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Purpose: To establish an ensemblemachine learning (ML) model for predicting

the risk of futile recanalization, malignant cerebral edema (MCE), and cerebral

herniation (CH) in patients with acute ischemic stroke (AIS) who underwent

mechanical thrombectomy (MT) and recanalization.

Methods: This prospective study included 110 patients with premorbid mRS

≤ 2 who met the inclusion criteria. Futile recanalization was defined as a 90-

day modified Rankin Scale score >2. Clinical and imaging data were used to

construct five ML models that were fused into a logistic regression algorithm

using the stacking method (LR-Stacking). We added the Shapley Additive

Explanation method to display crucial factors and explain the decision process

of models for each patient. Prediction performances were compared using

area under the receiver operating characteristic curve (AUC), F1-score, and

decision curve analysis (DCA).

Results: A total of 61 patients (55.5%) experienced futile recanalization, and 34

(30.9%) and 22 (20.0%) patients developedMCE andCH, respectively. In test set,

the AUCs for the LR-Stacking model were 0.949, 0.885, and 0.904 for the three

outcomes mentioned above. The F1-scores were 0.882, 0.895, and 0.909,

respectively. The DCA showed that the LR-Stacking model provided more net

benefits for predicting MCE and CH. The most important factors were the

hypodensity volume and proportion in the corresponding vascular supply area.
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Conclusion: Using the ensemble MLmodel to analyze the clinical and imaging

data of AIS patients with successful recanalization at admission and within 24h

after MT allowed for accurately predicting the risks of futile recanalization,

MCE, and CH.

KEYWORDS

acute ischemic stroke, machine learning, futile recanalization, malignant cerebral

edema, cerebral herniation

Introduction

Stroke is a leading cause of mortality and disability

worldwide. The global deaths caused by ischemic stroke

increased by 60.68% over 30 years, from 2,049,670 in 1990

to 3,293,400 in 2019 (1). Acute ischemic stroke (AIS)

is characterized by a sudden reduction or cessation of

blood flow in a brain artery that results in ischemia and

hypoxia of the brain tissue in the corresponding blood

supply area. According to current international guidelines and

related research, endovascular mechanical thrombectomy (MT)

combined with recombinant tissue-type plasminogen activator

(rt-PA) thrombolysis is the standard treatment in patients with

AIS due to occlusion of the proximal anterior intracranial

region, while MT is one of the most important forms of

endovascular treatment (EVT) for large vessel occlusion (2–4).

However, despite recent improvements in MT procedure,

futile recanalization, defined as a 90-day modified Rankin

Scale (mRS-90) score >2 after adequate vessel recanalization,

remains a serious clinical problem (5). The incidence of futile

recanalization after MT is approximately 49–67% (5). The

primary risk factors for patients with AIS include large infarct

volume, poor collateral circulation, and high National Institutes

of Health Stroke Scale (NIHSS) score (6–8). While the mRS

and NIHSS scores are among the methods used to evaluate

AIS functional outcomes, few studies have focused on the

functional outcomes and potentially lethal complications in

patients with AIS who have undergone an MT and for whom

recanalization was achieved. Although computed tomography-

angiography and magnetic resonance imaging (MRI) can be

used to accurately evaluate the entire ischemic lesion (core and

penumbra), non-contrast computed Tomography (NCCT) is

common for patients with AIS after MT, due to its widespread

availability, low cost, and rapid scanning speed (9).

Malignant cerebral edema (MCE) and cerebral herniation

(CH) are relatively common and serious complications that

lead to rapid deterioration of patient’s condition, coma, poor

prognosis, or even death. Therefore, being able to rapidly

recognize which patients are at high risk for futile recanalization

and potentially lethal complications after an MT can help

clinicians make individualized treatment decisions.

The machine learning (ML) method can accurately process

complex nonlinear relationships among a large number of

variables, which is difficult to accomplish with traditional

statistical models (10, 11). This technology has been applied to

predict the outcomes of patients with AIS; however, a drawback

of complex ML algorithms is its interpretability has limitations,

which are commonly referred to as black-box models for

clinicians. Previous researchers have attempted to solve this

problem using simple ML algorithms, but more complex and

improved models, such as the support vector machine (SVM),

deep neural network, and ensemble ML algorithms, which

may perform better in stroke-related tasks have not been fully

utilized (12, 13). In addition, few studies have focused on

the ability of applied complex ML methods to predict the

occurrence of malignant complications in patients who undergo

MT and recanalization.

Therefore, in this study, ensemble ML models were

constructed to predict futile recanalization, MCE, and CH in

patients with AIS treated with MT and in whom successful

recanalization was achieved. The model we constructed

can accurately identify and display the high-risk factors of

each patient.

Methods

Study population

We recruited 110 patients with confirmed AIS and large

vessel anterior circulation occlusion who underwent MT and

in whom successful recanalization was achieved, modified

Thrombolysis in Cerebral Infarction (mTICI) score 2b-3, in

the Department of Neurology at Nanfang Hospital between

June 2016 and November 2019. All the included patients had

a unilateral internal carotid or middle cerebral artery (M1,

M2) occlusion that was confirmed using digital subtraction

angiography. A femoral artery puncture was performed within

6 h of stroke onset unless the ischemic and infarction

areas were mismatched found by imaging evaluation (CTP

and MRA) and MT was deemed necessary; the puncture

could be performed within 6–24 h. The patients underwent

an NCCT examination within 24 h after the MT. Figure 1
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FIGURE 1

The inclusion and exclusion criteria.

shows the inclusion and exclusion criteria. The decision to

perform MT and administer rt-PA was made individually for

each patient through a consensus of therapeutic neurologists

and neurointerventionalists and by following national and

international guidelines (3). The exclusion criteria were as

follows: (1) age >80 years; (2) premorbid mRS >2; (3) history

or evidence of cerebral hemorrhage, subarachnoid hemorrhage,

venous malformations, or brain aneurysms or tumors; (4) high

risk of bleeding, such as platelet count <100 × 109/L, active

bleeding, trauma, or surgery within 2 months before the onset

of stroke; (5) mental abnormalities before stroke that affected

neurological function assessments; (6) comorbid hematological

conditions, malignant tumors, severe heart, lung, liver, renal

failure, or life expectancy of <1 year.

