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Background: Predicting rupture risk is important for aneurysm management.

This research aimed to develop and validate a nomogram model to forecast

the rupture risk of posterior communicating artery (PcomA) aneurysms.

Methods: Clinical, morphological, and hemodynamic parameters of 107

unruptured PcomA aneurysms and 225 ruptured PcomA aneurysms were

retrospectively analyzed. The least absolute shrinkage and selection operator

(LASSO) analysis was applied to identify the optimal rupture risk factors, and a

web-based dynamic nomogram was developed accordingly. The nomogram

model was internally validated and externally validated independently. The

receiver operating characteristic (ROC) curve was used to assess the

discrimination of nomogram, and simultaneously the Hosmer–Lemeshow test

and calibration plots were used to assess the calibration. Decision curve

analysis (DCA) and clinical impact curve (CIC) were used to evaluate the clinical

utility of nomogram additionally.

Results: Four optimal rupture predictors of PcomA aneurysms were

selected by LASSO and identified by multivariate logistic analysis, including

hypertension, aspect ratio (AR), oscillatory shear index (OSI), and wall shear

stress (WSS). A web-based dynamic nomogram was then developed. The area

under the curve (AUC) in the training and external validation cohorts was

0.872 and 0.867, respectively. TheHosmer–Lemeshow p> 0.05 and calibration

curves showed an appropriate fit. The results of DCA and CIC indicated that the

net benefit rate of the nomogram model is higher than other models.

Conclusion: Hypertension, high AR, high OSI, and low WSS were the

most relevant risk factors for rupture of PcomA aneurysms. A web-based

dynamic nomogram thus established demonstrated adequate discrimination

and calibration after internal and external validation. We hope that this tool will

provide guidance for the management of PcomA aneurysms.
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Introduction

Due to the broader availability of non-invasive imaging

techniques, the detection rate of unruptured intracranial

aneurysms (UIAs) is getting higher (1). Since endovascular or

surgical treatments of UIAs may cause complications during

the procedure (2), the treatment strategy for UIAs remains

a controversial topic. PcomA aneurysm not only has a high

incidence but also has a high treatment challenge due to

the PcomA special structure. Therefore, the assessment of the

rupture risk of PcomA aneurysms is essential to guide treatment.

Assessing the rupture risk of aneurysms has always been

a research hotspot, but most of the previous assessments are

based on traditional statistical methods. Although such models

are simple and robust, they are limited to relatively few features

and assume that there is a linear relationship between each

feature and rupture risk. Machine learning can make up for this

defect. Machine learning is a group of algorithms that function

to train a computer to learn complex non-linear relationships

by observing a large amount of data. It is the core of artificial

intelligence. Machine-learning models allow for a more flexible

relationship between features and risks and have more complex

characteristics than the traditional statistical models. Classical

machine learning algorithms, such as support vector machine,

random forest, and decision tree, can usemultiple characteristics

of aneurysms as input variables to build an excellent prediction

model. Ou et al. found that the prediction effect of the extreme

gradient boosting model is the best after comparing a variety

of machine learning models. Also, the model is well explained

by shapley additive explanations analysis, which overcomes

the “black boxes” problem of machine learning (3). Artificial

neural networks can extract more inherent features than classical

machine learning. Previous studies have shown that the use of

a convolutional neural network depth learning algorithm, by

extracting 3D-DSA multi-view image information to predict

the rupture risk of aneurysms <7mm, has high sensitivity and

accuracy (4). The accuracy of machine learning is based on

the collection of a large amount of data, but it is sometimes

difficult to collect a large amount of unprocessed aneurysm

information. Through the self-supervised learning framework,

many unlabeled data are pre-trained, and in the case of

insufficient data, a model with good prediction results can also

be established (5).

Previous studies have reported that the clinical,

morphological, and hemodynamic parameters of patients with

aneurysms can predict the rupture risk of IAs (6, 7). However,

the analysis revealed the low discrimination and calibration

of the simple model, which may be insufficient for clinical

risk assessment (8). In contrast to other models, a nomogram

does not require the conversion of a continuous variable to

a categorical variable, while the associated probabilities of

multiple variables can be unified in a single nomogram. For

complex models, such as survival models that include time

predictors, nomograms can also be used to demonstrate (9).

