
TYPE Review

PUBLISHED 12 August 2022

DOI 10.3389/fneur.2022.971252

OPEN ACCESS

EDITED BY

Nikhil Panicker,

Johns Hopkins Medicine, United States

REVIEWED BY

Suzanne Lesage,

Institut National de la Santé et de la

Recherche Médicale (INSERM), France

Mukesh Gautam,

Northwestern University, United States

*CORRESPONDENCE

Anthony H. V. Schapira

a.schapira@ucl.ac.uk

SPECIALTY SECTION

This article was submitted to

Neurogenetics,

a section of the journal

Frontiers in Neurology

RECEIVED 16 June 2022

ACCEPTED 25 July 2022

PUBLISHED 12 August 2022

CITATION

Smith LJ, Lee C-Y, Menozzi E and

Schapira AHV (2022) Genetic variations

in GBA1 and LRRK2 genes:

Biochemical and clinical

consequences in Parkinson disease.

Front. Neurol. 13:971252.

doi: 10.3389/fneur.2022.971252

COPYRIGHT

© 2022 Smith, Lee, Menozzi and

Schapira. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Genetic variations in GBA1 and
LRRK2 genes: Biochemical and
clinical consequences in
Parkinson disease

Laura J. Smith1,2, Chiao-Yin Lee1,2, Elisa Menozzi1,2 and
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Variants in the GBA1 and LRRK2 genes are the most common genetic risk

factors associated with Parkinson disease (PD). Both genes are associated

with lysosomal and autophagic pathways, with the GBA1 gene encoding

for the lysosomal enzyme, glucocerebrosidase (GCase) and the LRRK2 gene

encoding for the leucine-rich repeat kinase 2 enzyme. GBA1-associated PD is

characterized by earlier age at onset and more severe non-motor symptoms

compared to sporadic PD. Mutations in the GBA1 gene can be stratified

into severe, mild and risk variants depending on the clinical presentation of

disease. Both a loss- and gain- of function hypothesis has been proposed

for GBA1 variants and the functional consequences associated with each

variant is often linked to mutation severity. On the other hand, LRRK2-

associated PD is similar to sporadic PD, but with a more benign disease

course. Mutations in the LRRK2 gene occur in several structural domains and

a�ect phosphorylation of GTPases. Biochemical studies suggest a possible

convergence of GBA1 and LRRK2 pathways, with double mutant carriers

showing a milder phenotype compared to GBA1-associated PD. This review

compares GBA1 and LRRK2-associated PD, and highlights possible genotype-

phenotype associations forGBA1 and LRRK2 separately, based on biochemical

consequences of single variants.
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Introduction

Parkinson disease (PD) is the secondmost common neurodegenerative disorder. The

disease is characterized by the progressive loss of dopaminergic neurons in the substantia

nigra pars compacta (SNpc) and the presence of intracellular proteinaceous inclusions,

named Lewy bodies which are made up primarily of alpha-synuclein protein aggregates

(1, 2). PD patients exhibit a classic triad of motor symptoms including bradykinesia,

rigidity and resting tremor. A spectrum of non-motor symptoms has also been described,

including cognitive decline, sleep disturbances, hyposmia and psychiatric symptoms (3).
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Approximately 10–15% of all PD is caused by an identifiable

genetic mutation (4), with large genome wide association studies

(GWAS) having identified several additional genes and genetic

loci important in familial and sporadic PD, many of which are

associated with lysosomal and autophagic functions. Among

these are the GBA1 gene (OMIM 606463), which encodes

the lysosomal hydrolase enzyme glucocerebrosidase (GCase;

EC 3.2.1.45), and LRRK2 (OMIM 609007) which encodes the

leucine-rich repeat kinase 2 enzyme. Variants in these genes are

widely recognized as the two most common genetic risk factors

of PD worldwide (5–7).

In this review, we highlight the differences between GBA1

and LRRK2 variants, from both a clinical and biochemical

perspective, and disentangle the complexity and heterogeneity

of GBA1- and LRRK2-associated PD. We also summarize the

recent findings on PD patients carrying both GBA1 and LRRK2

variants, and their particular clinical phenotype compared

to single respective mutants, and possible pathomechanisms

involved. Understanding the functional consequences of these

variants and how they ultimately lead to specific PD phenotypes,

is crucial to develop novel, gene-targeting therapies and direct

patients to appropriate clinical trials.

The GBA1 gene to protein

The GBA1 gene and is located on chromosome 1 (1q21)

and is made up of 11 exons and 10 introns spanning a

sequence of 7.6 kb. It encodes a 60 kDa lysosomal hydrolase

enzyme, glucocerebrosidase (GCase). Themature GCase peptide

consists of 497 residues and is comprised of three non-

continuous domains (as shown in Figure 1). The active site

is located in Domain III, which is a (β/α)8 triosephosphate

isomerase (TIM). Domain I consists of an antiparallel β-

sheet, and Domain II resembles an immunoglobulin fold

made up of 8 β-sheets (8–10). Within the mature GCase

structure are three important flexible loops, which cap the

active site. In an acidic environment, the conformation of loop

3 changes to allow substrates to access the active site (11,

12).

