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Vestibular Migraine (VM) is the most common cause of non-positional

episodic vestibular symptoms. Patients with VM commonly report increased

motion sensitivity, suggesting that vestibular responses to head movement

may identify changes specific to VM patients. Here we explore whether the

vestibulo-ocular reflex (VOR) gain alters in response to a clinical “headshake”

maneuver in patients with VM. Thirty patients with VM in the inter-ictal phase,

16 patients with Benign Positional Paroxysmal Vertigo (BPPV) and 15 healthy

controls were recruited. Patients responded to the question “Do you feel sick

reading in the passenger seat of a car?” and completed a validated motion

sickness questionnaire as a measure of motion sensitivity. Lateral canal vHIT

testing was performed before and after headshaking; the change in VOR gain

was calculated as the primary outcome. Baseline VOR gain was within normal

limits across all participants. There was no significant change in VOR gain after

headshaking in any group (p= 0.264). Patients were 4.3 times more likely to be

in the VM group than in the BPPV group if they reported nausea when reading

in the passenger seat of a car. We postulate that a headshake stimulus may be

insu�cient to disrupt cortical interactions and induce a change in VOR gain.

Alternatively, changes in VOR gain may only be apparent in the acute phase

of VM. Reading in the passenger seat of a car was considered uncomfortable

in all VM patients suggesting that this specific question may be useful for the

diagnosis of VM.
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Introduction

Vestibular Migraine (VM) is the most common cause of

non-positional episodic vestibular symptoms, affecting 1.4%

of the general population (1). The migrainous symptoms of

VM include recurrent headaches with heightened sensitivity to

sensory stimulus, nausea and/or vomiting (2) with recurrent

episodic vertigo attacks lasting minutes to several hours (3).

The pathophysiology of VM is incompletely understood and the

diagnosis is based on clinical features as there are no objective

biomarkers to provide a definitive diagnosis (4).

From a clinical perspective, there is a need for an

objective marker for VM that can be applied in the clinical

setting. A sensitive test for VM would enable clinicians to

differentiate between VM and other vestibular disorders with

overlapping symptoms (e.g., Meniere’s disease). Moreover, a

clinical biomarker would facilitate an earlier diagnosis of VM,

a major limitation of the current diagnostic criteria that require

at least five episodes for diagnosis (3); thus, patients may be

underdiagnosed and consequently inappropriately treated when

presenting with the first few attacks.

The development of clinical biomarkers may be informed by

the nature of patient-reported symptoms in VM. Thus, patients

with VM commonly describe excessive motion sensitivity (5, 6),

suggesting a role for impaired visuo-vestibular interactions as an

underlying mechanism of VM symptoms (7). Other hypotheses

to account for vestibular symptoms experienced by VM patients

include abnormalities in the integration of inner ear semi-

circular canals (SCC) and otolith afferents, and between these

and other sensory modalities (e.g., vision) (8), a mechanism that

may account for increased head movement induced dizziness

and disorientation in VM (9).

A clinical test involving head movement is head-shaking

nystagmus (HSN) (10, 11). Here, the head is tilted forward

30 degrees and rotated to the left and right in the yaw

plane in order to elicit subclinical vestibular abnormalities by

activation of the velocity storage mechamsim that prolongs

the time constant of the rotational vestibulo-ocular reflex

(VOR) (10–12). This test is abnormal mostly in peripheral

disorders, however, abnormalities have been described in central

disorders, including “perverted” HSN (13–16) and in patients

with recurrent spontaneous vertigo with interictal HSN—where

horizntal HSN nystagmus can be found in the absence of

peripheral dysfunction (17). Central HSN may arise from an

assymetry in the velocity storage mechanism, central gain or

the central adaptation, or from an abnormal cross-coupling of

velocity storage pathways (18).

It is a recognized finding that patients with VM may have

abnormally elevated VOR (nystagmic) responses to water caloric

irrigation (19, 20). This is thought to be due to a hyper-excitable

vestibular network leading to increased motion sensitivity. To

our knowledge changes in vestibular excitability that can be

induced by head shaking has not been previously explored.

Here we explore the change in VOR gain using the video head

impulse test (vHIT) following a clinical “headshake” maneuver

in patients with VM. We also explore the frequency of motion

sensitivity in VM and BPPV as measured using questionnaires.

Methods

Patients with VM and healthy controls (HC) were invited

to participate. Participants were recruited from neuro-otology

clinics in the United Kingdom and Argentina from 1st

November 2020 to 30th June 2021. All patients were diagnosed

by a Neurologist with expertise in VM (DK and SC) and

met the criteria for VM by Bárány (3) or the third edition

of the International Classification of Headache Disorders (21).

Patients with benign paroxysmal positional vertigo (BPPV) were

recruited as a disease control, following first diagnosis, prior

to treatment repositioning maneuvers, and in accordance with

established diagnostic criteria (22). VM participants were on

various prophylaxis medications. All participants had an attack

within the last year and were tested in the inter-ictal phase.

Participants with eye movement abnormalities, ocular

pathologies affecting detection of pupils, or neck problems that

could interfere with the headshake were excluded. In addition,

patients with an overlap of two or more diagnoses were not

included in this study.

