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Case report: A novel
loss-of-function pathogenic
variant in the KCNA1
cytoplasmic N-terminus causing
carbamazepine-responsive type
1 episodic ataxia

Rían W. Manville1, Richard Sidlow2 and Geo�rey W. Abbott1*

1Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University

of California, Irvine, Irvine, CA, United States, 2Department of Medical Genetics and Metabolism,

Valley Children’s Hospital, Madera, CA, United States

Episodic ataxia is an umbrella term for a group of nervous system disorders

that adversely and episodically a�ect movement. Episodes are recurrent,

characterized by loss of balance and coordination and can be accompanied

by other symptoms ranging from nausea to hemiplegia. Episodic Ataxia Type

1 (EA1) is an inherited, autosomal dominant disease caused by sequence

variants in KCNA1, which encodes the voltage-gated potassium channel,

KCNA1 (Kv1.1). Here we report a novel loss-of-function KCNA1 pathogenic

variant [c.464T>C/p.Leu155Phe] causing frequent, sudden onset of clumsiness

or staggering gait in the young female proband. The gene variant was

maternally inherited and the mother, whose symptoms also began in

childhood, has a normalMRI and EEG, slurred speech and dystonicmovements

involving upper extremities and mouth. Both mother and daughter are

responsive to carbamazepine. Cellular electrophysiology studies of KCNA1-

L155P potassium channels revealed complete but non-dominant loss of

function, with reduced current and altered gating in heterozygous channels.

To our knowledge this is the first EA1-associated pathogenic variant located in

the KCNA1 cytoplasmic N-terminus, expanding the reported clinically sensitive

domains of the channel.

KEYWORDS
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Introduction

Ataxias are a group of movement disorders in which affected individuals exhibit

loss of balance, loss of coordination, irregular gait and slurred speech. Episodic Ataxia

1 (EA1) is an autosomal dominant inherited form of ataxia caused by genetic variation

in the human KCNA1 gene, which encodes the KCNA1 (Kv1.1) voltage-gated potassium

(Kv) channel (1). EA1 patients typically bear one wild-type and one pathogenic variant

KCNA1 allele. EA1 involves altered central and peripheral nerve function, as KCNA1

performs important functions in both the central nervous system and in peripheral
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nerves (2–4). Centrally, KCNA1 is especially important in the

hippocampus, cerebellum, and neocortex; peripherally, KCNA1

is especially critical at synaptic terminal sites and juxtaparanodal

segments of the nodes of Ranvier of myelinated axons (5). EA1-

associated KCNA1 mutations generally cause loss of function

in KCNA1, most commonly by altering channel functional

properties and less commonly by impairing KCNA1 biosynthesis

or anterograde trafficking (6, 7).

Episodic ataxia is relatively rare, affecting <1/100,000

people, and is subdivided into at least 7 forms, the most

common being EA1 and EA2. EA2 is caused by pathogenic

variants in CACNA1A, which encodes the α1A pore-forming

subunit of the Cav1.2 neuronal voltage-gated P/Q-type calcium

channel (8). Episodic ataxia symptoms include recurring

episodes of poor coordination and balance, and in addition

can comprise blurred vision, slurred speech, vertigo, nausea

and emesis, migraines, tinnitus, muscle weakness, hemiplegia,

seizures, andmyokymia (predominantly in the interictal interval

in EA1) (9, 10). EA1 and EA2 are typically treated with

anticonvulsant/antiseizure medications such as carbamazepine,

valproic acid and acetazolamide, although the latter is generally

more effective at treating EA2 (11, 12).

Case presentation

A 13-year-old female (the proband) was first seen by

a geneticist in 2019 for the chief complaint of a personal

and family history of episodic abnormal movements involving

sudden onset of clumsiness or staggering gait without any

alteration in sensorium, lasting 30 s-2min. Her neurological

symptoms began at age two and she was first seen by a

Valley Children’s Hospital neurologist at age four, but was

not genetically evaluated at that time. The longer the episode,

the greater the likelihood that slurring of speech will occur

in the proband. Her episodes can be triggered by heightened

activity or by fatigue, but neither is necessary for an episode

to occur, and the proband averages 1–2 episodes per week,

responsive to carbamazepine. The proband’s gestation, birth and

developmental history are normal and there is no other medical

or surgical history other than familial short stature. The short

stature arises from a familial delayed growth pattern of unknown

mechanism although it is possible there is transient growth

hormone resistance.