GCase cleaves the sphingolipid glucosylceramide (GlcCer)

into glucose and ceramide at the lysosome. Bi-allelic GBA1

mutations cause the lysosomal storage disorder Gaucher disease

(GD), which presents as widespread accumulation of GlcCer

and glucosylsphingosine (GlcSph) within the lysosomes of

many cell types, particularly macrophages, across several

tissues and organs. GCase is folded in the endoplasmic

reticulum (ER) and binds to the lysosomal integral membrane

protein type 2 (LIMP-2) to be trafficked to the lysosome,

through the secretory pathway where it undergoes N-linked

glycosylation (15–17). These post-translational modifications

are thought to be imperative to the production of a fully active

enzyme (18).

FIGURE 1

The X-ray structure of glucocerebrosidase (PDB code 3GXI).

Domain I is shown in orange. Domain II is shown in pink.

Domain III, the catalytic domain, is shown in blue and contains

the active-site residues E253 and E340 which are shown as

ball-and-stick models. The six significant glucocerebrosidase

variants (R120W, L444P, E326K, N370S, D409H, and RecNcil) are

shown with spheres. The color of the spheres corresponds with

the odds ratio associated with the variant: green (<5); yellow

(5–10) and red (>9) (13, 14). This figure was created using The

PyMOL Molecular Graphics System, Version 2.0 Schrödinger,

LLC.

Common GBA1 variants

Almost 300 unique variants have been reported in the GBA1

gene, which span the entire protein (Figure 1). These include

missense or non-sense mutations, insertions or deletions,

complex alleles and splice junction mutations. The point

mutations c.1226A>G (N370S) and c.1448T>C (L444P) are

the most commonly associated with GD (19, 20). Generally the

L444P variant causes a severe, neuronopathic type II or III GD,

whereas the N370S variant is generally associated with non-

neuronopathic type I GD (21). SomeGBA1mutations arise from

recombination events between the functional GBA1 gene and a

highly homologous pseudogene (GBA1P), an example of which

is the complex allele RecNcil (19, 20).

Many mutations in the GBA1 gene, including the common

R120W variant, occur in and around the active site, influencing

its stability and affecting enzyme activity. Other common

mutations including, D409H and L444P, occur far from the

active site, suggesting important roles for Domains I and II (9).

In the case of the L444P variant, the substitution of leucine

to proline causes rigidity in the protein backbone, potentially

disrupting the hydrophobicity of the domain (22) which may

influence protein folding. This variant is also thought to be

influenced by a lack of N-linked glycosylation and subsequent

structural instability (23). To date, the crystal structure of N370S

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2022.971252
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Smith et al. 10.3389/fneur.2022.971252

GBA1 is the only X-ray structure resolved. The N370S mutation

occurs at the interface of domains II and III (9) and prevents

stabilization of loop 3 at an acidic pH, impairing the ability of

GCase to bind its substrate (12, 24).

GBA1 variants and Parkinson disease

Biallelic or monoallelic variants in the GBA1 gene are found

in 10-15% of PD cases worldwide, and up to 30% of cases of

Ashkenazi Jewish (AJ) ancestry (25). The penetrance of GBA1

variants in PD is variable. The probability of developing PD

is ∼5–7 and 9–12% among GD patients and 1.5–14 and 8–

19% among GBA1 heterozygous carriers, by age 60 and 80,

respectively (3, 26–29).

Within PD, GBA1 gene variants are stratified into complex,

severe, mild and risk variants. The severity of a GBA1 mutation

is based upon the phenotype it presents when homozygous in

those with GD. Risk variants are referred to as such as they do

not present any clinical features of GD when homozygous or

compound heterozygous, but increase the risk of PD (30–32).

The type of variant differently influences the risk of PD,

with higher odd ratios (OR) for complex or severe variants (e.g.,

L444P), followed by mild (e.g., N370S) and risk (e.g., E326K)

variants (OR: 15, 4, and 2, respectively) (13, 14, 30, 33), as

highlighted in Figure 1.

GBA1-Parkinson disease: Clinical
picture and genotype-phenotype
associations

From a pathological point of view, GBA1 associated PD

(GBA1-PD) cases present with diffuse Lewy body pathology (34–

39). From a clinical perspective, the most striking differences

between GBA1-PD and sporadic PD cases are an earlier

presentation and more severe non-motor phenotype, mainly

within the cognitive, psychiatric, and olfactory domains (34,

40–44). However, this more severe phenotype is more clearly

recognizable in patients carrying complex or severe variants,

supporting a genotype-phenotype association (42, 45).

In terms of cognitive function, GBA1-PD patients with

mild or risk variants showed slower occurrence of cognitive

impairment compared to complex or severe variants (42, 45, 46),

or to non-carriers (47). Psychiatric symptoms, hallucinations

and hyposmia are also more common in GBA1-PD vs. non-

carriers (40, 42, 44, 48), and these are more frequent in carriers

of severe and complex variants compared tomild or risk variants

(42, 49).

Controversy surrounds disease progression in GBA1-PD. In

one study, GBA1-PD was characterized by a more aggressive

progression and reduced survival rates compared to non-

carriers (41), however, in another longitudinal study evaluating

AJ patients, no significant effect on survival of either severe or

mild variants was detected (50). When stratifying by variant

type, risk variants were associated with similar mortality rates

compared to non-carriers (51), with the greatest association with

increased mortality in patients carrying severe variants (46).