Image acquisition and feature extraction

Using the NCCT scan that was acquired for each patient

with AIS, we calculated the volume (mm3) and maximum area

(mm2) of the hypo- and hyperdense lesions on the picture

archiving and communication systemworkstation using manual

segmentation and automatic measurement tools. All the images

were independently studied by two experienced neurologists

who were blinded to the clinical characteristics. Differences

of opinion were resolved through discussion. The proportion

of hypodense lesions in the responsible vascular supply area

was categorized into one of the following four levels: 0: no

hypodense lesions; 1: proportion <1/3; 2: proportion between

1/3 and 2/3; 3: proportion >2/3. The proportion of hyperdense

lesions in the responsible vascular supply area was categorized

into one of the following four levels: 0: no hyperdense lesions;

1: scattered punctate hyperdensity lesions were observed; 2:

fused hyperdensity, but the area was <1/3 of the corresponding

vascular supply area, with or without a space-occupying effect;

3: fused hyperdensity and area >1/3 of the corresponding

vascular supply area, with or without a space-occupying effect

(14, 15). We also observed hyperdensity in the subarachnoid

space and calculated the Alberta Stroke Program Early CT Score

(ASPECTS) based on the NCCT images that were acquired at

admission and within 24 h after the MT (16).

Clinical assessments and outcomes

Baseline demographic and clinical characteristics (sex, age,

smoking, NIHSS score, Glasgow Coma Scale (GCS) score,

blood pressure, and blood sugar on admission), history of

cardiovascular diseases (hypertension, hyperlipidemia, coronary

heart disease, atrial fibrillation, and diabetes), time from stroke

onset to femoral artery puncture, and thrombolytic therapy

were each considered in the present study. The feature set also
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included interventional surgical-related characteristics (time

interval from stroke onset to vascular recanalization, duration

of surgery, thrombolysis or not, and times of embolectomy), and

blood testing results before and after MT (D-dimer, fibrinogen,

leukocytes, neutrophils, and lymphocytes).

The mRS-90 is used to indicate a patient’s functional

outcome; therefore, meaningful recanalization was defined in

this study as mRS-90 of 0–2, and futile recanalization was

defined as mRS-90 of 3–6. We used the same feature set to

predict the risk of MCE and CH. MCE was defined as meeting

the following two criteria: (1) an increase in the NIHSS score

≥4 or an increase of the consciousness evaluation part of the

NIHSS score ≥1; (2) the range of the hypodense lesions was

>50% of the supply area of the middle cerebral artery, and it

was accompanied by signs of local brain edema, such as lateral

ventricle compression, disappearance of the sulcus, midline

displacement of the septum pellucidum, or a pineal layer>5mm

with basal cistern occlusion (17). CH was defined as meeting

the following two criteria: (1) one or more of the following

clinical symptoms occur the presence of vomiting: decreased

consciousness, or mydriasis with the disappearance of the light

reflex; (2) CT- orMRI-confirmed brain tissue displacement (18).

Model development

A dataset was constructed, which included baseline

demographic and clinical characteristics, clinical information

before and after interventional surgery, and brain NCCT

features after MT. To preprocess the data, the missing dataset

values were filled by averages calculated based on the complete

dataset, and the dataset was randomly divided into a training set

and a test set at a ratio of 7:3. We normalized the quantitative

data to a 0–1 range to accelerate and improve model training.

When the level of each indicator varies greatly, the role of the

indicator with high value in the comprehensive analysis will

be highlighted, and the role of the indicator with a low-value

level will be relatively weakened. Data standardization can

effectively prevent gradient explosion and overfitting (19, 20).

The multiclassification data were processed using one-hot

encoding. To solve the problem of the unbalanced sample size

of the patients with MCE and CH, we used the upsampling

method, synthetic minority oversampling technique (SMOTE),

to balance the training dataset (21). The SMOTE algorithm is

implemented by imblearn package in Python 3.7.4.

In the present study, five commonML algorithms, including

SVM, random forest classifier (RFC), extreme gradient boosting

(XGBoost), k-nearest neighbor (KNN), and gradient-boosting

machine (GBM), were developed and validated using the

scikit-learn and XGBoost packages in Python 3.7.4 to predict

futile recanalization, MCE, and CH in the patients with AIS.

Ten-fold cross-validation was used for model derivation and

internal validation. The grid search algorithm was used during

the training process for each model to optimize model’s

hyperparameters on the training set as the standard of the area

under the receiver operating characteristic curve (AUC).

We used the five basic ML models as base learners

and developed a stacking ensemble model using the logistic

regression (LR-Stacking) algorithm as the meta-learner. The

model development pipeline is shown in Figure 2 and the

detailed process for constructing the LR-Stacking model is

shown in Supplementary Figure 1.

Model evaluation

The AUC, sensitivity, specificity, accuracy, and F1-score of

the five basicMLmodels and LR-Stackingmodel were calculated

in the test set, and used to assess the performance of the

models. The superiority of the ensemble ML algorithm over the

conventional statistical method was evaluated by comparing the

performance of the ensemble ML models and LR model. The

AUCs of the models were compared using the Delong test in

MedCalc 19.0.7 (MedCalc Software Ltd., Ostend, Belgium).

The Shapley Additive Explanations (SHAP) local

explanatory technique explained the optimal model by

calculating each feature’s contribution to the predictive

results individually and globally (22, 23). According to this

model interpretation method, the feature importance of each

prediction task can be observed, and the basis of the prediction

results obtained by the model for each patient.

Statistical analysis

Univariate analyses were performed using the Mann–

Whitney U test for continuous variables and the chi-squared

test for categorical variables. All the tests were two-sided, and

statistical significance was set at P < 0.05. Statistical analyses

were performed using SPSS version 25.0 (IBM Corp., Armonk,

NY, USA) and R Studio 4.0.3 (R Foundation for Statistical

Computing, Vienna, Austria).