The proband’s physical exam and neurological exam were

normal. No MRI was performed on the proband since the

clinical impression was episodic ataxia - and she was responsive

to the medication prescribed for this (carbamazepine) - based

on family history. Specifically, the proband’s mother began

presenting with neurological symptoms at age 8, which included

slurring of speech, ataxia, and dystonic movements involving

her upper extremities andmouth.MRI and EEGwere performed

on the proband’s mother when she was 8 years old and were

reported as negative, yet her episodes were initially diagnosed as

epilepsy. Later, upon presentation of the proband, a diagnosis

of ataxia was proposed for mother and daughter, and genetic

analyses conducted based on this.

The proband’s EEG was read as negative by the same

neurologist that has been following the proband for 11

years. Specifically, at 3 years of age, the proband underwent

measurements with a 21-channel digital EEG machine with

ECG, respiration and eye movement monitors using the

International 10–20-electrode placement system. The EEG was

collected using 28 leads including ECG, EOG and respiration

artifact leads. During the record the patient was at various times

awake, drowsy and asleep. At the onset of the record, the patient

was awake and displayed a normal anterior-posterior gradient

with faster rhythms anteriorly. Maximum posterior dominant

rhythm was up to 9Hz and was symmetric. Movement artifact

was very prominent as well as muscle artifact during the awake

portion of the record. Photic stimulation and hyperventilation

were not performed during the study. As the patient fell into

drowsiness and sleep, symmetric sleep spindles and vertex

sharp waves were observed. At times the vertex sharp waves

occurred in runs, but there were no focal asymmetries or

epileptiform features seen during the awake portion or during

sleep. Upon arousal, a normal awake background returned.

Thus, the neurologist reported a normal awake and sleep EEG.

The initial karyotype and limited channelopathy/hereditary

ataxia panels (PRRT2, SLC2A1, ATP1A2, and ATP1A3) of the

proband were negative. More recently, an expanded ataxia

panel (GeneDx.com) was conducted using next-generation

sequencing with copy number variant (CNV) detection

(Supplementary Data 1). The sequencing revealed a gene variant

in the coding region of KCNA1: c.464 T>C, encoding

KCNA1: p.(Leu155Phe). The proband was heterozygous for

p.(Leu155Phe); 100% of the KCNA1 coding region was covered

at a minimum of 10x and there was no indication of a multi-

exon deletion or duplication. The proband’s mother was also

found by next generation sequencing to be heterozygous for

the p.(Leu155Phe) variant in KCNA1, while the proband’s father

does not harbor the variant. The mutation is apparently de

novo in the proband’s mother, as the maternal grandmother

and grandfather of the proband were tested and were negative

(Figure 1A). KCNA1-L155 lies in the S1-proximal portion of the

cytoplasmic N-terminus, is highly conserved (Figure 1B), and is

close to other EA1-linked sequence variants (Figure 1C).

Functional characterization of
KCNA1-L155P potassium channels

KCNA1-L55P is not observed at significant frequency in

large population cohorts (The Genome Aggregation Database;

gnomAD) and has not to our knowledge been previously

reported as either benign or pathogenic (13). KCNA1-L155P
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FIGURE 1

Clinical genetics. (A) Pedigree diagram for KCNA1-L155P (red) in the family under study. (B) Sequence alignment for S1 and S1-proximal

N-terminal segment of KCNA1 with L155 highlighted (red). (C) Location of L155P and some previously reported EA1 sequence variants in

KCNA1 (see Discussion).

cDNA was generated (Genscript, Piscataway, NJ) in the pTLNx

expression vector, and then from this we generated cRNA by

in vitro transcription with the mMessage mMachine SP6 kit

(ThermoFisher, Waltham, MA). We injected wild-type KCNA1

(2 ng), KCNA1-L155P cRNA (2 ng) or wild-type KCNA1 +

KCNA1-L155P (A1/A1-L155P) cRNA (2 ng each) into stage

V and VI defolliculated Xenopus laevis oocytes. Oocytes were

incubated at 16 ◦C for 2 days and then currents recorded using

two-electrode voltage-clamp. Voltage protocols are shown in

the figures.