This study aimed to develop and validate a nomogram for

rupture risk assessment of PcomA aneurysms based on clinical,

morphological, and hemodynamic features.

Materials and methods

Patient population enrollment

We retrospectively reviewed the medical records and

cerebrovascular images of 332 consecutive patients with PcomA

aneurysms admitted to Renmin Hospital of Wuhan University

from January 2015 to December 2021, and the data was used

to develop the nomogram model. In addition, 96 consecutive

patients with PcomA aneurysms were admitted to another

independent hospital from January 2018 to December 2021 for

external validation of the nomogram model. This retrospective

study was approved by the clinical research ethics committee of

the two hospitals.

Inclusion criteria: (1) saccular aneurysm of the posterior

communicating artery; (2) complete clinical medical records.

Exclusion criteria: (1) patients with malignant tumors,

severe systemic disease; (2) pseudoaneurysm, inflammatory

aneurysms, traumatic aneurysms, dissecting aneurysms,

and fusiform aneurysms; (3) aneurysms combined with

MoyaMoya disease, vascular malformations, arteriovenous

fistulas; (4) multiple aneurysms; (5) images with poor quality

for morphology measurement or computational fluid dynamics.

Patient groups

Patients were divided into the ruptured and unruptured

groups based on subarachnoid hemorrhage (SAH). SAH was

confirmed by computed tomography (CT) of the brain and

clinical features. Lumbar puncture was considered mandatory

to confirm the diagnosis in cases where SAH was suspected

clinically, but brain CT was negative (10). Two neurosurgeons

with over 10 years of experience in interpreting cerebral

angiograms and the endovascular treatment of IAs confirmed

the findings.

Imaging

Transfemoral artery catheterization was used for all

catheter angiographies. 3D images were obtained through DSA

using a Siemens angiographic system (Siemens Healthineers,

Forchheim, Germany). In contrast, rotational angiograms were

performed 2 s after 5-s contrast injection with 18ml of contrast

agent at the rate of 3 ml/s and a 200◦ rotation. The images

were reconstructed on the workstation into a 3D model and
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then exported in digital imaging and communications in

medicine format.

Aneurysm modeling

Image data were imported into the software Mimics medical

21.0 (Materialize, Leuven, Belgium) to segment geometries and

construct the preliminary 3D models and then imported into

3-matic medical 13.0 (Materialize, Leuven, Belgium) in STL

format for model repair and smoothing. The software ANSYS

Fluent 2021 R2 and CFD-post 2021 R2 (ANSYS Inc., USA)

were used to simulate hemodynamics and calculate the value

of each hemodynamic parameter. Model mesh division was

carried out in Fluent, controlling the maximum size of poly-

hexcore mesh at 0.1mm. Six boundary layers were specially set

during mesh generation to accurately obtain the hemodynamic

parameters of the model. The thickness of the first layer was

0.01mm and layer growth rate was set to 1.2. Each geometry was

meshed to generate 0.5 million−1.5 million volume elements for

subsequent fluid dynamics computation. The pulsating velocity

waveform measured by transcranial Doppler ultrasound was

used as the inflow boundary condition. The flow waveform was

scaled to obtain the mean internal carotid artery (ICA) inlet flow

rate of 4.6 ml/s under pulsating conditions. The outlet was set

at zero pressure and the flow rate through each outlet artery

was proportional to the cube of its diameter. The vessel was

modeled as a rigid wall, and the blood flow was modeled as an

incompressible Newtonian fluid with constant temperature and

laminar flow. A density of 1,060 kg/m3 and a dynamic viscosity

of 0.0035 Pa·s were specified for each simulation. Monitor

convergence absolute criterion was set to ≤1 × 10−4. Finally,

the calculation time was set to last for three cardiac cycles, with

the result of the third cycle reaching a stable state after 200-

time steps. Three pulsatile cycles were simulated to ensure that

numerical stability had been achieved, and the last cycle was

taken as the output. All data presented were time averages over

the third pulsatile cycle of the flow simulation.