Severe variants are generally associated with faster

development of motor complications (42, 51). However, more

recent longitudinal studies suggest that GBA1 status does

not influence the risk of developing motor complications,

even where different types of variants were considered

separately (52–54).

Evaluating the biochemical consequences of GBA1 variants

and their relationship with clinical features may aid in

understanding of the complexity of GBA1-PD. Among markers

of GBA1 dysfunction, GCase enzymatic activity is the most

studied. GCase activity was found to be reduced in leucocytes

(42), dried blood spots (55–57), and cerebrospinal fluid (CSF)

(58) of patients with GBA1-PD compared to non-carriers.

GCase activity presented a steeper decline among GBA1-PD

patients according to variant severity (42). In a longitudinal

analysis, increasing severity of GBA1 variants was associated

with increasingly steeper decline in GCase activity, however

the latter was not correlated overall with increasing severity

of motor or cognitive features (56). Similarly, no genotype-

phenotype correlation was found between GCase enzymatic

activity and disease severity outcomes in a cross-sectional study

(57), suggesting that GCase enzymatic activity might not be a

reliable marker of disease severity or progression in GBA1-PD.

Longitudinal studies evaluating other biochemical consequences

of GBA1 dysfunction (e.g., sphingolipid metabolism), maybe in

combination with GCase deficiency, and their ultimate impact

on disease course, are needed.

GBA1 variants and Parkinson
disease: Pathogenic mechanisms

Both loss- and gain- of function pathways are proposed to

influence PD risk and onset (59, 60), and it is thought that

these two hypotheses are not mutually exclusive. An overview

of the pathogenic mechanisms associated with individual GBA1

mutations can be found in Table 1.

Variants in the GBA1 gene often lead to a loss of GCase

function. Analysis of GCase activity in the blood of PD patients

has demonstrated that patients with severe GBA1 mutations

exhibit a greater reduction in GCase activity when compared to

those with mild GBA1 mutations and risk variants (56). This is

supported by functional analysis of recombinant GCase protein,

showing that risk variants reduce GCase activity to a lesser

extent than GD-causing variants. The L444P and N370S variants

reduce catalytic activity by 75–97 and 65–97%, respectively,

whereas the E326K variant was associated with a 43–58%

reduction (10, 61–63). The same pattern has been observed in
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TABLE 1 Overview of the pathogenic mechanisms associated with the most common GBA1 variants associated with PD (L444P, N370S, and E326K).

Variant Severity GCase Activity ALP function Lipid homeostasis ER stress Alpha-synuclein

pathology

Mitochondrial

function

L444P Severe ↓↓↓ ↓ ↓ ↑↑↑ ↑ ↓

N370S Mild ↓ ↓ ↓ ↑ ↑ ↓

E326K Risk ↓ to a lesser extent – ↓ – ↑ –

(↓) denotes reduction in function, (↑) denotes an increase and (–) denotes unchanged or no literature surrounding this mechanism.

ALP, autophagy lysosomal pathway; ER, endoplasmic reticulum.

fibroblast lines from patients harboring these mutations (64).

However, this genotype-phenotype correlation is absent in one

study in induced pluripotent stem cell (iPSC)-derived dopamine

neurons where GCase activity was similarly reduced in L444P

and N370S variants (65).

A loss of GCase activity may explain some of the

downstream pathogenic mechanisms observed in models of

GBA1 variants, as in human cells a GCase deficiency was

associated with lysosomal dysfunction and alpha-synuclein

pathology (66). In iPSC-derived midbrain dopamine neurons,

the N370S variant has been associated with a significant

reduction in GCase activity and protein, accompanied by

impairment of the lysosome, altered distribution of GlcCer and

increased extracellular release of alpha-synuclein (67). Similarly,

in neural crest stem cell-derived midbrain dopamine neurons,

heterozygous N370S mutations cause a loss of GCase function,

impaired macroautophagy and alpha-synuclein pathology. This

was rescued by the small molecular chaperone, ambroxol,

suggesting these arose due to improper trafficking and activity

of N370S GCase protein (68).

In cells harboring the L444P mutation, impaired lysosomal

and autophagic function has been demonstrated, accompanied

by a significant reduction in GCase activity and protein

(69–71). However, contrary to the hypothesis that a loss of

GCase function is imperative for cellular pathology, in iPSC-

derived dopamine neurons from patients with homozygous and

heterozygous L444P and N370S mutations, activity did not

correlate with pathology. In homozygous lines, GCase activity

was reduced to a greater extent than heterozygous lines, however

no difference was observed in alpha-synuclein pathology and

autophagic defects (65).

Improper function of the autophagy-lysosomal pathway

(ALP) can lead to the aberrant metabolism of alpha-synuclein.

Such has been shown in models of L444P and N370S variants

(67, 68). In L444P heterozygous mice, a significant loss of GCase

activity led to an abundance of alpha-synuclein inclusions in

the brain and altered levels of GlcSph (72). This variant has

also been associated with increased neuronal vulnerability to and

accelerated spread of alpha-synuclein pathology inmice (73, 74).

