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Objective: We developed and validated a clinical-radiomics nomogram to

predict the prognosis of basal ganglia hemorrhage patients.

Methods: Retrospective analyses were conducted in 197 patients with

basal ganglia hemorrhage (training cohort: n = 136, test cohort: n = 61)

who were admitted to The First A�liated Hospital of Shandong First

Medical University (Shandong Provincial Qianfoshan Hospital) and underwent

computed tomography (CT) scan. According to di�erent prognoses, patients

with basal ganglia hemorrhage were divided into two groups. Independent

clinical risk factors were derived with univariate and multivariate regression

analysis. Radiomics signatures were obtained using least absolute shrinkage

and selection operator. A radiomics score (Rad-score) was generated by 12

radiomics signatures of perihematomal edema (PHE) from CT images that

were correlated with the prognosis of basal ganglia hemorrhage patients.

A clinical-radiomics nomogram was conducted by combing the Rad-score

and clinical risk factors using logistic regression analysis. The prediction

performance of the nomogram was tested in the training cohort and verified

in the test cohort.

Results: The clinical model conducted by four clinical risk factors

and 12 radiomcis features were used to establish the Rad-score. The

clinical-radiomics nomogram outperformed the clinical model in the training

cohort [area under the curve (AUC), 0.92 vs. 0.85] and the test cohort

(AUC, 0.91 vs 0.85). The clinical-radiomics nomogram showed good

calibration and clinical benefit in both the training and test cohorts.
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Conclusion: Radiomics features of PHE in patients with basal

ganglia hemorrhage could contribute to the outcome prediction. The

clinical-radiomics nomogram may help first-line clinicians to make individual

clinical treatment decisions for patients with basal ganglia hemorrhage.

KEYWORDS

radiomics, perihematomal edema, machine learning model, prognosis, basal ganglia

hemorrhage

Introduction

Spontaneous intracerebral hemorrhage (ICH) accounts

for 10% of all strokes and has a high mortality rate of

∼40% (1). The basal ganglia are the most common site

of ICH. Globally, ICH leads to 2.8 million deaths per

year (2, 3), and only 12–39% of ICH patients could live

independently without disabilities (4). Because ICH usually

leads to death, morbidity, and disability, early and accurate

prediction of clinical prognosis is important to guide the

development of clinical treatment plans and observe the effect

of treatment.

Perihematomal edema (PHE) is caused by damage to the

blood-brain barrier (BBB) and neuronal ion channel disruption

and is an important secondary injury following ICH (5, 6).

It is the primary cause of increased intracranial pressure,

brain hernia, and death in ICH patients and contributes

to poor clinical prognosis (7, 8). Many studies have shown

that increased PHE volume around the hematoma after ICH

was an independent risk factor in ICH patients for poor

prognosis (9–12). Computed tomography (CT) is the most

common examination method for diagnosing PHE. During

the early stage, the characteristics of PHE are not typical in

CT images, and accurate interpretations rely on radiologists’

experience (13–15). It is difficult for clinicians to quantify

early cerebral edema following ICH. Therefore, developing

a more objective and convenient method for volume and

severity assessment of the PHE in CT scans will significantly

benefit prognosis predictions and could contribute to clinical

intervention decision-making.

Radiomics is a rapidly developing method based on

computer-aided detection or diagnosis and combines

quantitative image analysis and machine learning algorithms

(16–19). Radiomics overcomes the limitation of image

interpretation, which usually relies on the experience of

doctors (20, 21). At present, radiomics is used primarily

for screening and quantitative analysis of the most valuable

imaging features, which are used to develop machine learning

models for either diagnosis or prognosis prediction (22–24).

Although previous studies have suggested that PHE is a

predictor of functional outcomes in ICH patients, the impact

of PHE on the prognosis of ICH is controversial (25–28).

Currently, the association between the radiomics features

of PHE in CT scans and the outcome of ICH patients

remains unclear.