Clinical characteristics

The following clinical characteristics were collected from

the medical records system of each patient: name, gender, age,

smoking history, alcohol consumption, hypertension, diabetes,

hyperlipidemia, and coronary heart disease (CHD).

Morphology analysis

The 3D model of the aneurysm and parent vessels could be

measured in our workplace system.Wemeasured and calculated

the following parameters of the aneurysm: the maximum

diameter (D): the maximum distance from the center of the

aneurysm neck to a point on the sac; the maximum width (W):

the maximum distance between two points in the aneurysm

sac perpendicular to the maximum diameter of the aneurysm;

neck width (N): the maximum diameter in the neck plane;

height (H): the maximum distance from the plane of the neck

to the surface of the aneurysm; aspect ratio (AR = D/N): the

ratio of the diameter of the aneurysm to the width of the

aneurysm neck; irregular shape: aneurysms with an irregular

shape defined as having lobular or daughter sacs; height-to-

width ratio (H/W): the ratio of the height of the aneurysm

to the width of the aneurysm; and bottleneck factor (BNF =

W/N): the ratio of the width of the aneurysm to the width

of the aneurysm neck. Morphological parameters were defined

and calculated as described in previous studies (11–13). The

parameters were determined by two neuroradiologists who were

blinded to patient information and stability status.

Hemodynamic analysis

Six commonly studied hemodynamic parameters defined by

the aneurysm surface and volume were calculated, including the

wall shear stress (WSS), normalized wall shear stress (NWSS),

wall shear stress gradient (WSSG), low shear area (LSA), intra-

aneurysmal pressure (IAP), and oscillatory shear index (OSI).

WSS, NWSS, WSSG, LSA, IAP, and OSI were calculated as

average values. WSS refers to the tangential, frictional stress

caused by the action of blood flow on the vessel wall; NWSS

represents the ratio of the aneurysm wall shear force to the

mean value of the parent artery wall shear force; WSSG indicates

the amplitude of variation along the direction of the wall shear

force; LSA was defined as the area of aneurysm wall exposed

to the WSS below 10% of the mean WSS of the parent artery;

IAP is the force energy with which blood strikes the inner wall

of the aneurysm sac; OSI is a non-dimensional parameter and

defined as a function of the change in the direction of the

shear force at a particular location in the cardiac cycle. All the

hemodynamic parameters were computed using the methods of

previous reports (14–17).

Statistical analysis

All data were analyzed using IBM SPSS Statistics version

25.0 (SPSS, Inc., Chicago, Illinois, US) and R software (version

3.6.3, R Foundation for Statistical Computing, Vienna, Austria).

Continuous variables that conformed to normal distribution

were analyzed using an independent t-test and presented as

means ± SD; abnormal distributions were analyzed using

the Mann–Whitney U-test and presented as medians with

interquartile ranges. Categorical variables were expressed as

numbers and analyzed using χ2 tests. The differences were
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TABLE 1 Clinical, morphological, and hemodynamic characteristics in training cohort and external validation cohort.

Characteristic Training cohort

(n = 332)

External validation cohort

(n = 96)