Results

Study population

A total of 110 patients with AIS (average age, 58.16 ±

12.57 years; 78 males and 32 females) were included in this

study. Among them, 61 (55.5%) patients experienced futile

recanalization, 34 (30.9%) developed MCE, and 22 (20.0%)

developed CH. The dataset was randomly divided into a training

set (n = 77, 70%) and a test set (n = 33, 30%). In the training

set, there were 44 (57.1%) patients with futile recanalization, 24

(31.2%) withMCE, and 15 (19.5%) with CH. In the test set, there
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FIGURE 2

The model development pipeline. First, data were randomly divided into training and test sets without duplication. Next, using the training set,

the five basic ML algorithms were internally trained, and their predictive ability was validated by applying a 10-fold cross-validation and

hyperparameter optimization using the grid search method. Subsequently, the basic ML models were integrated into the LR-Stacking model,

and the optimal model was evaluated in test set.
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TABLE 1 Summary of the important characteristics comparing AIS patients with futile recanalization vs. meaningful recanalization.

mRS-90 ≤ 2 (Mean-sd/IQR/N) mRS-90 > 2 (Mean-sd/IQR/N) All (Mean-sd/IQR/N) p-value

Patients 49 (44.5%) 61 (55.5%) 110

Age 56.04± 13.08 59.87± 11.98 58.16± 12.57 0.144

NIHSS at admission 11.73 (2–23) 15.62 (3–28) 13.89 (2–28) 0.059

GCS at admission 12.67 (6–15) 10.94 (3–15) 11.71 (3–15) 0.021*

DBP 79.29± 16.07 80.95± 12.25 80.21± 14.04 0.284

Blood glucose at admission 6.44 (5.62–8.55) 7.21 (6.50–8.82) 7.11 (6.11–8.69) 0.168

TOAST-LAA 19 23 42 0.354

Hyperdensity proportion <0.001*

0 32 23 55

1 12 5 17

2 5 17 22

3 0 16 16

Hyperdensity volume 0 (0–1.43) 2.90 (0–13.19) 0.20 (0–4.55) <0.001*

ASPECTS after embolectomy 9.43 (7–10) 8.38 (4–10) 8.85 (4–10) 0.029*

Hyperdensity in subarachnoid 11 27 38 0.017*

Hyperdensity in anyposition 23 43 66 0.012*

Maximum slice area of hyperdensity 0 (0–95.48) 260.98 (0–1097.02) 15.26 (0–430.41) <0.001*

Hypodensity proportion <0.001*

1 40 14 54

2 4 16 20

3 5 31 36

Hypodensity proportion > 2/3 5 31 36 <0.001*

Hypodensity proportion > 1/3 9 47 56 <0.001*

Hypodensity volume 15.16 (5.21–31.98) 97.81 (34.43–177.63) 39.79 (12.67–127.83) <0.001*

D-dimer after embolectomy 1.31 (0.78–2.57) 3.18 (1.48–6.86) 2.25 (1.02–5.52) 0.004*

mRS-90, 90-day modified Rankin Scale; NCCT, non-contrast computed tomography; ASPECTS, alberta stroke program early CT score.
*Significant difference between the two groups (p < 0.05).

were 17 (51.5%) patients with futile recanalization, 10 (30.3%)

withMCE, and 7 (21.2%) with CH. ForMCE, SMOTE algorithm

generated 29 cases in the training set, including 19 MCE and

10 non-MCE. For CH, SMOTE algorithm generated 47 cases

with CH in the training set. The demographic data including the

generated data are shown in Supplementary Tables 1–3.

Table 1 displays several significant differences in

characteristics across the two groups of meaningful

recanalization and futile recanalization. The patients with

futile recanalization had lower GCS scores at admission, higher

D-dimer levels after undergoing embolectomy, lower ASPECTS

within 24 h after embolectomy, and greater prevalence of

hyperdensity in subarachnoid than meaningful recanalization.

The complete characteristic distribution differences among

the three groups are shown in Supplementary Tables 4–6.

The patients with MCE were older, and they had lower GCS

scores and ASPECTS at admission, higher D-dimer, WBC, and

neutrophil levels, and a higher frequency of the large artery

atherosclerosis (LAA) TOAST classification than non-MCE

patients. The patients with CH had a shorter interval from onset

to puncture, lower ASPECTS at admission, and higher D-dimer,

WBC, and neutrophil levels than non-CH. Furthermore, the

patients with AIS and either futile recanalization, MCE, or CH

had broad hyper- and hypodense lesions, and they generally

accounted for a large proportion of the responsible vascular

supply area.

Model performance

Each basic ML algorithm performed well in the binary

category classification of mRS-90, MCE, and CH. The AUC,

sensitivity, specificity, accuracy, and F1-score of each model

using the independent test set are presented in Table 2.

Figures 3–5 show the receiver operating characteristic curve

(ROC), decision curve analysis (DCA), and feature importance

of each basic ML and LR-Stacking model for the three

classification tasks. The optimal basic ML models (KNN,

RFC, and RFC) predicting futile recanalization, MCE, and

CH had AUCs of 0.927, 0.883, and 0.940, respectively,
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TABLE 2 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons.

AUC Sensitivity Specificity Accuracy F1-score

mRS-90

SVM 0.882 (0.751, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.879

RFC 0.897 (0.782, 1.000) 0.882 (0.64, 0.99) 0.813 (0.544, 0.960) 0.849 (0.681, 0.949) 0.857

XGBoost 0.879 (0.734, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

KNN 0.927 (0.828, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.879

GBM 0.875 (0.747, 1.000) 0.882 (0.64, 0.99) 0.813 (0.544, 0.960) 0.849 (0.681, 0.949) 0.848

LR-stacking 0.949 (0.882, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

MCE

SVM 0.826 (0.628, 1.000) 0.700 (0.348, 0.933) 0.826 (0.612, 0.951) 0.788 (0.611, 0.910) 0.756

RFC 0.883 (0.725, 1.000) 0.900 (0.555, 0.998) 0.870 (0.664, 0.972) 0.879 (0.718, 0.966) 0.864

XGBoost 0.867 (0.690, 1.000) 0.800 (0.444, 0.975) 0.913 (0.720, 0.989) 0.879 (0.718, 0.966) 0.856

KNN 0.857 (0.714, 0.999) 0.800 (0.444, 0.975) 0.870 (0.664, 0.972) 0.849 (0.681, 0.949) 0.825

GBM 0.848 (0.671, 1.000) 0.500 (0.187, 0.813) 0.870 (0.664, 0.972) 0.758 (0.577, 0.889) 0.694

LR-stacking 0.885 (0.738, 1.000) 0.900 (0.555, 0.998) 0.913 (0.720, 0.989) 0.909 (0.757, 0.981) 0.895

CH

SVM 0.890 (0.756, 1.000) 0.571 (0.184, 0.901) 0.962 (0.804, 0.999) 0.879 (0.718, 0.966) 0.796

RFC 0.940 (0.851, 1.000) 0.714 (0.290, 0.963) 0.962 (0.804, 0.999) 0.909 (0.757, 0.981) 0.856

XGBoost 0.857 (0.654, 1.000) 0.571 (0.184, 0.901) 0.923 (0.749, 0.991) 0.849 (0.681, 0.949) 0.761