In this study, we aimed to establish and validate a combined

nomogram for predicting the prognosis of basal ganglia

hemorrhage patients using the radiomics features of PHE and

clinical characteristics.

Materials and methods

Collection and selection of patient data

This single-center retrospective study was approved by the

Medical Ethics Committee of The First Affiliated Hospital

of Shandong First Medical University (Shandong Provincial

Qianfoshan Hospital), and the informed consent was waived.

352 ICH patients were recruited between January 2016 and

March 2022. For this study, the inclusion criteria were as follows:

(1) patients aged over 18 years with a spontaneous ICH in

the basal ganglia; (2) CT examination performed within 72 h

of disease onset; (3) admission assessment using the National

Institute of Health Stroke Scale (NIHSS). Patients with the

following conditions were excluded: (1) patients with a tumor,

vascular malformation, aneurysm, or trauma, and those who

had undergone thrombolytic therapy or cerebral arteriovenous

thrombosis; (2) patients pretreated with anticoagulants or those

with coagulopathy; (3) pregnant women; (4) patients with

multiple organ failure. Finally, a total of 197 patients were

enrolled. This patient database was divided into a training

cohort (n = 136) and a test cohort (n = 61) at a 7:3

ratio, with the random seed of 186 (Figure 1). The Glasgow

Outcome Scale (GOS) was used for assessing the clinical

outcome of patients when they were discharged from the

hospital, which was usually 7–10 days after admission. A

GOS score of 4–5 represented a good prognosis, while a

score of 1–3 was regarded as a poor prognosis (Figure 1).
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FIGURE 1

The flow chart of patients’ selection.

Images acquisition and region of interest
segmentation

The first CT scans of patients after ICH onset were

acquired on two types of CT scanners (Discovery CT750

HD and Optima CT660, General Electric Company, USA)

using standardized scanning protocols: tube voltage and

current of 120 kV and 350mA, the field of view of

32 cm, matrix size of 512 × 512, and slice thickness of

5mm. The scanning range was from the skull base to

the cranium.

The region of interest (ROI) segmentation of the PHE

and hematoma were performed by a neuroradiologist with

10 years of experience using Radcloud (Huiying Medical

Technology Co., Ltd., China). The validation of segmentation

results was conducted by a senior neuroradiologist with

20 years of experience in 19 randomly selected patients.

All radiologists were blind to the clinical information of

the patients.

Feature extraction and selection

Using the Radcloud platform, we extracted 1,409

quantitative imaging features of PHE from the CT images.

These features contained first-order statistics and texture, shape,

and size features. The feature extraction was conducted using

a “pyradiomics” package (https://pyradiomics.readthedocs.

io/en/latest/). We first conducted the intraclass correlation

coefficient test in 19 patients, and 1,225 features with a p >

0.75 were screened for the subsequent analysis. The variance

threshold method reduced the number of features to 1,178,

of which 131 were retained after applying the SelectKBest

method. Finally, using the least absolute shrinkage and selection

operator (LASSO) regression model, 12 radiomics signatures

were selected for machine model building (Figure 2). The

features of hematoma were extracted in the same way as

for PHE and were combined with the features of PHE for

selection. The combined feature selection was conducted

using the variance threshold (variance threshold = 0.8),

SelectKBest (p < 0.05), and the LASSO, and 12 combined

features were obtained (Supplementary materials). PHE

volume and hematoma volume were calculated using the

Radcloud platform.

Machine learning model building

Clinical characteristics were screened using univariate and

multivariate logistic regression analyses. Factors with a p < 0.05

were considered single risk factors for prognosis in basal ganglia

hemorrhage patients by univariate logistic regression analyses

in the training cohort. These single factors were then analyzed

by multivariate logistic regression analyses, and factors with a p

< 0.1 were considered independent risk factors for prognosis.