P-value

Age (years) 58.55± 9.49 60.36± 8.28 0.090

Gender (female) 253 (76%) 78 (81%) 0.335

Hypertension 135 (41%) 37 (39%) 0.725

Diabetes 21 (6%) 2 (2%) 0.127

hyperlipidemia 31 (9%) 8 (8%) 0.843

CHD 18 (5%) 6 (6%) 0.801

Smoking 43 (13%) 13 (14%) 0.865

Drinking 23 (7%) 10 (10%) 0.278

Irregular shape 110 (33%) 33 (34%) 0.807

D (mm) 5.59 (4.26, 7.16) 6.03 (4.70, 7.26) 0.257

W (mm) 3.82 (3.14, 5.02) 4.12 (3.18, 4.72) 0.699

N (mm) 3.10 (2.52, 3.66) 3.15 (2.53, 3.73) 0.756

H (mm) 4.80 (3.57, 6.03) 4.72 (3.88, 5.82) 0.791

AR 1.85± 0.48 1.90± 0.33 0.348

BNF 1.25 (1.07, 1.51) 1.25(1.10, 1.37) 0.361

H/W 1.17 (1.04, 1.34) 1.24(1.09, 1.35) 0.076

OSI 0.031 (0.021, 0.041) 0.033(0.020, 0.047) 0.177

LSA 0.12 (0.08, 0.14) 0.12(0.08,0.15) 0.363

WSS (Pa) 3.14 (2.22, 4.10) 2.93(2.16, 3.47) 0.119

NWSS 0.67(0.59,0.74) 0.68(0.62,0.75) 0.448

WSSG 443.68(286.09, 624.94) 414.16(275.87, 593.22) 0.362

IAP (Pa) 404.54(319.30, 527.61) 384.85(305.05, 486.79) 0.142

Ruptured 225(68%) 75(78%) 0.275

CHD, coronary heart disease; D, maximum diameter; W, maximum width; N, neck width; H, height; AR, aspect ratio; BNF, bottleneck factor; H/W, height-to-width ratio; OSI, oscillatory

shear index; LSA, low shear area; WSS, wall shear stress; NWSS, normalized wall shear stress; WSSG, wall shear stress gradient; IAP, intra-aneurysmal pressure.

considered statistically significant if the two-tailed p-values

were <0.05 (95% confidence interval, CI). LASSO analysis and

multivariate logistic regression analysis were used to identify

independent risk factors to establish the nomogram for the risk

of rupture of PcomA aneurysms.

To evaluate the performance of the nomogram, we used

internal validation via a bootstrapmethod with 1,000 re-samples

and external validation in an independent external cohort. The

performance of the nomogram was measured by discrimination

and calibration. Discrimination refers to the model’s ability to

distinguish patients with different outcomes. ROC curve and

AUC were performed to assess the discriminatory capabilities,

while C-index ≥0.70 indicates adequate discrimination (18).

To reduce the impact of false positives or false negatives on

discrimination, we also adopted the DCA and CIC test methods

to confirm the clinical utility of the nomogram model (19,

20). Calibration refers to the consistency between the actual

outcomes and predicted outcomes. The Hosmer–Lemeshow test

and calibration plots were applied to evaluate the goodness of

fit and calibration. The fit of the model was assessed by the

Hosmer–Lemeshow test, and p> 0.05 was considered to indicate

an appropriate fit. The plotted points closer to the 45◦ line

indicated a better calibration (21).

We used the “foreign, glmnet, ggplot2” package in R

software to generate the LASSO results and the “rms” to

establish the nomogram. The “pROC, rmda, survival, ggplot2,”

and “Resource Selection” packages were applied to generate

the ROC, AUC, DCA, CIC, and calibration curve. The

“shinyapps.io” and “DynNom” packages were used to develop

a web-based dynamic nomogram.

Results

Clinical, morphological, and
hemodynamic characteristics in training
and external validation cohort

This study included 332 patients in the training cohort and

96 patients in the external validation cohorts. The average age

of the training cohort was 58.55 ± 9.49 years, including 107

unruptured and 225 ruptured PcomA aneurysms. The average

age of the external validation cohort was 60.36 ± 8.28 years,
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TABLE 2 The clinical, morphological, and hemodynamic characteristics between ruptured and unruptured groups in the training cohort.

Characteristic Ruptured

(n = 225)

Unruptured

(n = 107)