KNN 0.915 (0.827, 1.000) 0.857 (0.421, 0.996) 0.885 (0.699, 0.976) 0.879 (0.718, 0.966) 0.835

GBM 0.890 (0.760, 1.000) 0.714 (0.290, 0.963) 0.885 (0.699, 0.976) 0.849 (0.681, 0.949) 0.784

LR-Stacking 0.904 (0.715, 1.000) 0.857 (0.421, 0.996) 0.962 (0.804, 0.999) 0.939 (0.798, 0.993) 0.909

AUC, area under the receiver operating characteristic curve; mRS-90, 90-day modified rankin scale; MCE, malignant cerebral edema; CH, cerebral herniation; SVM, support vector

machine; RFC, random forest classifier; XGBoost, extreme gradient boosting; KNN, k-nearest neighbor; GBM, gradient-boosting machine; LR, logistics regression.

sensitivities of 88.2, 90.0, and 71.4%, respectively, specificities

of 87.5, 87.0, and 96.2%, respectively, accuracies of 87.9, 87.9,

and 90.9%, respectively, and F1-scores of 0.879, 0.864, and

0.856, respectively.

For predicting the futile recanalization, MCE, and CH,

the LR-Stacking models had AUCs of 0.949, 0.885, and 0.904,

respectively, sensitivities of 88.2, 90.0, and 85.7%, respectively,

specificities of 87.5, 91.3, and 96.2%, respectively, accuracies of

87.9, 90.9, and 93.9%, respectively, and F1-scores of 0.882, 0.895,

and 0.909, respectively. Compared with the optimal basic ML

models for predicting futile recanalization andMCE, the Delong

test showed that the AUC of the LR-Stacking model improved

by 0.022 (p = 0.457) and 0.002 (p = 0.927), respectively. For

predicting CH, the AUC of the LR-Stacking model decreased

by 0.036 (p = 0.635) compared with that of the RFC model.

Moreover, the LR-Stacking models performed better than all

five basic ML models in terms of their sensitivity, specificity,

accuracy, and especially F1-score.

Under the same conditions, for predicting futile

recanalization, MCE, and CH, the LR models had AUCs

of 0.908, 0.852, and 0.929, respectively. Comparing the

performance of the ensembleMLmethod against the generalized

statistical method for predicting futile recanalization and MCE

demonstrated that the AUC of the LR-Stacking model improved

by 0.041 (p = 0.324) and 0.032 (p = 0.395), respectively. For

predicting CH, the AUC of the LR-Stacking model decreased by

0.025 (p= 0.739). Similarly, the LR models show a similar trend

to the basic ML models in that their accuracy, F1-score, and

other statistical are lower than those of the LR-Stacking models.

The model comparison results are shown in Table 3.

DCA demonstrated that if the threshold probability in the

clinical decision was >20%, the ML models provided a greater

benefit than the treat-all models. For classifying MCE and CH,

the overall net benefit of the LR-Stacking model was greater

than that of the other ML models. For example, at the 40% risk

cutoff, the net benefits from the LR-Stacking model were 23 and

16%, respectively, which are equivalent to performing clinical

interventions for 23 MCE patients and 16 CH patients per 100

patients without any of the interventions being unnecessary and

21 (MCE) and 25 (CH) fewer unnecessary interventions with no

increase in the number of clinically significant missed MCE and

CH diagnoses.

Feature importance analysis

For predicting the outcomes of the patients with AIS, the LR-

Stackingmodel indicated that themost important characteristics

were the hypodensity volume and proportion of the responsible
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FIGURE 3

The results from the ML models and contributions of various features to predicting futile recanalization. (A) The ROC curve of five ML models

and LR-Stacking model. (B) The net benefit of the various models. (C) The features are listed in descending order according to the contributions

from the LR-Stacking model. (D) The e�ects of the features on prediction. The colors indicate the value of each feature, from high (red) to low

(blue). The horizontal location shows whether the e�ect of the value leads to a prediction of futile recanalization. Each point is a SHAP value of a

feature for a case.

vascular supply area, NIHSS score at admission, and maximum

layer area of hyperdensity. For predicting MCE and CH, the LR-

Stackingmodel primarily classified patients by their hypodensity

volume. The SHAP values for all the basic MLmodels are shown

in Supplementary Figures 2–4.

We displayed the LR-Stacking models’ decision-making

processes for two patients from the test set. The models’

prediction processes for themRS-90,MCE, and CH are shown in

Figure 6. Case #1 (Figure 6A) was a patient who had an mRS-90

of 5, indicating futile recanalization; this patient developedMCE

and CH. Case #2 (Figure 6B) was a patient who had an mRS-90

of 2, indicating meaningful recanalization; this patient did not

develop MCE or CH. We found that the LR-Stacking models

output the classification results for case #1 primarily based

on the hypodensity volume; however, the other features that

supported a futile recanalization prediction were different from

those for case #2. The LR-stacking model incorrectly classified

case #2 as having an mRS-90 >2, primarily due to the high

hypodensity proportion in the responsible vascular supply. The

LR-Stacking model also determined that MCE and CH would

not occur in case #2 due to the TOAST being classified as LAA

and the presence of a relatively small hypodense volume.

Discussion

The present study demonstrated that the predictive models

based on clinical and NCCT- characteristics and ensemble

ML algorithm allows to accurately predict the risk of futile

recanalization, MCE, and CH in patients with AIS who

were treated with MT and for whom successful endovascular

recanalization was achieved. In terms of overall prediction

performance, the ensemble MLmethod in predicting these three

adverse events is better than that of the basic ML models and

generalized statistical method. We added SHAP algorithm to

show the top features and how they impact the models’ output.

The results of SHAP analysis showed that hypodensity volume

and proportion of the responsible vascular supply area, NIHSS
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FIGURE 4

The results of the ML models and the contributions of various features to predicting MCE. (A) The ROC curve of five ML models and LR-Stacking

model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The e�ects of the features

on the predictions of the LR-Stacking model.

at admission, and maximum slice area of hyperdensity was the

top-5 predictors for predicting futile recanalization. Meanwhile,

hypodensity volume and proportion, TOAST-LAAwere the top-

3 predictors for predicting MCE, and hypodensity volume and

proportion, and smoking history were the top-3predictors for

predicting CH.