Using these factors, we built a clinical model using logistic

regression in the training cohort and verified in the test cohort.

PHE volume-clinical model was conducted with the PHE

volume and the four independent clinical features by logistic

regression in the training cohort and verified in the test cohort.

The radiomics score (Rad-score) was calculated for each

patient by a formula using the selected 12 radiomics signatures.

The rad-score formula was obtained as follows: Rad-score

= α +

i∑

1
βiXi, and α is the intercept (α = 0.647), βi

is the value of radiomics feature; Xi is the corresponding

coefficient (Supplementary materials).

Based on the selected features of PHE, we constructed

radiomics models with three classifiers, including Logistic

Regression (LR), Decision tree (DT), and Support Vector

Machine (SVM). The effectiveness of the model was improved

using the validation method.

The clinical-radiomics nomogram was derived using the

rad-score and the independent clinical risk factors in the

training cohort and verified in the test cohort using logistic

regression analysis.

The PHE-hematoma-clinical model was conducted with

four independent clinical risk factors and the 12 selected

combined radiomics features using LR analysis in the training

cohort and verified in the test cohort (Supplementary materials).
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FIGURE 2

The workflow of the radiomics analysis.

Model evaluation

The receiver operating characteristic (ROC) curve was used

to assess the predictive efficacy of machine learning models in

the training and test cohort. Delong test was used to evaluate

the differences of the area under curves (AUCs). The nomogram

was evaluated by calibration curves and Hosmer-Lemeshow test

in the training and test cohorts. Decision curve analysis (DCA)

was conducted to determine the clinical benefit of the machine

learning models by calculating the net benefits at different

threshold probabilities.

Statistical analysis

Statistical analyses were conducted with R software

(version 3.4.4) and the SPSS software (version 22.0). Clinical

characteristics are described as medians (interquartile ranges)

or means ± standard deviations according to the results of the

Shapiro-Wilk test. Categorical data, such as sex, are expressed

as percentages. The chi-squared test, Fisher’s exact test, and

Mann-Whitney U test were used for univariate analysis. A p <

0.05 was considered statistically significant.

Results

Characteristics of basal ganglia
hemorrhage patients

There were no significant differences in clinical

characteristics between the training and test cohorts

(Table 1). Univariate analysis indicated that maximum

diameter, hematoma/intracranial diameter (H/I), Glasgow

Coma Scale (GCS) score, Mg (magnesium), hematoma

volume, D-dimer (DD2), NIHSS score, and muscle

strength on the affected side were potential risk factors

for prognosis in basal ganglia hemorrhage (Table 2, p

< 0.05). These eight clinical features were subsequently

analyzed using multivariate logistic regression and obtained

four independent predictors of prognosis: GCS score

(p = 0.013), muscle strength on the affected side (p

< 0.001), hematoma volume (p = 0.092), and DD2 (p

= 0.047).

Clinical and radiomics models for
prognosis prediction in patients with
basal ganglia hemorrhage

The clinical model comprising four independent

risk factors had an AUC of 0.85 [95% confidence

interval (CI), 0.79–0.92] in the training cohort, and the

AUC was 0.85 (95% CI, 0.74–0.95) in the test cohort

(Figure 3).

The radiomics model comprised three different

classifiers using the 12 radiomics features. As shown in

Supplementary Figure 2, in the training cohort, the AUC of

the SVM model was 0.79 (95% CI, 0.71–0.87), the AUC of the

LR model was 0.79 (95% CI, 0.71–0.87), and the AUC of the

DT model was 0.74 (95% CI, 0.67–0.81). In the test cohort,

the AUC of the SVM model was 0.70 (95% CI, 0.56–0.85), the

AUC of the LR model was 0.71 (95% CI, 0.57–0.86), and the
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TABLE 1 Patients’ characteristics in the training and test cohorts.