P-value

Age (years) 58.21± 9.15 59.25± 10.18 0.350

Gender (female) 173 (77%) 80 (75%) 0.681

Hypertension 103 (46%) 32 (30%) 0.006

Diabetes 13 (6%) 8 (7%) 0.630

Hyperlipidemia 19 (8%) 12 (11%) 0.425

CHD 13 (6%) 5 (5%) 0.799

Smoking 32 (14%) 11 (10%) 0.383

Drinking 12 (5%) 11 (10%) 0.109

Irregular shape 88 (39%) 22 (21%) 0.001

D (mm) 6.11 (4.81, 7.29) 4.72 (3.44, 5.92) <0.001

W (mm) 3.92 (3.24, 5.08) 3.52 (2.89, 4.89) 0.039

N (mm) 3.09 (2.52, 3.59) 3.13 (2.53, 3.86) 0.498

H (mm) 5.03 (3.95, 6.13) 4.32 (3.16, 5.32) 0.001

AR 1.99± 0.44 1.55± 0.42 <0.001

BNF 1.29 (1.11, 1.55) 1.17 (1.02, 1.33) <0.001

H/W 1.19 (1.06, 1.37) 1.12 (1.00, 1.30) 0.001

OSI 0.03 (0.02, 0.04) 0.02 (0.01, 0.03) <0.001

LSA 0.12 (0.08, 0.14) 0.11 (0.08, 0.14) 0.248

WSS (Pa) 2.94 (1.98, 3.45) 4.03 (3.23, 4.75) <0.001

NWSS 0.67 (0.62, 0.73) 0.67 (0.59, 0.77) 0.598

WSSG 458.46 (323.29, 626.76) 432.61(270.11, 621.13) 0.263

IAP (Pa) 419.33 (325.99, 529.17) 389.27 (310.53, 513.37) 0.246

CHD, coronary heart disease; D, maximum diameter; W, maximum width; N, neck width; H, height; AR, aspect ratio; BNF, bottleneck factor; H/W, height-to-width ratio; OSI, oscillatory

shear index; LSA, low shear area; WSS, wall shear stress; NWSS, normalized wall shear stress; WSSG, wall shear stress gradient; IAP, intra-aneurysmal pressure.

including 21 unruptured and 75 ruptured PcomA aneurysms.

The clinical, morphological, and hemodynamic characteristics

of participants in the training and external validation cohort are

shown in Table 1. There were no significant differences between

the training and the external validation cohort.

Univariable analysis of clinical,
morphological, and hemodynamic
factors of ruptured and unruptured
PcomA aneurysms in the training cohort

In the training cohort, the univariate analysis results of

clinical, morphological, and hemodynamic characteristics are

shown in Table 2. The average age of patients in the ruptured

group was 58.21 ± 9.15 years, including 52 men and 173

women. The average age of patients in the unruptured group

was 59.25 ± 10.18 years, including 27 men and 80 women. In

clinical characteristics, only hypertension showed a significant

difference (p = 0.006). In morphological characteristics, the D

(p < 0.001), W (p = 0.039), H (p = 0.001), AR (p < 0.001),

BNF (p < 0.001), H/W (p = 0.001), and irregular shape (p

= 0.001) were significantly different between the ruptured and

unruptured group. In hemodynamic characteristics, the WSS

(p < 0.001) and OSI (p < 0.001) showed significant differences.

Variable selection

Based on the R language, a LASSO model was constructed,

and a 10-fold cross-test was performed. A total of 22 variables

were shrunk to 17 when using the minimum error rate criterion.

Finally, applying the one standard error (1-SE) criterion and

adopting the optimal λ of 0.058 and log(λ) = −2.834, four

factors with non-zero coefficients were finally selected by a 10-

fold cross-validation to prevent overfitting (Figure 1). At the

same time, the four parameters selected by LASSO analysis were

applied in the multivariate logistic regression analysis, revealing

that the four parameters, hypertension (OR = 2.631, 95% CI

1.400–4.944, p= 0.003), AR (OR= 9.937, 95% CI 4.726–20.892,

p < 0.001), OSI (OR = 1.449, 95% CI 1.167–1.799, p = 0.001),

and WSS (OR = 0.484, 95% CI 0.374–0.626, p < 0.001) were

independent rupture risk factors (Table 3).

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2022.985573
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wei et al. 10.3389/fneur.2022.985573

FIGURE 1

Selection of optimal variables by least absolute shrinkage and selection operator (LASSO) analysis. (A) The selection of optimal parameters

(lambda) by 10-fold cross-validation. (B) The vertical line was plotted at the optimal λ of 0.058, with log (λ) = −2.834. Four factors with

non-zero coe�cients were finally selected.

TABLE 3 Multivariable logistic regression analysis for the selected

variables by LASSO.

Variable OR (95%, CI) P-value

Hypertension 2.631 (1.400–4.944) 0.003

AR 9.937 (4.726–20.892) <0.001

OSI (×100) 1.449 (1.167–1.799) 0.001

WSS 0.484 (0.374–0.626) <0.001

AR, aspect ratio; OSI, oscillatory shear index; WSS, wall shear stress.

