 with DOACs. A significant association with

the composite outcome of stroke, myocardial infarction, and

vascular death was observed in the VKA-group (adjusted HR,

2.12; 95% Cl, 1.32–3.43), whereas no association was found in

the DOAC-group (adjusted HR, 1.42; 95% Cl, 0.49–4.10) (13).

As in our previous study (8), CMBs were not associated with

functional outcome as assessed by the modified Rankin Scale

(mRS). In contrast, this was the case with respect to the type of

OAC, with a better functional outcome in patients treated with a

DOAC. This could be related to the lower rate of IS and ICH in

this group.

Our study has some limitations. First, our data are

observational rather than randomized. However, our

findings are based on real-world data of patients treated at

a comprehensive and specialized institution, with a prospective

assessment of meaningful clinical endpoints, including

cerebrovascular events, mortality, and functional outcome.

Second, we did not perform longitudinal MR-imaging in our

cohort, thus we cannot comment on the course of CMBs under

different types of OAC. Two observational studies compared

the progression of CMBs in IS patients with AF receiving

DOACs or VKAs over 12 and 34 months, respectively. Both

studies found an increase of CMBs in the VKA compared to

the DOAC groups (14, 15). Another retrospective study also

provided evidence that the number of CMBs is lower in DOAC

than VKA-associated ICH (16). Our treatment groups did not

differ regarding presence and localization of CMBs at baseline

(8) and our study focussed on the analysis of the prognostic

effect of CMBs in a representative cohort of AF-stroke patients

treated with different types of OAC.
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Third, both treatment groups differed regarding renal

function with a lower GFR in the VKA-group. Severe chronic

kidney disease (CKD) is a reason to prefer VKAs instead of

DOACs, but CKD is also an independent risk factor of both

ischemic and hemorrhagic strokes and cerebral small vessel

disease (17, 18). Moreover, the CKD stages correlate with the

frequency of CMBs (19, 20), possibly explained by common

pathogenesis of end-organ damage (21). However, we did not

find a difference between the frequency of CMBs between the

two treatment groups, and we adjusted for renal function in

our analyses.

The CHA2DS2-VASc-score surprisingly differed between

the two treatment groups, although most of their individual

variables were very similar (Table 1). Since we did not measure

all individual variables, we can only assume that this is a

cumulative effect, since all variables in the VKA group were

slightly “worse” and thus may have added up to a significant

difference. Importantly, the CHA2DS2-VASc-score was the

same between the treatment groups with CMBs. Due to the

limited number of outcome events, in particular ICH, we

refrained from adjusting for the CHA2DS2-VASc-score.

We also included patients with mechanical heart valves

in our analysis, which is known to be a risk factor for

thromboembolic complications (22) and was probably the

reason why the physician chose a VKA instead of a DOAC

(23, 24). However, there were only 3 patients, one of whom

suffered an ischemic stroke. If these patients were excluded, the

difference in ischemic strokes would be only slightly decreased,

while it would be even greater in the composite outcome and in

ICH and deaths. Overall, however, this would not have a major

impact on our results, therefore we included these patients in our

analyses.

Lastly, the small number of events—especially ICH—

prohibits the use of a multistate model. However, from a clinical

perspective, the low numbers of outcome events indicate that

for both types of OAC, subjects with CMBs were not exposed

to exceedingly high risk.

Our study has several strengths. It is a prospective

cohort study with a comprehensive and standardized clinical

assessment and regular follow-ups over the entire period,

thus reflecting current standard of care of AF-stroke patients.

Patients were treated and enrolled at our comprehensive stroke

center, being the referral center for the entire north-western

region in Switzerland. Therefore, our cohort is likely to be a

representative stroke cohort related to AF. Treatment decisions

were made individually by experienced stroke neurologists

at our center according to standard operating procedures,

thus reflecting current standard of care of AF-stroke patients.

All subjects underwent a standardized stroke MRI with the

appropriate sequences, and images were evaluated by three

experienced readers blinded to treatment and outcome. High

data completeness −98.7% had at least one mRS follow-

up—accounting for potential confounders reduced the risk of

spurious findings. Besides cerebrovascular events, we included

mortality and disability in our analyses, thus extending previous

results. Finally, in contrast to the previous studies (5, 7, 11), our

cohort included a high rate of subjects treated with DOACs,

which nowadays is considered the standard of care for non-

valvular AF.

In conclusion, in our cohort of patients with an acute IS, or

TIA related to AF, the presence of CMBs was associated with an

increased risk of the composite outcome—recurrent IS and ICH

and death—for both VKAs and DOACs. Although there was no

significant interaction, rates were numerically higher in patients

on VKAs for all outcomes—especially for ICH—compared to

DOACs. Our findings suggest that among AF-stroke patients,

the presence of CMBs may be a clinically meaningful marker for

treatment decisions. However, randomized controlled trials are

needed to prove this.
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