It has also been proposed that there may be a genotype-

phenotype correlation between severe and mild GBA1 variants

and alpha-synuclein pathology. In SH-SY5Y cells, the L444P

variant was associated with a greater increase in alpha-synuclein

accumulation and stabilization, compared to N370S and wild-

type (75). Another study in fibroblasts and SH-SY5Y cells

demonstrated that both L444P and N370S fibroblasts exhibited

an increase in the release of extracellular vesicles compared

to control lines. However, alpha-synuclein pathology in SH-

SY5Y cells was only promoted when incubated with vesicles

isolated from L444P lines, and not N370S lines (76). In addition,

a recent study showed that the E326K and L444P variants,

despite different GCase activity, both presented comparable

levels of alpha-synuclein aggregates suggesting that loss of

GCase activity is not the only mechanism involved in alpha-

synuclein pathology and that other mechanisms are involved in

this process, especially for risk variants (64).

In addition to alpha-synuclein, the metabolism of lipids

can be affected by impairment of the ALP or mitochondria,

the latter of which has also been demonstrated in models

of L444P (70, 71) and N370S (77) variants. Changes in the

composition of glycosphingolipids has been demonstrated in

models of GBA1 variants, likely due to a loss of GCase function

and poor lysosomal and autophagic degradation. In mice with

N370S and L444P variants, a reduction in GCase function was

concurrent with an accumulation of GlcSph, which promoted

alpha-synuclein aggregation (78). Similarly, in N370S iPSC-

derived dopamine neurons an accumulation of GlcCer and

alpha-synuclein was observed (79).

Accumulation of glycosphingolipids may be key to

the pathology of L444P and N370S GBA1 variants as in

dopamine neurons with these variants, reducing the levels of

GlcCer/GlcSph rescued alpha-synuclein pathology (79, 80).

Interestingly, in one study of L444P mice an accumulation of

GlcSph alone was observed, which accelerated alpha-synuclein

aggregation (72). In fibroblasts from L444P heterozygous

patients, a significant increase in glycosphingolipids has

been demonstrated, which correlated with decreased GCase

activity. When these lipids were extracted and incubated with

recombinant alpha-synuclein, an increase in the pathogenic

aggregation of alpha-synuclein was observed, due to a

higher content of short-chain lipids in the L444P cells (81).

This may occur as lipid membrane dynamics are required
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for macroautophagy and chaperone mediated autophagy

(CMA) (82).

In addition to glycosphingolipids, the level of fatty acids may

be altered by GBA1 variants. In SH-SY5Y cells, expression of

the E326K variant led to increased accumulation and formation

of lipid droplets, which was accompanied by alpha-synuclein

aggregation (64), suggesting alterations in the metabolism of

several lipid types may be key to GBA1 pathology.

An additional pathogenic mechanism that has been

proposed for GBA1-associated PD arises from the toxic gain-

of-function hypothesis. As the majority of GBA1 variants are

missense, a misfolded protein is often produced and retained

in the endoplasmic reticulum (ER). This can activate ERAD,

and lead to a deficiency in enzyme level through degradation

and can activate pathway such as the unfolded protein response

(UPR) and eventual ER stress. In some studies, in fibroblasts

and Drosophila, activation of the UPR has been demonstrated

in L444P and N370S variants (83, 84). Conversely, other studies

have suggested a genotype-phenotype correlation between

variant severity of UPR activation. In fibroblasts and SH-SY5Y

cells, L444P has been associated with ER retention and ER stress,

which was absent in N370S and E326K cells (64, 84). In another

study, the severe L444P variant displayed extensive ERAD (85),

suggesting that the extent of ER stress may correlate with disease

severity, perhaps due to more pronounced conformational

changes. However, another fibroblast study has demonstrated

heterogeneity in ER retention and degradation across lines with

the N370S genotype (86), weakening the genotype-phenotype

correlation argument.

Overall, current evidence suggests that the mechanisms

in which GBA1 variants predispose to PD are multifaceted.

Different pathogenic mechanisms could explain the differences

in risk and phenotypes of PD for single variants, and future

studies will need to address these questions. The reasons why the

majority of GD patients or heterozygous carriers do not develop

PD, also remain unexplained.

GBA1-Parkinson disease: Current
and future therapeutic strategies

The discovery of the GBA1 gene in PD has opened a new

avenue to develop novel therapeutics for PD, with severalGBA1-

targeted strategies under development with the aim to enhance

GCase activity [reviewed in smith et al. (87)].

Significant focus is on the development of molecular

chaperones to penetrate the blood-brain-barrier (BBB) to bind

and refold GCase in the ER, facilitating trafficking and rescuing

enzyme activity (88). Within this class is the inhibitory, pH-

dependant small molecular chaperone, ambroxol (89), which

has been shown to increase GCase activity and reduce alpha-

synuclein pathology in several cell and animal models (68, 90–

95). Ambroxol has also demonstrated the ability to reduce

UPR activation in Drosophila models of GCase deficiency (84,

96). In Type 1 GD patients, ambroxol has been shown to be

safe and tolerable (ClinicalTrials.gov Identifier: NCT03950050)

(97) and results from a phase II, single-centre trial, in PD

patients with and without GBA1 mutations, demonstrate that

ambroxol can cross the BBB and enter the CSF where it

can alter GCase activity and protein level (ClinicalTrials.gov

Identifier: NCT02941822) (98). Ambroxol also increased the

alpha-synuclein concentration in the CSF and, importantly,

improved motor function. A phase III clinical trial of ambroxol

in treating PD is expected to commence in early 2023.