Nomogram models development

The variables identified by LASSO analysis were used to

construct the nomogram model for predicting the rupture risk

of PcomA aneurysms (Figure 2). Each of the risk factors in

the nomogram was projected upward to a point. Hypertension

had two classified variables, which were divided into 0 and 1

(1 = hypertension). AR had continuous values ranging from

0.6 to 3.4. OSI had continuous values ranging from 0 to 0.09.

WSS had continuous values ranging from 0 to 8. Each of these

was assigned points. The total score obtained by adding the

respective scores of these four variables was converted into the

rupture risk of PcomA aneurysms. A higher total score indicates

a higher rupture risk of a PcomA aneurysm.

Internal and external validation of a
nomogram

Figure 3A shows that the AUC of the nomogram model

was 0.872, and the AUC values of the four independent risk

factors, namely hypertension, AR, OSI, and WSS were 0.579,

0.772, 0.706, and 0.769, respectively. Simultaneously, Figure 4A

illustrates that the overall net benefit of the nomogram model

is significantly higher than other independent predictors by

the DCA method; Figure 4B illustrates that the nomogram

model demonstrated good performance over the entire range of

threshold by CIC analysis. The Hosmer–Lemeshow test p-value

of 0.856 indicated a proper fit for the model. The calibration

curve of the nomogram was drawn internally by a bootstrap

sampling of 1,000 iterations to test the internal calibration.

Figure 5A illustrates the appropriate calibration of the model.

These findings suggest that the predicted probabilities of

aneurysm rupture risk by the model are consistent with the

actual rupture risk.

To further confirm the efficacy and applicability of the

nomogram, 96 consecutive PcomA aneurysms admitted to

another medical center were retrospectively analyzed for

external validation. The inclusion and exclusion criteria

of patients were the same as those of the training cohort.

The external validation cohort yielded an AUC value

of 0.867 (Figure 3B). The Hosmer–Lemeshow test p-

value of 0.238 indicated a proper fit for the model. The

calibration curve in the external validation cohort also

showed a good calibration for rupture risk prediction

(Figure 5B).

A web-based dynamic nomogram

A web-based dynamic application based on the nomogram

was developed (https://wei-heng.shinyapps.io/dynnomapp/).

Through this application, the rupture risk of PcomA aneurysms

can be calculated precisely and the results can be got quickly

through the web page.
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FIGURE 2

The nomogram model predicts the rupture risk of PcomA aneurysms, based on OSI, AR, hypertension, and WSS. OSI, oscillatory shear index; AR,

aspect ratio; WSS, wall shear stress.

FIGURE 3

ROC and AUC analysis for nomogram validation. (A) Internal validation. (B) External validation. ROC, receiver operating characteristic; AUC, area

under the curve; AR, aspect ratio; OSI, oscillatory shear index; WSS, wall shear stress.

Discussion

This research was an effort to generate a web-based

dynamic nomogram to forecast the rupture risk of PcomA

aneurysms. In this study, we retrospectively collected the

clinical, morphological, and hemodynamic characteristics of

patients with PcomA aneurysms. The four optimal factors,

including hypertension, AR, OSI, and WSS, were selected

by applying LASSO analysis and identified by multivariable

logistic regression analysis to develop the nomogram model.

In addition to internal validation, consecutive admission data

were collected from another center for external validation.

The results demonstrated that the nomogram model features

excellent discrimination and calibration.
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FIGURE 4

DCA and CIC curves of nomogram in the training cohort. (A) DCA curve. (B) CIC curve. DCA, decision curve analysis; CIC, clinical impact curve.

FIGURE 5

Calibration curve for nomogram validation. (A) Internal validation. (B) External validation.

Most previous studies on the rupture risk of aneurysms

involve multiple locations and do not focus on a single location.

Research has indicated that different locations of aneurysms

have different rupture risks, with the rupture risk of anterior

communicating artery aneurysms being the highest and the

rupture risk of middle cerebral aneurysms and internal carotid

aneurysms being lower than anterior communicating artery

aneurysms (22, 23). This illustrates that aneurysms at different

locations may have different anatomical geometries, natural

courses, and hemodynamics. Studies focusing on a single

location may be more reasonable for rupture risk assessment.