Variables Training cohort (n = 136) Test cohort (n = 61) P

Age, years 60± 11.8 59.5± 12.9 0.372

Sex (male), n (%) 78 (57) 44 (72) 0.057

Muscle strength on the affected side 3 (1,4) 2 (1,4) 0.484

Minimum diameter, mm 16.81 (14.51, 20.98) 18.52 (13.05, 21.65) 0.088

Maximum diameter, mm 31.36± 10.77 29.93± 8.5 0.718

Roundness, mm 12.2 (6.45, 19.5) 11.4 (5.7, 18.9) 0.337

Intracranial diameter, mm 127.31± 7.28 128.6± 7.5 0.485

Hematoma diameter, mm 19.94 (15.65, 24.29) 21.65 (14.67, 26.76) 0.275

H/I 0.16± 0.05 0.17± 0.05 0.189

GCS score 11(9,13) 10 (9,13) 0.879

Alkaline phosphatase 75 (64, 90.15) 71.6 (62.6, 88) 0.751

K, mmol/L 3.88 (3.52, 4.07) 3.91 (3.57, 4.3) 0.413

Na, mmol/L 141.06 (137, 143) 141.1 (138, 143) 0.307

Ca, mmol/L 2.23 (2.11, 2.33) 2.21 (2.16, 2.29) 0.799

Mg, mmol/L 0.88 (0.84, 0.91) 0.89 (0.85, 0.92) 0.095

Blood glucose at admission, mmol/L 5.97 (4.94, 6.91) 5.9 (5.06, 7.3) 0.710

WBC, 109/L 7.66 (6.38, 9.49) 8.09 (6.06, 9.58) 0.884

Neutrophils,109/L 6.03 (4.44, 7.68) 5.77 (4.38, 7.96) 0.613

Lymphocyte,109/L 1.16 (0.77, 1.55) 1.3 (0.78, 1.73) 0.448

NLR 5.08 (3.14, 9.63) 4.54 (2.77, 7.36) 0.471

Hb, g/L 137.2± 15.46 137.98± 14.57 0.842

HCT 0.41± 0.04 0.42± 0.04 0.497

RDW–CV 12.5 (12,13) 12.7 (12.1, 13.2) 0.346

PLT, 109/L 218 (185, 251.75) 213 (171, 265) 0.299

PDW, fL 12 (10.47, 13.43) 11.9 (10.7, 12.9) 0.569

PT, sec 11.2 (10.7, 11.6) 11.3 (10.6, 11.7) 0.914

INR 0.96 (0.91, 1.01) 0.97 (0.90, 1.03) 0.689

APTT, sec 25.4 (23.45, 27.13) 25.6 (21.73, 29.43) 0.456

TT, sec 17.05 (16.38, 17.8) 17.1 (16.5, 17.9) 0.621

DD2, mg/L 0.35 (0.2, 0.69) 0.35 (0.22, 0.75) 0.657

Systolic pressure at hospital admission 164± 27.4 162.3± 23.6 0.745

Diastolic pressure at hospital admission 95.4± 15.8 93± 13.0 0.054

Hematoma volume, mL 16.64 (9.9, 27.83) 15.23 (6.47, 23.38) 0.149

NIHSS score 7 (4,11) 6 (4,11) 0.429

First CT (hour) 19 (12,30) 20 (12,33) 0.672

H/I, hematoma/intracranial diameter; GCS, Glasgow Coma Scale; NIHSS, National Institute of Health stroke scale. Data are shown as median (interquartile ranges) or mean ±

standard deviations.

AUC of the DT model was 0.67 (95% CI, 0.50–0.76). The LR

model got better performance than the SVM and DT models

(Supplementary Table 1). The results of Delong test showed

that although the clinical model had higher AUCs than the LR

radiomics model, no significant difference was found between

these models in the training cohort (p = 0.152) and the test

cohort (p= 0.159).