In addition to inhibitory chaperones, development of non-

inhibitory chaperones for GCase is underway. Two compounds,

NCGC758 and NCGC607, have been shown to improve GCase

trafficking and rescue glycosphingolipid and alpha-synuclein

accumulation in iPSC-derived dopamine neurons from GBA1-

PD patients (99, 100).

Allosteric modulator small molecules, that can bind and

enhance GCase activity, are also an area of interest. An example

of which is LT1-291, which has been shown to cross the BBB

(Trialregister.nl ID: NTR7299) (101). Pre-clinical studies have

demonstrated that LT1-291 can reduce substrate accumulation

(101), and this was also shown in a phase 1b placebo-controlled

trial in GBA1-PD patients (NL6574). Further clinical trials

are expected.

Small molecules are also being developed to modulate

GCase activity through targeting other proteins. An example

of this are histone deacetylase inhibitors (HDACis), which

have been shown to increase GCase activity by preventing its

ubiquitination and degradation (102, 103) or improving GCase

folding and trafficking (104) in GD fibroblasts.

Enzyme replacement therapy (ERT) has shown great efficacy

in improving the visceral symptoms of GD but fails to cross

the BBB (105). Currently research is underway to improve the

delivery of wild-type GCase enzyme and enhance its ability

to cross the BBB. This involves ligating a peptide, usually a

virus-associated protein, to the GCase enzyme (106). Denali

Therapeutics have recently developed the transport-vehicle-

modified recombinant GCase enzyme (ETV:GBA1) compound,

using their transport vehicle platform technology which has

the potential to actively transport enzymes across the BBB

(107). Preclinical research is underway with this compound, but

further studies are needed to investigate its efficacy in GBA1-

PD patients.

Another avenue being explored to deliver wild-type GCase

enzyme to the brain is gene therapy. Most commonly,

the GBA1 gene is ligated into the adeno-associated virus

(AAV) vector, and delivered to the brain. In mouse models

of GD this method has been shown to rescue GCase

activity and expression, reduce alpha-synuclein pathology and

decrease glycosphingolipid accumulation (108–111). Prevail

Therapeutics are currently testing their PR001A compound,

which delivers the GBA1 gene using the AAV-9 vector, in phase
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I clinical trials (ClinicalTrials.gov Identifier: NCT04127578

and NCT04411654).

Strategies targeted to GCase to reduce the accumulation

of glycosphingolipid substrates are also under development.

Substrate reduction therapy (SRT), miglustat, has shown

efficacy in reducing lipid accumulation in dopamine neurons

from PD patients with GBA1 mutations, and can reduce

alpha-synuclein pathology when coupled with GCase over-

expression (79). However, miglustat cannot cross the BBB.

Novel brain penetrant SRTs are therefore being developed.

Sanofi’s venglustat (GZ667161) had shown promise in GCase-

deficient synucleinopathy mice models, able to reduce alpha-

synuclein and glycosphingolipid accumulation and improve

cognitive function (112). The phase I trials of venglustat

demonstrated successful target engagement (ClinicalTrials.gov

Identifier: NCT01674036 and NCT01710826), however the

phase II trial failed to show a benefit, with patients with

GBA1 mutations exhibiting a decline in motor function in PD

(ClinicalTrials.gov Identifier: NCT02906020).

The LRRK2 gene to protein

The LRRK2 gene (also known as PARK8), first discovered

in 2002 encodes for the leucine-rich repeat kinase 2 (LRRK2,

OMIM 609007) (113). It is located on chromosome 12, consists

of 51 exons and encodes a large, 288 kDa multi-domain protein

containing seven domains (as illustrated in Figures 2A,B):

armadillo repeat motif (ARM); ankyrin repeat (ANK); leucine-

rich repeat (LRR); Ras of complex (ROC) GTPase domain; C-

terminal of ROC (COR) domain; kinase (KIN) domain; WD40

domain (114). LRRK2 is thought to dimerize via the ROC-COR

and WD40 domains, while the WD40 domain has also been

implicated in LRRK2-mediated neurotoxicity (115–117).

LRRK2 is expressed ubiquitously in the brain, including

neurons and glial cells, as well as in the kidneys, lungs, liver,

heart and immune cells (118–121). The LRRK2 protein is

thought to be primarily cytosolic but can also localize to a

subset of organelles and inner cellular membranes, including

mitochondria, ER, Golgi apparatus and microtubules (122, 123).

However, the physiological roles of LRRK2 remain unclear,

although it is suggested to be involved in many different

processes such as adult neurogenesis, scaffolding, homeostasis

of lysosome-related organelles, the innate immune response and

neuroinflammation (124–126).

Common LRRK2 variants

There are several LRRK2 missense variants that have been

confirmed to increase PD risk, including the most common

variant G2019S, as well as N1437H, R1441C/G/H/S, Y1699C and

I2020T (127, 128).

FIGURE 2

Structure of the LRRK2 protein and residing pathogenic variants.

(A) Structural ribbon model of the LRRK2 monomer. PDB: 7LHW.