In this study, we established a nomogram only by collecting

data from the PcomA segment. Both internal validation and

external validation of other central data resulted in high AUC

values, proving that the establishment of a prediction model for

aneurysms at a single site may be a method to reduce bias.

The management of UIAs remains a controversial topic

(24). PcomA aneurysms are most the common type of IAs

and have a high incidence of rupture (25). Aneurysm clipping

or endovascular treatment has certain procedural risks and

complication rates Therefore, accurate prediction of the rupture

risk of unruptured PcomA aneurysms is essential for aneurysm

management. In a previous study, Justiina et al. found that

irregular aneurysm shape, a larger aneurysm neck diameter, and

AR were strongly associated with the rupture status of PComA

aneurysms (26). Jiang et al. found that larger size, higher AR,

BNF, and bleb formation may be related to rupture of PcomA

aneurysms. Although these pieces of literature have identified

independent risk factors for PcomA aneurysms rupture, there is

still obvious uncertainty when these factors were used to predict

aneurysm rupture alone. Aneurysm rupture is a complex process

affected by multiple factors, and the nomogram can be used

for multi-parameter diagnosis or prediction of disease onset

or progression. Compared with single independent predictors,

a nomogram can predict the risk of aneurysm rupture risk

more accurately.

The PHASES system, released in 2014, recruited the largest

representative cohort to predict the 5-year rupture risk of IAs.
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Its ease of use and high level of evidence have contributed to

its popularity as a scoring system in daily clinical practice (27).

However, recent studies have shown that PHASES is not accurate

in predicting the risk of aneurysm rupture (28, 29). There

may be some important factors that are not included in the

scoring system. Hemodynamics is as important as morphology

in discriminating the risk of aneurysm rupture. A correlation

between hemodynamics and aneurysm rupture has been widely

demonstrated in previous studies (30, 31). Therefore, it is

necessary to add hemodynamic parameters in the nomogram to

predict the rupture risk of IAs.

Prediction models are increasingly used to complement

clinical reasoning and decision making in modern medicine.

The popular method is to randomly divide the training data

into two parts: one is used to develop the model and the

other is used to measure its performance. A more sophisticated

approach is to use cross-validation. To improve the stability of

cross-validation, the whole process can be repeated many times

and new sub-samples can be randomly selected. Studies have

shown that the most effective validation is achieved through

computer-intensive resampling techniques such as bootstrap

(32, 33). Bootstrap is a resampling technique in statistics, which

is used to estimate standard error, confidence interval, and

deviation. The core of bootstrap is to generate a series of

bootstrap pseudo-samples, where each sample is the initial data

and is then put back to sampling. Through the calculation

of pseudo samples, the distribution of statistics is obtained.

It is proved that when the initial sample is large enough,

bootstrap sampling can approach the population distribution

unbiased (34).

Different from traditional multivariate logistic regression

analysis, this study applied the LASSO analysis method

to identify variables for reducing multicollinearity between

variables, minimizing coefficients, and reducing variance.

LASSO is an improvement of the multivariate logic regression

analysis algorithm, which uses regularization to make the

selection of variables more stringent, and finally, the model

built by the selected variables is more difficult to overfit. At the

same time, LASSO also brings the risk of underfitting, so this

study selects variables mainly by LASSO and supplemented by

multiple logical regression analysis. As a result, an optimal λ of

0.058 was adopted. Four factors with non-zero coefficients were

ultimately selected by the 10-fold cross-validation to prevent

overfitting, and a nomogram model was developed accordingly.

The AUC in the training cohort and external validation cohort

proved the appropriate discriminative ability of the nomogram.

In addition, DCA showed superior overall net benefit, and

CIC demonstrated good performance in the entire range of

threshold probabilities. At the same time, the calibration of

the nomogram was assessed through the training cohort and

external validation cohort. The Hosmer–Lemeshow test was

used to evaluate the accuracy of the predicted rupture risk to

the actual rupture risk. The results show that the p-value is

significant >0.05. The calibration curve also shows that the

model was calibrated appropriately.