Most studies demonstrated that ML can be used as an

auxiliary means of clinical evaluation to predict the functional

outcomes after EVT of AIS patients (24–26). However, most

of the research cohorts were AIS patients with anterior

circulation infarction, regardless of the efficacy of EVT, and only

their mRS-90 was concerned. Despite complete endovascular

recanalization, a significant percentage of patients with AIS do

not achieve a good clinical outcome (5). The characteristics

of the present study are that it focused on patients with AIS

who underwentMT and completely recanalization (mTICI score

2b-3), and three adverse outcomes including mRS-90, MCE,

and CH were predicted. Moreover, the prediction models could

display the specific decision-making process of each patient,

which indicated that it may have the potential for clinical

application. It means that the models can identify the patients

with a high risk of adverse outcomes as early as possible and help

doctors to be alert and take the high-risk factors suggested by the

model as the target of personalized intervention.

According to the results, we can easily observe that the

performance of the ensemble ML models was better than

the basic ML models and the generalized LR models in the

prediction of futile recanalization and MCE. Early identification

of high-risk patients with MCE or CH is of great significance

in treatment decisions. Prediction models require excellent

sensitivity and net benefits due to the severe consequences of

misclassifying MCE and CH. Although the AUC of LR-Stacking

model was lower than that of RFC, we chose the LR-Stacking

model as the final prediction model for evaluating the risk of CH

after considering additional scores, particularly the F1-score and

DCA results.

The more complex and accurate the ML model, the worse

its interpretability. The primary obstacle to the application and

popularization of AI prediction models in the clinical setting is

the difficulty clinicians experience understanding, trusting, and
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FIGURE 5

The results of the ML models and contributions of various features to predicting CH. (A) The ROC curve of five ML models and LR-Stacking

model. (B) The net benefit of the various models. (C) The importance of the features for the LR-Stacking model. (D) The e�ects of the features

on the predictions of the LR-Stacking model.

using ML model prediction results and applying them to each

patient. Although someML algorithms have embedded modules

of feature importance, they are still insufficient to support

clinical applications. Therefore, we added SHAP algorithm

to visualize the decision-making process of the ML models.

According to the analysis results, we can easily observe that

clinically severe AIS has a high probability of producing

adverse outcomes according to the severity and extent of the

initial ischemia. However, although hypodensity volume and

proportion showed a strong correlation with the three adverse

events, it should be emphasized that they alone were not enough

to reliably complete the prediction tasks. A pooled analysis of 7

randomized multicenter trials on EVT demonstrated that only

12% of the treatment benefit according to mRS-90 could be

explained by the follow-up infarct volume, which is not a valid

proxy for estimating treatment effect in phase II and III trials

of AIS (27). On this point, the basic ML algorithms in this

study could integrate hypodensity volume and proportion and

other meaningful predictors of adverse outcomes because it is

good at finding and processing complex relationships between

numerous input variables to make more accurate predictions

(28). After that, by integrating the advantages of five basic ML

algorithms, the optimal models were constructed.

Several studies have shown that a large infarct volume is

associated with worse functional outcomes for patients with

AIS, indicating that the infarct volume is an independent

predictor of functional outcomes for these patients (29–31).

Furthermore, multiple factors, including clinical and imaging

features and MT-related information, may affect whether

futile recanalization occurs. Analyzing these factors will help

clinicians make individualized decisions about the necessity

of an MT for their patients. Hypertension, LAA, older age,

hyperglycemia, and lower GCS scores at admission support the

model to predict poor functional prognosis. Hypertension and

age over 70 may increase the risk of futile recanalization (32–

34). Hyperglycemia is related to larger infarct volumes and
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TABLE 3 The AUC, sensitivity, specificity, accuracy, and F1-score comparisons of generalized LR and LR-Stacking method.

AUC Sensitivity Specificity Accuracy F1-score p-value

mRS-90

LR 0.908 (0.7914, 1.0000) 0.882 (0.6356, 0.9854) 0.875 (0.6165, 0.9845) 0.879 (0.7180, 0.9660) 0.879 0.324

LR-stacking 0.949 (0.882, 1.000) 0.882 (0.64, 0.99) 0.875 (0.617, 0.985) 0.879 (0.718, 0.966) 0.882

MCE

LR 0.852 (0.6551, 1.0000) 0.900 (0.5550, 0.9975) 0.870 (0.6641, 0.9722) 0.879 (0.7180, 0.9660) 0.864 0.395

LR-stacking 0.885 (0.738, 1.000) 0.900 (0.555, 0.998) 0.913 (0.720, 0.989) 0.909 (0.757, 0.981) 0.895

CH

LR 0.929 (0.8263, 1.0000) 0.714 (0.2904, 0.9633) 0.923 (0.7487, 0.9905) 0.879 (0.7180, 0.9660) 0.819 0.739

LR-stacking 0.904 (0.715, 1.000) 0.857 (0.421, 0.996) 0.962 (0.804, 0.999) 0.939 (0.798, 0.993) 0.909

The AUCs of three groups of models were compared by Delong test.

AUC, area under the receiver operating characteristic curve; mRS-90, 90-day modified Rankin Scale; MCE, malignant cerebral edema; CH, cerebral herniation; LR, logistics regression.

reduced salvage of perfusion-diffusion mismatch tissue (35).

On the other hand, hyperglycemia may cause a larger increase

in the infarct volume leading to a worse clinical outcome

despite complete recanalization (36). Functional outcomes of

AIS patients after MT were similar among different TOAST

subtypes, but it is still unknown whether the subtype has

an impact on the patients with complete recanalization (37).

Some studies also suggested that the functional outcomes of

patients with LAA were worse than other TOAST criteria, which

may be related to inflammation and metabolic response (38,

39). Moreover, previous studies have shown that for patients

with AIS, large infarct volume, poor collateral circulation,

and high NIHSS score are significant predictors of functional

outcomes and indicators of the severity of the neurological

injury (6–8). However, unlike in other studies, our results

show that the symptom onset time and interval from puncture

to recanalization did not play a particularly strong role in

predicting futile recanalization (12, 40).

The infarct volume can be used to predict MCE by

measuring it on early MRI scans accurately; however, MRI

scans may not be readily available to patients with AIS (41).