This figure was created using The PyMOL Molecular Graphics

System, Version 2.0 Schrödinger, LLC. (B) Full-length LRRK2

protein. Created with BioRender.com.

As seen in Figures 2A,B, G2019S resides in the activation

loop of LRRK2’s ATP binding site which regulates LRRK2 kinase

activity (129). A computational prediction study suggests that

G2019S may decrease the flexibility of the loop and improves

the stability of the kinase domain, enabling it to remain in

an active conformation for an extended period (130). This

has been shown to increase phosphorylation of substrates by

2- to 3-fold (131). Another variant associated with increased

PD risk, I2020T, is also located in the activation loop of the

kinase domain and has been reported to significantly increase

LRRK2 autophosphorylation by around 40% relative to the

native enzyme (122).

Other variants that do not reside in the kinase domain

may also modify LRRK2 kinase activity. The ROC domain

contains motifs that are conserved amongst GTP-binding

proteins, suggesting that LRRK2 is a functioning GTPase that

can regulate LRRK2 kinase activity (132–134). An in vitro

study showed that the R144C/G/H/S mutations located in the

ROC domain, increases kinase activity while decreasing GTP

hydrolysis and weakening LRRK2 dimerisation (132). N1437H

in the ROC domain has been proposed to impair monomer-

dimer conformational dynamics and hinder GTPase activity,

permanently locking LRRK2 into a dimeric state (135). T1410M,

found in the ROC domain, is a novel variant with unclear

pathogenicity and may distort the tertiary structure of LRRK2
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and disrupt GTP hydrolysis (136). Meanwhile, the Y1699C

variant resides in the COR domain and is proposed to strengthen

ROC-COR interactions, weaken ROC-COR dimerization and

reduce GTPase activity (137).

Y2189C, identified in Arab-Berber populations (138), is

located within the WD40 domain is presumed to have a

deleterious effect for LRRK2 and induces high levels of cellular

toxicity (139), however there is still controversy surrounding

its pathogenicity for PD (128, 138). The G2385R and R1628P

variants act as potential genetic risk factors in Chinese and

Malaysian populations (140–142). G2385R is also located within

the WD40 domain and causes dysfunctional synaptic vesicle

trafficking (128, 143, 144), while R1628P is located in the

COR domain.

LRRK2 gene variants and Parkinson
disease

Worldwide, the frequency of LRRK2 G2019S is found in 1%

of sporadic PD and 4% of familial PD cases (145). It is most

frequently found in sporadic PD cases of north African Arabs

and of AJ descent (30 and 10% of cases, respectively), whereas

the variant is rarely found in Asians (only 0.1%) (145).

The penetrance of PD in subjects carrying a LRRK2mutation

is not fully elucidated and varies with age, which may explain

both the high prevalence of mutations in sporadic PD cases

and the detection of mutations in unaffected individuals (145).

Although this finding has been repeatedly reported, the precise

mutation penetrance rates vary across studies due to different

populations considered and methodologies applied, and it is

unclear whether distinct variants can differently impact on

penetrance. Overall, cumulative risk has been estimated to

be around 30–40% at age 80, with variable figures ranging

from 7 and 80% (145–150). In one study considering effects

of pathogenic LRRK2 mutations on penetrance, carriers of

G2019S showed a lower penetrance compared to carriers of

other pathogenic mutations combined, although the group of

non-G2019S was relatively small (145).

LRRK2-Parkinson disease: Clinical
picture and genotype-phenotype
associations

LRRK2-PD patients are clinically very similar to sporadic

PD. There are no differences in age at onset between LRRK2-PD

patients carrying pathogenic variants vs. non-carriers (151, 152),

as well as between carriers of different pathogenic mutations

(G2019S vs. R1441C/G/H) (127), or carriers of risk variants

vs. non-carriers (141) or vs. carriers of pathogenic variants

(153). Interestingly, the male predominance seen in PD is less

represented within LRRK2-PD patients (151, 152).

The motor phenotype of LRRK2-PD is that of levodopa-

responsive parkinsonism, with sustained response over time,

later onset of levodopa-induced dyskinesia (145, 151), and

milder progression in motor symptoms over time (152)

compared to non-carriers.

Although data comparing different genotypes is limited,

there may be genotype-phenotype associations within LRRK2-

PD, with risk variants showing a more rapid progression and

G2019S a more benign course. Higher incidence of postural

instability gait difficulty (PIGD) sub-type has been reported

in PD patients of both AJ origin carrying G2019S (151,

152, 154), and Chinese origin carrying G2385R (155), when

compared to non-carriers. Similar rates of PIGD sub-type were

found in G2019S and G2385R when compared together (156).

Within pathogenic variants, PD patients with G2019S showed

more frequent PIGD when compared to patients carrying the

R1441G variant (127). When analyzing disease course, carriers

of pathogenic variants showed more sustained response to

levodopa and lower motor scores when compared to carriers

of risk variants (153, 156), and survival curves of AJ G2019S

PD carriers were also not different from those of non-carriers

(50, 157).Within pathogenicmutations, motor fluctuations were

more frequently reported in carriers of p.R1441C/G/Hmutation

than in carriers of p.G2019S mutation (127).