Sample size calculation was performed using the outcomes

and effect sizes from Bednarczuk et al. (7). The authors found

a significant increase in rotation thresholds in VM patients

following prolonged optokinetic stimulation. When using the

effect size found in this study, for a power of 80% and a

significance of 0.05, the required sample size was 4. Given the

small estimated sample size required in view of the expected

variability in neurophysiological outcomes in patients with VM,

30 patients with VM were recruited.

Before being tested, we evaluated patients’ motion sickness

susceptibility by asking: “Do you feel sick reading in the

passenger seat of a car?” and asked them to complete the Motion

Sickness Susceptibility Questionnaire (MSSQ).

vHIT testing, prior to head shaking (PRE-HS) was

performed for the right and left lateral semicircular canal in

each ear independently. A minimum of 20 head thrusts with a

head displacement of 10–20 degrees, and a range of peak head

velocities (150–200 deg/s) and peak head acceleration (1,200–

2,500 deg/s) were obtained for each lateral semicircular canal.

The VOR gain was defined as the sum of eye movement velocity

divided by the sum of head movement velocity during head

turn. The normal VOR gain value is 1.0 which means there is

compensatory eye velocity which is equal to head velocity in the

opposite direction (23).

Immediately following vHIT testing, a standard clinical

headshake was carried out. Participants were asked to close their

eyes and tilt their head downward by 30 degrees to ensure their
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FIGURE 1

Representative trace of a 2Hz head shaking using the

accelerometer in a graph format. Headshake stimulus using an

accelerometer was measured in the y-axis.

lateral canals were on its horizontal axis; the participant’s head

was then passively oscillated from side to side at a frequency

of 2Hz for a total of 30 s. To ensure there was no variability

in headshake between participants, an accelerometer was used

to control and measure each headshake (Figure 1) secured over

the participant’s occiput using a tight velcro strap that did not

interfere with the vHIT setup. Immediately following headshake,

a second vHIT (post head shaking, POST-HS) to test lateral

SCCs was performed. Participant instructions, test set-up and

vHIT testing parameters remained the same as for the PRE-

HS vHIT.

Data analysis

Data was analyzed using Shapiro-Wilk test to identify the

distribution. A normal distribution was observed so parametric

testing was used. Change in VOR gain was calculated as

POST-HS VOR gain subtracted from PRE-HS VOR gain.

Bonferroni correction post hoc analysis was used. Significance

was considered when p < 0.05. All statistical analysis was

performed using Statistical Package for Social Sciences (SPSS,

Version 27, IBM Corporation, NY). Paired sample t-test was

used to compare pre- and post-VOR gain. Two-way mixed

model analysis of variance (ANOVA) was used to compare the

means of VOR gain pre vs. post headshake between VM, BPPV

group, and HC group. To compare the change in VOR gain

between pre- and post- between groups a one-way ANOVA

was performed.

Results

Thirty patients with VM (mean age 48.3, age range 28–67, 22

female/8 male), 16 participants with BPPV (mean age 52.1, age

range 31–66, 10 female/6 male), and 15 healthy controls (mean

age 43.0, age range 27–65, 10 female/5 male) were recruited

for this research study, following informed written consent.

FIGURE 2

Mean pre and post headshake VOR gain for each group. HC,

healthy controls; BPPV, benign paroxysmal positional vertigo;

VM, vestibular migraine.

All participants in the three groups (VM, BPPV, and HC) had

baseline VOR gain within normal limits. Nevertheless, BPPV

patients had significantly higher mean VOR gain compared to

the VM patients (p < 0.01 for PRE-HS, and p < 0.001 for POST-

HS) that also trended toward significance with the HC (p =

0.067 for PRE-HS, and p= 0.068 for POST-HS), in keeping with

previous reports (7).

Repeated measures ANOVA showed no statistically

significant interaction between time∗group on VOR gain PRE-

and POST-HS (p = 0.711). The main effect of time was not

statistically different for mean VOR gain at the different time

points (PRE- and POST-HS) (p = 0.264) (Figure 2). As there

was no effect of headshake within groups (VM, BPPV, HC), the

PRE- and POST-HS VOR gains were grouped to provide a total

mean vHIT VOR gain value per group.

One way ANOVA revealed a statistically significant

difference in the total mean VOR gain between the three groups

(F = 9.725, p < 0.001). Post hoc analysis showed this was driven

by a difference between the BPPV and VM group (p < 0.001),

and this time the difference between BPPV and HC was also

significant (p= 0.04). Again, there was no statistical significance

between the VM and HC groups (p= 0.473).

The change in VOR gain was calculated by subtracting

the VOR gain POST-HS from VOR gain PRE-HS. In all

three groups, this value showed an increase in mean VOR

gain POST-HS compared to PRE-HS. The VM group had the

widest range of VOR gain change, while the other two groups

showed similar dispersion. One-way ANOVA however found no

significant differences between groups in the VOR gain change

(F = 0.343, p= 0.711).