In contrast, hypodensity is easily available and measurable in

CT. Although it may be a variable combination of infarction

and edema, hypodensity is also closely correlated with the

mRS-90, potentially lethal MCE, and CH (41–43). The SHAP

values for the LR-Stacking models indicate that the NCCT-

based infarct volume is an important risk factor for predicting

MCE and CH. Interestingly, the model considered that the

history of smoke is a protective factor against MCE and

CH after MT, which was contrary to our common sense

and some previous research. Smoking severely affects the

cerebrovascular reserve and induces intracranial atherosclerotic

changes, and it may impair cerebrovascular reactivity and lead

to poor collateral circulation (44, 45). However, a meta-analysis

based on 45,826 AIS patients showed a similar result that

smoking was a protective factor against MCE (46). According

to a relevant study, the activation of endogenous cannabinoid

system may play a significant role in the neuroprotective

effect of nicotine (47). It may be due to nicotine promoting

the release of endocannabinoids, resulting in hypothermia,

which inhibits the inflammatory response and alleviates cerebral

edema (48, 49). Despite the SHAP values for other features

being much lower than the infarct volumes, it cannot be

assumed that other features are not essential or useful. In

addition, we found that the patients with CH had shorter

groin puncture time in this cohort, but there was no statistical

difference in groin puncture time between the cohorts of futile

recanalization and non-futile recanalization. We think it is

caused by the small sample size of data because there was

no special treatment performed for this group of patients

before MT. This feature also did not play a significant role

in our ML models. As the base learners of the LR-Stacking

model, the great performances of the SVM, RFC, and KNN

algorithms are facilitated by the interactions among multiple

features. Overall, the NCCT-based cerebral infarct volume

was the most stable and robust predictor in each basic

ML model.

Our study had some limitations. First, this was a

single-center study with a small sample size, and the

constructed models need further external validation.

Second, the low MCE and CH proportions may have

affected the statistical power of the study; therefore, we

applied SMOTE to the data segmentation and model

training to reduce the influence of the unbalanced

data. Finally, this study did not distinguish between the

ischemic core and penumbra, and their impact on ML

is unknown.

Conclusion

This study demonstrates that comprehensive analysis

of clinical and NCCT characteristics using ML algorithms

allowed for the accurate prediction of clinical outcomes
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FIGURE 6

The force plot for the LR-Stacking model decision process for evaluating the risk of futile recanalization, MCE, and CH in two patients with AIS in

the test set. (A) A patient with mRS-90 of 5, indicating futile recanalization and developed MCE and CH. (B) A patient with mRS-90 of 2,

indicating meaningful recanalization and did not develop MCE or CH. Each feature provides a SHAP value for the base value of the model. The

final prediction value, f(x), is obtained using to the weight of the features and the model processing. When f(x) > 0, the model determines that

the case is positive; otherwise, it is considered negative.

and malignant complications following MT for patients

with AIS. We designed interpretable LR-stacking models

constructed using five basic ML algorithms and used them

as final prediction models. The hypodensity volume and

proportion in the responsible vascular supply area were the

most important imaging predictors, and the NIHSS score

at admission was the most important clinical predictor of

futile recanalization, whereas the hypodensity volume was the

most important predictor of both MCE and CH. We utilized

SHAP technology to show the ensemble model evaluation
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process for each case, which enabled us to promptly determine

the individual risk factors for adverse outcomes and design

corresponding clinical interventions to improve the prognosis

and reduce the risk of malignant complications in the patients

with AIS.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

This study was approved by the Medical Ethics

Committee of Nanfang Hospital (NFEC-2019-189). Informed

consent was waived by the local institutional review

boards due to subject anonymity and the minimal risk to

the participants.

Author contributions

WZ contributed to the experiment design, model

construction, and manuscript drafting. WL contributed to

the data acquisition, statistical analysis, and manuscript

drafting. KH and ZL contributed to the data acquisition

and image analysis. HD and RL contributed to the

model construction and manuscript revisions. ZH and

ZZ contributed to the statistical analysis and manuscript

revisions. YW, WC, and GQ provided guidance during

the entire study, including for model construction,

experiment design, and critical manuscript revisions.

All authors contributed to the article and approved the

submitted version.

Funding

This research was funded by the National Natural

Science Foundation of China (Grant number: 82071484), the

Guangdong Basic and Applied Basic Research Foundation

(Grant number: 2019A1515011760), and the National Natural

Science Foundation of China (Grant number: 82171929).

Acknowledgments

We would like to thank Editage (www.editage.com) for

English language editing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fneur.2022.982783/full#supplementary-material

References

1. Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L. Global, regional, and
national burden of ischemic stroke, 1990–2019. Neurology. (2022) 98:e279–
90. doi: 10.1212/WNL.0000000000013115

2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk
AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-
analysis of individual patient data from five randomised trials. Lancet. (2016)
387:1723–31. doi: 10.1016/S0140-6736(16)00163-X

3. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC,
Becker K, et al. Guidelines for the early management of patients with acute
ischemic stroke: 2019 update to the 2018 guidelines for the early management
of acute ischemic stroke: a guideline for healthcare professionals from the
American heart association/American stroke association. Stroke. (2019) 50:e344–
418. doi: 10.1161/STR.0000000000000211

4. Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-
retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J
Med. (2015) 372:2285–95. doi: 10.1056/NEJMoa1415061

5. Hussein HM, Georgiadis AL, Vazquez G, Miley JT, Memon MZ,
Mohammad YM, et al. Occurrence and predictors of futile recanalization
following endovascular treatment among patients with acute ischemic stroke: a
multicenter study. AJNR Am J Neuroradiol. (2010) 31:454–8. doi: 10.3174/ajn
r.A2006

6. Jiang L, Peng M, Chen H, Geng W, Zhao B, Yin X, et al. Diffusion-
weighted imaging (DWI) ischemic volume is related to FLAIR hyperintensity-DWI
mismatch and functional outcome after endovascular therapy. Quant Imag Med
Surg. (2020) 10:356–67. doi: 10.21037/qims.2019.12.05

7. Weiss D, Kraus B, Rubbert C, Kaschner M, Jander S, GliemM, et al. Systematic
evaluation of computed tomography angiography collateral scores for estimation
of long-term outcome after mechanical thrombectomy in acute ischaemic stroke.
Neuroradiol J. (2019) 32:277–86. doi: 10.1177/1971400919847182

8. Yoo AJ, Chaudhry ZA, Nogueira RG, Lev MH, Schaefer PW, Schwamm LH,
et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy.
Stroke. (2012) 43:1323–30. doi: 10.1161/STROKEAHA.111.639401

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2022.982783
http://www.editage.com
https://www.frontiersin.org/articles/10.3389/fneur.2022.982783/full#supplementary-material
https://doi.org/10.1212/WNL.0000000000013115
https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1161/STR.0000000000000211
https://doi.org/10.1056/NEJMoa1415061
https://doi.org/10.3174/ajnr.A2006
https://doi.org/10.21037/qims.2019.12.05
https://doi.org/10.1177/1971400919847182
https://doi.org/10.1161/STROKEAHA.111.639401
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zeng et al. 10.3389/fneur.2022.982783

9. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer
R. “Malignant” middle cerebral artery territory infarction: clinical course and
prognostic signs. Arch Neurol. (1996) 53:309–15.