From a non-motor perspective, the phenotype of all LRRK2-

PD patients seems to be more benign compared to that of non-

carriers. Slower cognitive decline has been observed in LRRK2-

PD compared to sporadic PD or GBA1-PD (145, 158). Carriers

of G2019S PD patients also showed better olfactory function, less

severe mood disorders, and less frequent REM sleep behavior

disorders (RBD) (159, 160) compared to non-carriers (156).

In a cohort of Chinese patients, carriers of G2385R presented

better cognitive performances and more severe RBD symptoms

compared to non-carriers (155).

Overall, a genotype-phenotype relationship among LRRK2-

PD patients might exist, with pathogenic variants showing

a more benign motor disease course compared to risk

variants. These observed clinical differences could reflect a

lower pathogenicity for p.G2019S mutation, however additional

genetic and environmental factors beyond mutational status

might contribute to these different manifestations.

LRRK2 gene variants and Parkinson
disease: Pathogenic mechanisms

As a major player in the ALP, pathogenic LRRK2 mutations

have been shown to alter lysosomal activity, including late

stage endocytosis, lysosome trafficking and synaptic vesicle

endocytosis (161). In primary mouse astrocytes, G2019S,

R1441C, and Y1699C reduce lysosomal capacity and increase

lysosome size, and G2019S also reduces lysosomal pH, which

is associated with dysfunctional lysosomal activity (162).
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Some reports also suggest a gain-of-function mechanism for

G2019S involving ER stress and UPR, although the precise

mechanisms and how they may underlie PD are poorly

understood (163–165).

G2019S heterozygous and homozygous mice are reported

to exhibit impaired extracellular release of dopamine and

profound abnormalities of mitochondria in the striatum

(166). More recent studies show that G2019S knock-in mice

exhibit increased dopamine transporter levels, dopamine uptake

and phosphorylation of α-synuclein from 9 months of age,

while LRRK2-KO mice show slight elevation of total α-

synuclein immunoreactivity at 23 months of age (167, 168). In

addition, G2019S also alter glutaminergic synaptic transmission

in midbrain dopaminergic neurons of 10–12 month old

(middle-aged) mice which reflects aging before the onset

of motor symptoms in PD (169). In astrocyte-dopaminergic

neuron co-cultures from G2019S LRRK2-carrying PD patients,

astrocytes accumulate α-synuclein and the neurons display

shortened neurites and neurodegeneration which are not seen

in co-cultures with control-patient-derived astrocytes (170).

Collectively, this suggests that gain-of-function LRRK2 variants

may increase the susceptibility of dopaminergic neurons to

degeneration and implicates LRRK2 in α-synuclein clearance

and homeostasis in PD pathology.

Although most studies focus on gain-of-function LRRK2

variants, large-scale genetic sequencing suggests that loss-of-

function variants can also reduce LRRK2 protein levels in

around 82% of heterozygous carriers. However, loss-of-function

variants may not be strongly associated with a specific PD

phenotype (171). This not only further emphasizes the link

between increased kinase activity and familial PD, but also

highlights the importance of additional research to elucidate

both the physiological functions of LRRK2 as well as the precise

mechanisms in which LRRK2 variants influence PD risk, onset

and progression.

Rab proteins linked to LRRK2 in
Parkinson disease

LRRK2 kinase has been shown to phosphorylate a subset of

GTPases, called Rab GTPases (172). Rab proteins play important

roles in vesicle trafficking, regulating the formation, transport,

tethering and fusion of vesicles specific to each specific Rab,

and dysfunction in Rab-mediated vesicle trafficking has been

implicated in PD pathology (173). Although G2019S has been

shown to increase phosphorylation of Rab proteins, in vivo

assays show that other mutations such as R1441G also enhance

Rab phosphorylation by up to 20-fold (172, 174). However,

dysfunctional mutant T1348N LRRK2 demonstrates reduced

kinase activity, suggesting the importance of GTP-binding in

downstream signaling events (175).

RAB29, also known as RAB7L1, is contained within the

PD-linked PARK16 locus (176, 177). RAB29 is thought to be

the master regulator of LRRK2, recruiting LRRK2 to the trans-

Golgi network and stimulating kinase activity. The R1441G/C

and Y1699C pathogenic variants have been shown to enhance

this recruitment (175), and GTP-binding is thought to be crucial

for RAB29-mediated activation of LRRK2. This then triggers

downstream phosphorylation of various Rab proteins, such as

RAB8A/B and RAB10 (124, 178).

RAB8A/B and RAB10 have been shown to be involved in

primary ciliogenesis, although direct links between LRRK2 and

ciliogenesis in PD have yet to be established (124). RAB29,

RAB8A, and RAB10 are all implicated in maintaining lysosome

homeostasis, and Liu et al. reported that phosphorylated RAB10

may also play a role in phagocytic immune response (179),

further supporting any links between LRRK2 and lysosomal

dysfunction in PD (180).

LRRK2 gene variants and Parkinson
disease: Current and future
therapeutic strategies

There have been many recent developments in LRRK2-

targeted strategies in PD, with a strong focus on small molecule

LRRK2 kinase inhibitors which has been shown to trigger

neuroprotective effects (181, 182).