As expected, wild-type KCNA1 channels generated robust,

voltage-dependent outward currents in response to depolarizing

voltage pulses. In contrast, homomeric KCNA1-L155P channels

were nonfunctional. Currents generated by equal co-injection

of wild-type and L155P KCNA1 (A1/A1-L155P) generated

currents with 39% of the peak current magnitude of wild-

type KCNA1 (Figures 2A,B, Table 1). Reflecting their inability

to generate outward K+ current at resting membrane potential

in oocytes, the mean resting membrane potential (EM) of

unclamped oocytes expressing homomeric KCNA1-L155P was

34mV more positive than oocytes expressing homomeric wild-

type KCNA1, while the mean resting membrane potential of

oocytes expressing A1/A1-L155P channels was 8mV more

positive than oocytes expressing homomeric wild-type KCNA1

(Figure 2C, Table 1). The shift inmembrane potential for oocytes

expressing A1/A1-L155P channels was attributable to voltage-

independent reduction in current magnitude; there was no

quantifiable difference in the voltage dependence of A1/A1-

L155P compared to wild-type KCNA1 (Figures 2D,E).

Compared to wild-type KCNA1 channels, A1/A1-L155P

channels exhibited twofold faster activation (Figures 3A,B)

and several-fold faster deactivation (depending on voltage)

(Figures 3C,D). KCNA1 channels also exhibit voltage-dependent

inactivation following activation; compared to wild-type,

A1/A1-L155P exhibited negative-shifted voltage dependence

of inactivation such that there was, e.g., a threefold greater

proportion of A1/A1-L155P channels inactivated at −40mV

compared to wild-type KCNA1, and a −8.4mV shift in the

voltage dependence of inactivation (Figures 3E,F, Table 1).

Discussion

KCNA1 channel activity generally dampens neuronal

excitability; therefore, KCNA1 loss-of-function mutations such

as those in EA1 increase neuronal excitability, lowering the

threshold for action potential generation. This in turn can

result in increased firing frequency, broadening of individual
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FIGURE 2

E�ects of L155P on KCNA1 activity. Error bars indicate SEM. n indicates number of oocytes. Statistical comparisons by one-way ANOVA; *P <

0.05; ****P < 0.0001. Dashed line indicates zero current level. (A) Mean traces for wild-type (A1), homozygous mutant (A1-L155P) and

heterozygous mutant (A1/A1-L155P) channels expressed in oocytes. Scale bars lower left inset; voltage protocol upper inset; n = 15–29 per

group (see Table 1 for values). (B) Mean peak current for traces as in (A); n = 15–29 per group (see Table 1). (C) Mean unclamped oocyte

membrane potential for oocytes as in (A); n = 15–29 per group (see Table 1 for values). (D) Inset showing tail currents at −50mV after prepulses

similar to those shown in (A). (E) Mean peak tail current (left) and normalized tail current (right) for currents as in (D) (n = 26–29) (see Table 1 for

values).

TABLE 1 Cellular electrophysiological characteristics of wild-type (WT) KCNA1, and homozygous and heterozygous KCNA1-L155P potassium

channels.

Peak current density+40mV (µA) Non-normalized V0.5 (mV) EM (mV) Inactivation V0.5 (mV)

KCNA1 11.61± 0.9 (n= 29) −25.41± 1.9 (n= 29) −49.5± 0.5 (n= 26) −37.9± 0.8 (n= 16)

KCNA1-L155P 0.21± 0.02 (n= 15) n.a −15.6± 1.1 (n= 15) n.a

KCNA1/KCNA1-L155P 4.53± 0.5 (n= 26) −23.73± 1.4 (n= 26) −41.2± 0.7 (n= 26) −46.3± 0.7 (n= 12)

n.a., not applicable.

action potentials, and an increase in neurotransmitter release

(14). As KCNA1 channels form homomeric and heteromeric

Kv channel complexes (e.g., with KCNA2) at juxtaparanodal

regions and branch points of myelinated axons, their normal

function is needed for healthy neuromuscular transmission and

to limit aberrant axonal firing. These processes are disrupted

when KCNA1 current is pharmacologically blocked or impaired

by loss-of-function mutations (5, 15, 16), such as the newly

discovered L155P variant.