10. Deo RC. Machine learning in medicine. Circulation. (2015) 132:1920–
30. doi: 10.1161/CIRCULATIONAHA.115.001593

11. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS,
et al. Current applications and future impact of machine learning in radiology.
Radiology. (2018) 288:318–28. doi: 10.1148/radiol.2018171820

12. Brugnara G, Neuberger U, Mahmutoglu MA, Foltyn M, Herweh C, Nagel
S, et al. Multimodal predictive modeling of endovascular treatment outcome
for acute ischemic stroke using machine-learning. Stroke. (2020) 51:3541–
51. doi: 10.1161/STROKEAHA.120.030287

13. Kim C, Lee SH, Lim JS, Kim Y, Jang MU, Oh MS, et al. Impact of 25-
hydroxyvitamin D on the prognosis of acute ischemic stroke: machine learning
approach. Front Neurol. (2020) 11:37. doi: 10.3389/fneur.2020.00037

14. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, et al.
Randomised double-blind placebo-controlled trial of thrombolytic therapy with
intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-
Australasian acute stroke study investigators. Lancet. (1998) 352:1245–51.

15. Shi Z, Duckwiler GR, Jahan R, Tateshima S, Szeder V, Saver JL, et al. Early
blood-brain barrier disruption after mechanical thrombectomy in acute ischemic
stroke. J Neuroimag. (2018) 28:283–8. doi: 10.1111/jon.12504

16. Pexman JH, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME, et al.
Use of the Alberta stroke program early CT score (ASPECTS) for assessing CT
scans in patients with acute stroke. AJNR Am J Neuroradiol. (2001) 22:1534–42.

17. Huang X, Yang Q, Shi X, Xu X, Ge L, Ding X, et al. Predictors of
malignant brain edema after mechanical thrombectomy for acute ischemic stroke.
J Neurointerv Surg. (2019) 11:994–8. doi: 10.1136/neurintsurg-2018-014650

18. Beez T, Munoz-Bendix C, Steiger HJ, Beseoglu K. Decompressive
craniectomy for acute ischemic stroke. CRIT Care. (2019)
23:209. doi: 10.1186/s13054-019-2490-x

19. Thompson JA, Tan J, Greene CS. Cross-platform normalization of
microarray and RNA-seq data for machine learning applications. PeerJ. (2016)
4:e1621. doi: 10.7717/peerj.1621

20. Jain S, Shukla S, Wadhvani R. Dynamic selection of normalization
techniques using data complexity measures. Exp Syst Appl. (2018) 106:252–
62. doi: 10.1016/j.eswa.2018.04.008

21. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE
synthetic minority over-sampling technique. J Artif Intell Res. (2002)
16:321–57. doi: 10.1613/jair.953

22. Liu R, Pan D, Xu Y, Zeng H, He Z, Lin J, et al. A deep
learning-machine learning fusion approach for the classification of
benign, malignant, and intermediate bone tumors. Eur Radiol. (2022)
32:1371–83. doi: 10.1007/s00330-021-08195-z

23. Zheng B, Cai Y, Zeng F, Lin M, Zheng J, Chen W, et al. An interpretable
model-based prediction of severity and crucial factors in patients with COVID-19.
Biomed Res Int. (2021) 2021:8840835. doi: 10.1155/2021/8840835

24. Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-
based model for prediction of outcomes in acute stroke. Stroke. (2019) 50:1263–
5. doi: 10.1161/STROKEAHA.118.024293

25. Alawieh A, Zaraket F, Alawieh MB, Chatterjee AR, Spiotta A. Using machine
learning to optimize selection of elderly patients for endovascular thrombectomy.
J Neurointerv Surg. (2019) 11:847–51. doi: 10.1136/neurintsurg-2018-014381

26. Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome
prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE. (2014)
9:e88225. doi: 10.1371/journal.pone.0088225

27. Boers A, Jansen I, Brown S, Lingsma HF, Beenen L, Devlin TG, et al.
Mediation of the relationship between endovascular therapy and functional
outcome by follow-up infarct volume in patients with acute ischemic stroke. JAMA
Neurol. (2019) 76:194–202. doi: 10.1001/jamaneurol.2018.3661

28. Bzdok D, Altman N, Krzywinski M. Statistics vs. machine learning. Nat
Methods. (2018) 15:233–4. doi: 10.1038/nmeth.4642

29. Boers A, Jansen I, Beenen L, Devlin TG, San RL, Heo JH, et al. Association
of follow-up infarct volume with functional outcome in acute ischemic stroke: a
pooled analysis of seven randomized trials. J Neurointerv Surg. (2018) 10:1137–
42. doi: 10.1136/neurintsurg-2017-013724

30. Barrett KM, Ding YH, Wagner DP, Kallmes DF, Johnston KC. Change in
diffusion-weighted imaging infarct volume predicts neurologic outcome at 90 days:

results of the acute stroke accurate prediction (ASAP) trial serial imaging substudy.
Stroke. (2009) 40:2422–7. doi: 10.1161/STROKEAHA.109.548933

31. Zaidi SF, Aghaebrahim A, Urra X, Jumaa MA, Jankowitz B, Hammer M,
et al. Final infarct volume is a stronger predictor of outcome than recanalization in
patients with proximal middle cerebral artery occlusion treated with endovascular
therapy. Stroke. (2012) 43:3238–44. doi: 10.1161/STROKEAHA.112.671594

32. Deng G, Xiao J, Yu H, Chen M, Shang K, Qin C, et al.
Predictors of futile recanalization after endovascular treatment in
acute ischemic stroke: a meta-analysis. J Neurointerv Surg. (2022)
14:881–5. doi: 10.1136/neurintsurg-2021-017963

33. Hamann J, Herzog L, Wehrli C, Dobrocky T, Bink A, Piccirelli M,
et al. Machine-learning-based outcome prediction in stroke patients with middle
cerebral artery-M1 occlusions and early thrombectomy. Eur J Neurol. (2021)
28:1234–43. doi: 10.1111/ene.14651

34. Neuberger U, Vollmuth P, Nagel S, Schonenberger S, Weyland CS,
Gumbinger C, et al. Optimal thresholds to predict long-term outcome after
complete endovascular recanalization in acute anterior ischemic stroke. J
Neurointerv Surg. (2021) 13:1124–7. doi: 10.1136/neurintsurg-2020-016997