The majority of LRRK2 kinase inhibitors are ATP-

competitive, where the molecules compete with ATP for binding

to the ATP-binding pocket in the kinase domain (183, 184).MLi-

2 is a compound that exhibits exceptional potency and specificity

both in vitro and in mouse models, where it has been shown

to be well-tolerated with no adverse effects on body weight,

food intake or behavior (185, 186). Although MLi-2 failed to

slow or halt the progression of PD in mice and never reached

clinical trials, it is an important compound for researchers to

study LRRK2 function and pathobiology. PF-06685360, or PFE-

360, also shows high potency, kinase selectivity and good brain

permeability in rats (187). Two inhibitors [DNL-201 and DNL-

151 (NCT03710707 and NCT04056689, respectively, https://

clinicaltrials.gov)] are already in clinical trials (188, 189).

However, there are several challenges facing therapies

targeting LRRK2 kinase. As LRRK2 protein expression is not

limited to only the brain, it is crucial to assess any adverse

effects on other systems in the body, such as in kidneys,

lungs and immune cells. Preclinical toxicology studies show

possible kidney and lung pathology as a results of various

LRRK2 inhibitors (185, 187, 190, 191), and both activation

and inhibition of LRRK2 kinase in immune cells have been

associated with immune function (192).

Another challenge is the current lack of biomarkers and

scalable assays that can measure LRRK2 activity in patients. To

date, themost promising candidate biomarker is phosphorylated
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TABLE 2 Overview of the clinical presentation and pathological

di�erences between GBA1- and LRRK2- associated PD.

GBA1 LRRK2

Age at onset ∼5 years earlier than sPD –

Disease progression Faster than sPD Slower than sPD

Motor symptoms Worse than sPD Worse than sPD

Non-motor symptoms Worse than sPD Better than sPD

Cognition Faster decline Slower decline

Enzyme activity Reduced Increased

Lysosomal function Reduced Reduced

ALP function Reduced Reduced

Mitochondrial function Reduced Reduced

Lipid homeostasis Reduced –

ER stress Increased Increased

Rab protein phosphorylation – Increased

Alpha-synuclein pathology Increased Increased

(sPD) denotes sporadic PD; (–) denotes no change.

ALP, autophagy lysosomal pathway; ER, endoplasmic reticulum.

Rab protein (172, 193), as well as levels of auto-phosphorylated

LRRK2 at Ser1292 (194). For example, phosphorylated RAB10

has been shown to be significantly increased in the brain

of idiopathic PD patients (195). The development of reliable

biomarkers is critical for early PD diagnosis (193), patient

selection for the enrolment to clinical trials, to identify patients

in which LRRK2 inhibition may be most effective and allow for

personalized dose adjustments (196).

Finally, although increased LRRK2 kinase activity is present

in other forms of genetic PD and especially sporadic PD (197),

further research must be conducted to assess LRRK2 activity and

function in these forms of PD order to assess the viability of

LRRK2 inhibitors to treat all types of PD.

GBA1 and LRRK2 interactions

Although there are many clear differences between GBA1-

and LRRK2- associated PD, highlighted in Table 2, there is

increasing evidence suggesting a possible interaction between

GBA1 and LRRK2 in PD (193). Clinical studies show that

individuals carrying both the G2019S LRRK2 variant and a

GBA1 variant exhibit symptoms that closely mimic G2019S-

LRRK2 PD symptoms and are milder than patients carrying

only a GBA1 variant. This includes slower rates of cognitive

and motor decline and milder olfactory dysfunction (158).

Compound variant carriers may have higher risk of developing

PD, coupled with a tendency for a slightly earlier age at

onset, compared with patients carrying just one variant and

sporadic PD patients (158, 198–200). This suggests that the

G2019S LRRK2 variant might be dominant over pathogenic

GBA1 variants, although it could also depend on the varying

penetrance of the two genes. In addition, it is also possible

that the GBA1/LRRK2-PD patients in the study are exhibiting

LRRK2-mediated PD and the GBA1 variants act as a bystander

in pathology progression.

Biochemical studies appear to support a link between LRRK2

kinase activity and GCase activity. For example, G2019S and

R1441G/C variants reduce GCase activity (but not GCase

protein levels) in dopaminergic neurons through increased

RAB10 phosphorylation (200, 201). However, G2019S and the

gain-of-function LRRK2 variant M1646T [association with PD

risk is unclear (138, 202)] are reported to increase GCase activity

in dried blood spots (203, 204). Therefore, the influence of

LRRK2 variants on GCase activity appears to be inconsistent

between the blood and dopaminergic neurons. However, there

are currently a lack of studies focussing on GCase activity

on LRRK2 which warrants further investigation. In addition,

progression and onset are very difficult to study in cell models

and compound mutant carriers are extremely rare, posing

further difficulties in investigating the convergence of the

two pathways.

Concluding remarks

The discovery of the GBA1 and LRRK2 mutations as the

most important genetic risk factors for developing PD has

led to enhanced understanding of the underlying causes of

PD. Understanding the functional consequences associated with

individual variants is imperative to develop highly efficacious

gene-targeted therapies to halt or restore neurodegeneration.

Further evaluation of GBA1 and LRRK2 variants and clinical

presentation, as well as investigations into interactions between

the two genes, is needed to develop biomarkers for early

diagnosis and intervention and treatment of PD.
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