KCNA1 channels generated from 50/50 wild-type and

L155P cRNA to mimic the heterozygous proband and her

mother described here, show 61% reduced peak current and

oocytes expressing them exhibit +8 mV-depolarized resting

membrane potential, i.e., increased excitability, compared to
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FIGURE 3

E�ects of L155P on KCNA1 gating. Error bars indicate SEM. n indicates number of oocytes. Dashed line indicates zero current level. (A) Mean

traces for wild-type (A1) and heterozygous mutant (A1/A1-L155P) channels expressed in oocytes using the voltage protocol shown (upper

inset). Scale bars lower left inset; n = 12–16 per group. (B) Mean activation rate (TACT) calculated using a single exponential function from traces

as in (A); n = 12–16 per group. (C) Mean traces for wild-type (A1) and heterozygous mutant (A1/A1-L155P) channels expressed in oocytes using

the voltage protocol shown (upper inset). Scale bars lower left inset; n = 12–16 per group. (D) Mean deactivation rate (TDeact) calculated using a

single exponential function from the circled portion of traces as in (C); n = 12–16 per group. (E) Mean traces for wild-type (A1) and

heterozygous mutant (A1/A1-L155P) channels expressed in oocytes using the voltage protocol shown (center inset). Scale bars lower left inset;

n = 12–16 per group. (F) Mean proportion of remaining non-inactivated current calculated from the circled portion of traces as in (E); n =

12–16 per group (see Table 1 for values).

oocytes expressing wild-type KCNA1 alone. Moreover, A1/A1-

L155P channel deactivated several-fold faster at suprathreshold

potentials (Figure 3D), which could prolong action potentials

or decrease the time between action potentials. In addition,

A1/A1-L155P currents inactivated more completely than those

of wild-type KCNA1, especially around −20 to −40mV,

where the consequently reduced current could impair neuronal

repolarization (Figure 3F).

The altered functional properties of homomeric L155P

and heteromeric A1/A1-L155P channels suggest that L155P

subunits are able to co-assemble with wild-type KCNA1 and

alter its properties. L155P effects are not dominant negative
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as otherwise, using a binomial distribution and tetrameric

stoichiometry of KCNA1 channels, L155P would reduce peak

current to 1/16 that of wild-type KCNA1. To our knowledge,

L155P is the first reported EA1-associated mutation to be

located in the cytoplasmic N-terminus of KCNA1. The EA1

pathogenic variants previously found that locate closest to

L155P lie in KCNA1 S1, i.e., the first transmembrane segment

(Figure 1C). Of these, R167M, A170S, V174F, I176R, I177N

cause “pure” EA1; further up S1 and closer to its extracellular

end lie F184C, linked to both EA1 and epilepsy, and C185W,

linked to EA1 and hyperthermia. The other tight clustering

of “pure” EA1 variants lies in the intracellular end of S4

(F303V, L305F, R307C) and intracellular S4-5 linker (G311D/S,

I314T); throughout the remainder of the channel, pure EA1

and mixed-phenotype KCNA1-associated disorders are mingled

(Supplementary Table 1) (13).

Future studies on L155P outside the scope of this case

study will include an examination of its behavior in heteromeric

complexes with KCNA2 and KCNA4, with which KCNA1

is thought to co-assemble in vivo in addition to forming

homomeric KCNA1 channels as it is possible this may give some

clues to why some KCNA1 mutants cause expanded phenotypes

in addition to episodic ataxia (17–19). However, EA1 is

notoriously variable in its phenotypes (20), with even identical

twins exhibiting different degrees of ataxia severity (21). Some

EA1 symptoms also overlap with those of epilepsy, which

can lead to misdiagnosis. In the current case, the proband’s

mother was initially misdiagnosed with epilepsy based on overt

neurological symptoms (but no seizures), despite her EEG and

MRI being normal. The case emphasizes the importance of

considering episodic ataxia as an alternate diagnosis to epilepsy

under these circumstances. This first report of a KCNA1 variant

in the N-terminus being associated with EA1, and in the absence

of other EA1-linked disorders, expands the cluster of “pure” EA1

sequence variants near the intracellular end of S1 (Figure 1C,

Supplementary Table 1).
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