35. Natarajan SK, Dandona P, KarmonY, YooAJ, Kalia JS, HaoQ, et al. Prediction
of adverse outcomes by blood glucose level after endovascular therapy for acute
ischemic stroke. J Neurosurg. (2011) 114:1785–99. doi: 10.3171/2011.1.JNS10884

36. Mazighi M, Labreuche J, Amarenco P. Glucose level and brain infarction: a
prospective case-control study and prospective study. Int J Stroke. (2009) 4:346–
51. doi: 10.1111/j.1747-4949.2009.00329.x

37. Huo X, Sun D, Raynald JB, Tong X, Wang A, Ma N, et al. Endovascular
treatment in acute ischemic stroke with large vessel occlusion according to different
stroke subtypes: data from ANGEL-ACT registry. Neurol Ther. (2022) 11:151–
65. doi: 10.1007/s40120-021-00301-z

38. Lehmann MF, Kallaur AP, Oliveira SR, Alfieri DF, Delongui F, de Sousa PJ,
et al. Inflammatory and metabolic markers and short-time outcome in patients
with acute ischemic stroke in relation to TOAST subtypes.Metab Brain Dis. (2015)
30:1417–28. doi: 10.1007/s11011-015-9731-8

39. Zeng Q, Zeng Y, Slevin M, Guo B, Shen Z, Deng B, et al. C-reactive protein
levels and clinical prognosis in LAA-type stroke patients: a prospective cohort
study. Biomed Res Int. (2021) 2021:6671043. doi: 10.1155/2021/6671043

40. Potreck A, Weyland CS, Seker F, Neuberger U, Herweh C, Hoffman A, et al.
Accuracy and prognostic role of NCCT-ASPECTS depend on time from acute
stroke symptom-onset for both human and machine-learning based evaluation.
Clin Neuroradiol. (2021) 32:133–40. doi: 10.1007/s00062-021-01110-5

41. Thomalla G, Hartmann F, Juettler E, Singer OC, Lehnhardt FG, Kohrmann
M, et al. Prediction of malignant middle cerebral artery infarction by magnetic
resonance imaging within 6 h of symptom onset: a prospective multicenter
observational study. Ann Neurol. (2010) 68:435–45. doi: 10.1002/ana.22125

42. Battey TW, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BC, et al.
Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. (2014)
45:3643–8. doi: 10.1161/STROKEAHA.114.006884

43. Murray NM, Culbertson CJ, Wolman DN, Mlynash M, Lansberg MG.
Hypoperfusion intensity ratio predicts malignant edema and functional outcome
in large-vessel occlusive stroke with poor revascularization. Neurocrit Care. (2021)
35:79–86. doi: 10.1007/s12028-020-01152-6

44. Rizk H, Allam M, Hegazy A, Khalil H, Helmy H, Hashem H,
et al. Predictors of poor cerebral collaterals and cerebrovascular reserve in
patients with chronic total carotid occlusion. Int J Neurosci. (2019) 129:455–
60. doi: 10.1080/00207454.2018.1538990

45. Lasner TM, Weil RJ, Riina HA, King JJ, Zager EL, Raps EC, et al. Cigarette
smoking-induced increase in the risk of symptomatic vasospasm after aneurysmal
subarachnoid hemorrhage. J Neurosurg. (1997) 87:381–4.

46. Miao J, Song X, Sun W, Qiu X, Lan Y, Zhu Z. Predictors of malignant
cerebral edema in cerebral artery infarction: a meta-analysis. J Neurol Sci. (2020)
409:116607. doi: 10.1016/j.jns.2019.116607

47. Chen Y, Nie H, Tian L, Tong L, Yang L, Lao N, et al. Nicotine-induced
neuroprotection against ischemic injury involves activation of endocannabinoid
system in rats. Neurochem Res. (2013) 38:364–70. doi: 10.1007/s11064-012-0927-6

48. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam
R, et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury.
Nature. (2001) 413:527–31. doi: 10.1038/35097089

49. Pacher P, Hasko G. Endocannabinoids and cannabinoid receptors in
ischaemia-reperfusion injury and preconditioning. Br J Pharmacol. (2008)
153:252–62. doi: 10.1038/sj.bjp.0707582

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2022.982783
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1148/radiol.2018171820
https://doi.org/10.1161/STROKEAHA.120.030287
https://doi.org/10.3389/fneur.2020.00037
https://doi.org/10.1111/jon.12504
https://doi.org/10.1136/neurintsurg-2018-014650
https://doi.org/10.1186/s13054-019-2490-x
https://doi.org/10.7717/peerj.1621
https://doi.org/10.1016/j.eswa.2018.04.008
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/s00330-021-08195-z
https://doi.org/10.1155/2021/8840835
https://doi.org/10.1161/STROKEAHA.118.024293
https://doi.org/10.1136/neurintsurg-2018-014381
https://doi.org/10.1371/journal.pone.0088225
https://doi.org/10.1001/jamaneurol.2018.3661
https://doi.org/10.1038/nmeth.4642
https://doi.org/10.1136/neurintsurg-2017-013724
https://doi.org/10.1161/STROKEAHA.109.548933
https://doi.org/10.1161/STROKEAHA.112.671594
https://doi.org/10.1136/neurintsurg-2021-017963
https://doi.org/10.1111/ene.14651
https://doi.org/10.1136/neurintsurg-2020-016997
https://doi.org/10.3171/2011.1.JNS10884
https://doi.org/10.1111/j.1747-4949.2009.00329.x
https://doi.org/10.1007/s40120-021-00301-z
https://doi.org/10.1007/s11011-015-9731-8
https://doi.org/10.1155/2021/6671043
https://doi.org/10.1007/s00062-021-01110-5
https://doi.org/10.1002/ana.22125
https://doi.org/10.1161/STROKEAHA.114.006884
https://doi.org/10.1007/s12028-020-01152-6
https://doi.org/10.1080/00207454.2018.1538990
https://doi.org/10.1016/j.jns.2019.116607
https://doi.org/10.1007/s11064-012-0927-6
https://doi.org/10.1038/35097089
https://doi.org/10.1038/sj.bjp.0707582
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Predicting futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following mechanical thrombectomy for acute ischemic stroke
	Introduction
	Methods
	Study population
	Image acquisition and feature extraction
	Clinical assessments and outcomes
	Model development
	Model evaluation
	Statistical analysis

	Results
	Study population
	Model performance
	Feature importance analysis

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