To verify whether the PHE volume contributes to

the enhanced prediction of prognosis, we combined

the four independent clinical risk factors and the PHE

volume to build a model to predict the prognosis of

basal ganglia hemorrhage patients. Results showed

that PHE volume-clinical model had an AUC of 0.91

(95% CI, 0.87–0.96) in the training cohort and an

AUC of 0.84 (95% CI, 0.74–0.95) in the test cohort

(Supplementary Figure 3). This PHE volume-clinical model

did not show a better performance than the clinical model in

prognosis prediction.
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TABLE 2 Univariate analyses of predictors of prognosis in training cohorts.

Variables Good prognosis

(n = 88)

Poor prognosis

(n = 48)

P

Age, years 62.5± 13.1 59.1± 10.1 0.203

Sex (male), n (%) 52 (59) 26 (54) 0.709

Muscle strength on the affected side 4 (2-4) 0 (0–2) <0.001

Minimum diameter, mm 16.63 (13.84, 18.79) 17.66 (15.13, 22.37) 0.060

Maximum diameter, mm 29.81± 9.93 34.22± 11.74 0.021

Roundness, mm 10.3 (6.31, 17.44) 13.48 (6.9, 21.93) 0.116

Intracranial diameter, mm 127.74± 7.71 126.53± 6.41 0.355

Hematoma diameter, mm 8.16 (14.9, 23.37) 21.04 (17.14, 25.64) 0.067

H/I, median 0.15± 0.06 0.17± 0.05 0.048

GCS score 12 (10,13) 9 (7.75, 10) <0.001

Alkaline phosphatase 75.55 (64.38, 90.15) 72.3 (63.25, 88.75) 0.609

K, mmol/L 3.84 (3.54, 4.05) 3.9 (3.49, 4.11) 0.460

Na, mmol/L 141.18± 3.95 140.86± 3.95 0.651

Ca, mmol/L 2.22± 0.1 2.25± 0.11 0.104

Mg, mmol/L 0.91± 0.1 0.86± 0.1 0.009

Blood glucose at admission, mmol/L 6.26 (5.46–7.15) 5.36 (4.79–6.02) 0.163

WBC, 109/L 7.5 (6.32, 8.95) 8.16 (6.49, 9.72) 0.084

Neutrophils,109/L 5.74 (4.42, 7.6) 6.22 (4.62, 8.29) 0.084

Lymphocyte,109/L 1.17 (0.8, 1.54) 1.09 (0.75, 1.61) 0.432

NLR 5 (3.04, 8.47) 5.6 (3.49, 10.89) 0.344

Hb, g/L 138.35± 14.76 135.08± 16.62 0.240

HCT 0.41± 0.04 0.4± 0.05 0.108

RDW–CV 12.9 (12.0–13.4) 12.2 (11.9–13.0) 0.331

PLT, 109/L 219.5 (188.5, 256.5) 215.5 (167.25, 248) 0.595

PDW, fL 11.75 (10.47, 13.53) 12.2 (10.45, 13.25) 0.917

PT, sec 11.1 (10.7, 11.43) 11.2 (10.67, 11.7) 0.080

INR 0.96 (0.92, 1) 0.96 (0.9, 1.02) 0.149

APTT, sec 25.4 (23.7, 26.85) 25.25 (23.03, 27.45) 0.069

TT, sec 17.2 (16.6, 17.83) 16.8 (16.17, 17.4) 0.872

DD2, mg/L 0.29 (0.18, 0.54) 0.5 (0.24, 0.88) 0.027

Systolic pressure at hospital admission 165.6± 27.5 161.3± 27.1 0.727

Diastolic pressure at hospital admission 96.3± 16.4 93.8± 14.8 0.934

Hematoma volume, mL 13.97 (8.18, 24.98) 26.82 (16.23, 35.1) <0.001

NIHSS score 5 (3,8) 10 (7,14) <0.001

First CT (hour) 20 (12, 29.25) 19 (12, 31.25) 0.655

H/I, hematoma/intracranial diameter; GCS, Glasgow Coma Scale; NIHSS, National Institute of Health stroke scale. Data are shown as median (interquartile ranges) or mean ±

standard deviations.