The selection of appropriate boundary conditions is crucial

for the aneurysm model. The inlet is usually set to a time-

dependent speed or flow waveform. In general, these values are

collected by Doppler ultrasound. But in many cases, it is difficult

to collect the flow characteristics of each patient. Therefore,

flow rates are mostly taken from the literature (35, 36). Since

the pulsatile effects are clearly smaller in the cerebrovascular

compared to cardiac arteries, the impact of the profile type

is negligible. If only cycle-averaged flow fields are desired

(e.g., mean aneurysmal velocities), time-saving and steady

state simulations may be sufficient. However, hemodynamic

parameters such as OSI require time-dependent computations

(37). Using flowrate-independent parameters to build predictive

models is also an approach. Previous studies have shown

that flowrate-independent parameters WSS and energy loss

are superior to the traditional hemodynamic parameters in

predicting aneurysm stability after verification by machine-

learning algorithm (38).

Oscillatory shear index indicates the magnitude of WSS

fluctuations and describes the tangential force oscillation as a

function of the cardiac cycle. Previous studies reported that

a higher OSI had significant associations with the rupture of

IAs (39) or high OSI correlated to the rupture point. WSS

was also a hemodynamic parameter widely studied in IAs.

This study showed that low WSS was correlated with the

rupture risk of PcomA aneurysms, consistent with previous

studies of aneurysms at other sites (31). The mechanism of

aneurysm rupture caused by low WSS or high OSI may activate

inflammatory cell-mediated destructive remodeling (40).

Low WSS and high OSI could upregulate endothelial surface

adhesion molecules, leading to flow-induced nitrous oxide

dysfunction and increasing endothelial permeability, thereby

promoting atherogenesis and inflammatory cell infiltration.

Enhanced endothelial permeability promotes leukocyte

transmigration, and these inflammatory infiltrates abundantly

produce matrix metalloproteinases to degrade the extracellular

matrix, leading to the disruption of vascular integrity and thus

driving intracranial aneurysm growth and rupture (41–43). Our

results also suggest that a history of hypertension and higher AR

increase the rupture risk of PcomA aneurysms. Previous studies

suggested that hypertension may be involved in aneurysm

rupture through the renin–angiotensin–aldosterone system,

and the latest multicenter study demonstrated that the risk of

aneurysm rupture due to hypertension could be significantly

reduced using renin–angiotensin–aldosterone system inhibitors

(44). A large cohort study also showed recently that higher AR

was an independent predictor of aneurysm rupture (45).

The clinical data, morphological characteristics, and

hemodynamic parameters of PcomA aneurysms were collected,

the factors that best predict the risk of PcomA aneurysm

rupture were selected through Lasso, and the nomogram was
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established. A nomogram model was established with favorable

discrimination and calibration after internal validation and

independent external validation. Then a web-based dynamic

nomogram application was developed, and the medical staff

could conveniently access the website through mobile phones

or computers to obtain the prediction results. The purpose

of this study is to supplement a practical model based on

the existing models and provide additional tools for PcomA

aneurysm management.

There were also several limitations in this study. Firstly, this

is a retrospective study, and previous studies have shown that

morphological changes may occur before and after aneurysm

rupture. Therefore, prospective studies with dynamic follow-

up of aneurysms may further reduce the deviation. However,

in reality, the severe consequences of aneurysm rupture, the

development of treatment techniques and the positive attitude of

patients, and long-term dynamic follow-up is difficult to achieve.

Secondly, although our nomogram model included clinical,

morphological, and hemodynamic factors, there still may be

other important parameters that need to be considered, such as

radiomics and vessel wall enhancement, which have been found

to be related to rupture risk in recent studies. Thirdly, although

we performed external validation, a larger set of data would

better reflect the calibration. Finally, only Chinese people were

included in this study, and caution is needed when applying our

results to other countries and ethnicities.

Conclusion

The rupture risk of PcomA aneurysms was strongly

associated with hypertension, high AR, high OSI, and low

WSS. A web-based dynamic nomogram model was established

based on LASSO’s results. The nomogram model indicated

excellent discrimination and calibration through internal and

external validation. This nomogram can be applied for aneurysm

rupture risk stratification and therapy optimization due to its

effectiveness and ease of use.
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