Regarding the subjective measures, all patients with VM

referred feeling sick when reading in the passenger seat of a car,

while none of the HC and only 9 patients with BPPV replied

positively to this question. We calculated the odds ratio of a
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FIGURE 3

Representative trace of vHIT testing pre (A) and post (B) headshake in an VM patient in the acute phase. There was an increase of 0.165 in the

gain after the head oscillation (“headshaking”).

patient being in the VM group when replying “yes” to this

question with a result of patients being 4.3 times more likely

to be in the VM group than in the BPPV group. However,

patients with VM did not have significantly higher scores in the

MSSQ compared to BPPV patients (p = 0.92). Additionally, the

MSSQ score did not correlate with the change in VOR gain after

headshake (r= 0.17, p= 0.91).

Discussion

We show that patients with VM do not have heightened

VOR gain immediately following headshake compared to

patients with BPPV or healthy controls. Our data confirms

previous reports of heightened VOR gain in patients with BPPV

who have elevated VOR gain (here both PRE- and POST-HS)

compared to VM and healthy controls (7).

Headshaking was used in our paradigm to generate a

change in vestibular network excitability which could be non-

invasively measured using a simple bedside test. We postulate

that a clinical headshake stimulus may be insufficient to disrupt

cortical interactions and induce a change in VOR gain. This

study delivered a stimulus of 2Hz for 30 s, following clinical

headshaking nystagmus test protocols (10, 11). Although this

stimulus seems the most appropriate as it is already clinically

applicable, it would be of interest to discern whether changing

the frequency, duration, or amplitude of the headshake could

induce greater changes to the VOR gain. However, VM

patients are sensitive to head movements so performing a faster

headshake may not be tolerable for patients, thus limiting its use

clinically (24). Alternative stimuli, such as moving visual stimuli

may alter vestibular excitability thresholds via modulation

of visuo-vestibular interactions, without necessitating head

movements. Visual-vestibular interactions in patients with a

pre-existing peripheral vestibular disorder has been investigated

previously (7), where VOR thresholds were significantly

increased following visual motion exposure of 5min in VM

patients compared to migraine patients (without vestibular

symptoms) and BPPV patients. These findings support the

concept that visual stimulation alters normal visual-vestibular

network function in patients with VM and lend further support

to the notion that assessing vHIT pre and post prolonged visual

motion may be a suitable candidate as a possible biomarker,

although of lesser practicality, than the headshake employed in

this study.

Another explanation for the lack of change in VOR gain

following headshaking is that the VM patients included in the

study were in an inter-ictal phase. Whilst both perceptual and

cognitive deficits have been reported in the inter-ictal phase

in VM, and also patients with episodic vertigo from inner ear

pathologies, changes in VOR gain may be more pronounced

in the acute, ictal, phase (25). Indeed, in a single patient
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that was tested acutely (Figure 3), we observed an increase

in VOR gain POST-HS that was >2.5 standard deviations

of the mean POST-HS VOR gain of chronic VM patients

in our cohort.

In this study, we measured VOR gain using vHIT as a simple

method of recording VOR gain and a surrogate measure of

vestibular excitability. Other studies may explore canal-otolith

interactions, as dizziness in VM patients is provoked typically

when the superior semicircular canals and otolith organs are

stimulated simultaneously (9). Accordingly, the use of cervical

or ocular vestibular evokedmyogenic potentials (VEMP) instead

of vHIT could give information on saccule and utricle vestibular

function (26).

It is possible that a significant change in VOR gain between

PRE- and POST-HS was not seen because the vHIT is a supra-

threshold stimulus at high frequencies (above 5Hz), so increases

in gain are less likely when the VOR is already functioning at its

optimal level (23), thus representing a physiological ceiling effect

on the VOR. The fact that all VM patients but roughly half of the

BPPV patients and none of the HC in our study referred feeling

sick when reading in the passenger seat of a car and a heightened

motion susceptibility supports the idea that head motion could

be a variable of interest in the diagnosis of VM patients. Perhaps

the use of a low frequency test of VOR function may be a more

suitable stimulus, but not without its own limitations. Whilst

patients with VM report nausea or motion sickness symptoms

when reading in the passenger seat of a car, the MSSQ was not

significantly different for the VM group compared to disease and

healthy controls. That this specific compliant is more than four

times more likely to be a factor in VM relative to BPPV suggests

that a question specifically addressing concurrent visual and

motion stimuli in the context of motion sickness (i.e., reading

in a moving vehicle) may be more sensitive than a motion

susceptibility questionnaire for VM.

Given that this study was sufficiently powered to detect an

effect on VOR gain thresholds (7), physiological changes to the

high-frequency VOR gain may be less likely to occur where the

VOR may be functioning at ceiling. Future studies may need to

explore the use of lower-frequencyVOR stimuli to overcome this

potential limitation.

Conclusion

Patients with VM do not have heightened VOR gain

immediately following headshake in the inter-ictal phase.

Other studies may wish to apply this protocol in patients with

acute VM or use visual motion stimuli instead of headshaking

to alter visuo-vestibular interactions. Understanding the

pathophysiological mechanisms of VM and development of

simple clinical biomarkers are urgently needed to ensure timely

and accurate diagnosis of one of the most common episodic

vestibular disorders.
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