Development of the clinical-radiomics
nomogram

Using the four clinical independent risk factors and the Rad-

score, a clinical-radiomics combined model was built using a

logistic regression classifier. As shown in Figure 3, the AUC

of the combined model was 0.92 (95% CI, 0.88–0.96) in the

training cohort and 0.91 (95% CI, 0.84–0.99) in the test cohort.

The clinical-radiomics model showed a better performance in

prognosis prediction than the clinical (p = 0.006, Delong test)

and radiomics models (p < 0.001, Delong test) in the training

cohort. In the test cohort, although the clinical-radiomics model

did not perform significantly differently from the clinical (p =

0.203), but had a better performance in prognosis prediction

than the radiomics model (p= 0.002).

The clinical-radiomics nomogram for determining the

prognosis of basal ganglia hemorrhage patients was shown

in Figure 4. The calibration curves indicated the prediction
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FIGURE 3

Receiver operating characteristic (ROC) curves of the clinical, radiomics, and combined models for predicting the prognosis of basal ganglia

hemorrhage patients in the training (A) and test cohorts (B).

probabilities of the nomogram were well-aligned with the

actual outcome in both the training (p = 0.154) and test

cohorts (p= 0.860).

We also developed a PHE-hematoma-clinical model using

12 combined radiomics features of PHE and hematoma and

the four independent clinical features for prognosis prediction.

The PHE-hematoma-clinical model showed AUCs of 0.91 and

0.90 in the training and test cohort (Supplementary Figure 4).

This PHE-hematoma-clinical model did not show a better

performance in prognosis prediction than the clinical-radiomics

model (Supplementary Table 2).

Finally, we used DCA analysis to compare the clinical

benefits of different predictionmodels. As shown in Figure 5, the

decision curves graphically displayed that the clinical-radiomics

model had a better benefit than the clinical and radiomics

models, indicating the superiority of the combined model.

Discussion

In this research, we confirmed that radiomics features of

PHE from CT images combined with clinical features are

valuable for prognosis prediction of patients with basal ganglia

hemorrhage. Compared with the clinical model, the clinical-

radiomics model showed a better performance for prognosis

prediction. The nomogram derived from this clinical-radiomics

model will enable first-line clinicians to evaluate ICH patients

and develop individual treatment strategies without relying on

substantial experience in diagnostic imaging.

At present, most clinicians predict the prognosis of

ICH patients using clinical characteristics. Therefore, we first

analyzed the clinical data of patients. Statistical results showed

that DD2, GCS score, hematoma volume, and muscle strength

on the affected side were independent predictors of prognosis

in basal ganglia hemorrhage patients. The GCS has been widely

used in clinical research to assess and calculate the level of

consciousness of patients (29–31). In line with our results,

the GCS score has been shown to be strongly associated

with the outcome of basal ganglia hemorrhage patients and

is an independent predictor of critical care (32, 33). Similar

to the previous studies, plasma DD2 could predict poor

outcome and mortality in ICH patients (34–36). We used

these four risk factors to build a clinical model using logistic

regression and yielded in the test cohort (AUC: 0.85), which

indicated that the clinical model does not provide sufficient

accuracy for predicting prognosis in basal ganglia hemorrhage

patients. Combining these clinical features with other variables

would likely improve the predictive ability of this machine

learning model.

PHE is associated with secondary injury in ICH (5, 36).

Volbers et al. (37) showed that the volume of PHE is an

independent predictive factor for ICH patients at 90 days post-

onset. However, it has controversy for the connection between

PHE and the ICH patients’ outcome (38). Loan et al. (39)

reported the volume of PHE was not independently associated

with death or dependence 1 year after ICH, as well as the total

volume of ICH and PHE are independent risk factors. As shown

in this research, the AUC of PHE volume-clinical model was
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FIGURE 4

Nomogram for prognosis prediction and the calibration of the nomogram in the patients with basal ganglia hemorrhage. (A) The

clinical-radiomics nomogram for the prediction of prognosis of basal ganglia hemorrhage patients. Calibration curves of the radiomics

nomogram in the training (B) and test cohorts (C).

0.84 in the test cohort, suggesting that PHE volume could not

improve the prediction ability of the clinical model. Radiomics

features of PHEmay have a better-discriminating efficacy for the

prognosis of basal ganglia hemorrhage patients.

Although radiomics features enable the quantification of

medical imaging characteristics, they are difficult to reproduce

and validate according to published studies because of the lack of

standardized definitions. The Image Biomarker Standardization

Initiative formed in 2016 allows the validation of different

radiomics software (40). This finding contributed to the

repeatability of medical imaging research. We standardized

image processing and feature extraction according to this

standard. The Rad-score in our study was derived from

12 radiomics features of PHE in CT images associated

with prognoses and included eight texture features (three

GLRLM and five GLSZM), three shape features, and one first-

order feature.

In our study, the clinical model showed an AUC

of 0.85 and radiomics model showed an AUC of 0.71,

which indicated the use of only one of these modalities

would not offer sufficient accuracy. Thus, we combined

these two models, which yielded a much higher AUC
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FIGURE 5

Decision curves of the clinical, radiomics, and combined models in the training (A) and test cohorts (B). The X-axis indicates the threshold

probability and Y-axis indicates the net benefit. The gray line indicates the net benefit of all patients would have a good prognosis; the black line

indicates the net benefit of no patients would have a good prognosis, namely, all patients would have a poor prognosis. The red, blue and yellow

lines represent the net benefit of the clinical-radiomics nomogram, clinical model, and radiomics model, respectively.

(0.91) in the test cohort, which suggested radiomics

could improve prognosis prediction in basal ganglia

hemorrhage patients.

Since hematoma is a critical factor related to the

prognosis of ICH, we added the radiomics features of

hematoma for analysis. Results showed an AUC of 0.90

of the PHE-hematoma-clinical model in the test cohort,

which did not have a better performance in prognosis

prediction compared with the clinical-radiomics model.

These results suggested that the clinical-radiomics model

contained features of PHE combined with independent

clinical features (including hematoma volume) already

had a good performance in prognosis prediction of

basal ganglia hemorrhage patients. There was no

need to add the radiomics features of hematoma for

model building.

There are some limitations in our research. First, the

data of the patients were obtained from a single center with

relatively small sample size. We plan to conduct a multi-

center study with a larger patient sample size in the future.

Second, we used GOS scores to evaluate the prognosis of

basal ganglia hemorrhage patients when they were discharged

from the hospital (∼7–10 days following ICH onset). We

plan to include additional time points, including long-term

prognoses, in future studies. Third, the results of DeLong test

suggested that the clinical-radiomics model had a higher AUC

than the clinical and radiomics models in the test cohort;

however, the difference was not significant. We considered

the relatively small sample size and segmentation errors might

be responsible for this result. Finally, this was a retrospective

study, and diagnostic, detection, and evaluation criteria were

not standardized. Therefore, several variables could not be

analyzed, which may have impacted the predictive ability of the

radiomics model.

Conclusion

We built a clinical-radiomics nomogram (model)

comprising clinical independent risk factors and radiomics

features of PHE derived from CT images, and this nomogram

showed good accuracy for prognosis prediction in basal

ganglia hemorrhage patients. Our findings suggested the

radiomics features of PHE could contribute to the outcomes

prediction of patients with basal ganglia hemorrhage. The

clinical-radiomics nomogram may help first-line clinicians

in clinical treatment decision-making for basal ganglia

hemorrhage patients.
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