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Purpose: Insomnia is one of the most common diseases in elderly patients,

which seriously a�ect the quality of life and psychological state of patients. The

purpose of this study was to investigate the changes in the functional network

pattern of the prefrontal cortex in patients with chronic insomnia disorder (CID)

after taking drugs, using non-invasive and low-cost functional neuroimaging

with multi-channel near-infrared spectroscopy (fNIRS).

Methods: All subjects were assessed using the Pittsburgh Sleep Quality Index

(PSQI), Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA),

and fNIRS. The fNIRS assessment consists of two parts: the verbal fluency

test (VFT) task state and the resting state, which assessed the di�erences in

prefrontal activation and functional connectivity, respectively.

Results: A total of 30 patients with chronic insomnia disorder (CID) and 15

healthy peers completed the study. During the VFT task, a significantly lower

PFC activationwas observed in patients with insomnia compared to the control

group (P< 0.05). However, the PFC activation in patients takingmedicationwas

higher than in patients who did not receivemedication. Functional connectivity

analysis showed a weaker mean PFC channel connectivity strength in patients

with CID who did not receive drug treatment. Drug treatment resulted in

enhanced functional connectivity of the prefrontal lobe, especially the DLPFC

and frontal poles.

Conclusion: A weak prefrontal cortex response was detected in patients

with CID when performing the VFT task, which could be enhanced by taking

hypnotics. The weakened right prefrontal lobe network may play a role in the

development of CID. fNIRS may serve as a potential tool to assess sleep status

and guide drug therapy.
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Introduction

Insomnia is one of the most common sleep disorders.

Epidemiological studies show that 45.4% of the respondents

in China experienced varying degrees of insomnia in the

past month (1). This phenomenon is more widespread in the

elderly population. The overall incidence of insomnia among

the elderly in China is 47.2%, while the incidence of insomnia

among the elderly in the community ranges from 35 to 65%

(2). Insomnia has a severe impact on patients’ moods and

quality of life, resulting in depression, anxiety, and other

negative emotional states (3). Drug therapy is the current

mainstay of insomnia treatment, including sedative-hypnotic

benzodiazepines and non-benzodiazepines, melatonin receptor

agonists, sedative antidepressants, sedative antihistamines, and

orexin receptor antagonists (DORAs). The choice of drug

is often based on an assessment of the patient’s clinical

symptoms, such as difficulty falling asleep, waking up in the

middle of the night and staying awake, or waking up early.

However, this approach is not always effective, as patients with

similar symptoms exhibit varied responses to drug treatment.

Symptom-based drug selection to relieve insomnia symptoms

is not an objective method. In addition to drug treatment,

neuromodulation may also regulate sleep structure and improve

sleep quality. Neuromodulation techniques mainly include

transcranial magnetic stimulation (TMS), transcranial electrical

stimulation (TES), and acupuncture. These new approaches

improve sleep quality by altering brain excitability but require

a comprehensive assessment of brain function.

Insomnia disorder is related to cerebral cortical dysfunction

(4). Recent evidence indicates that the left dorsal and medial

frontal regions may be particularly important in regulating

sleep (5). Electroencephalography (EEG), fNIRS, and functional

magnetic resonance (fMRI) studies have demonstrated that the

prefrontal lobe plays a crucial role in maintaining sleep (6–

8). Furthermore, EEG-related studies have demonstrated the

relationship between prefrontal neural activity and sleep. Joy

Perrier et al. studied the prefrontal neural activity in patients

with primary insomnia, who exhibited a higher beta power

spectrum and lower delta power spectrum (9). The fNIRS

study showed that prefrontal excitability varied across sleep

stages in normal subjects. The oxyhemoglobin (HbO) and total

hemoglobin (HbT) levels in the rapid eye movement (REM)

stage were lower than those in other sleep stages and waking

stages. The neural activity of the prefrontal cortex is related

to sleep regulation and maintenance (10). Cortical and nuclear

effects can be studied with high precision due to the high spatial

resolution of fMRI. In addition, hyperresponsiveness to stimuli

has been observed in the precentral cortex, prefrontal cortex,

and default mode network (11). Numerous neuroimaging

studies have demonstrated that changes in the excitability of the

prefrontal cortex and its association with other cortex (nuclei)

play key roles in sleep control, and alterations in these states

may induce sleep disturbances (12). Sleep results from the

coordinated regulation of multiple brain regions, including the

frontal, parietal, and occipital lobes. The arousal state is jointly

controlled by the default network, cognitive control network,

salience network, and negative emotion network formed by

these cortical interconnections (9). The right insula, left inferior

frontal gyrus triangle, left frontal pole, right upper parietal, right

medial orbitofrontal cortex, and right supramarginal gyrus form

various networks, which have their own functions and local

networks during sleep. They also play an essential role in sleep

control (10).

Functional neuroimaging with multi-channel near-

infrared spectroscopy is a potential clinical prefrontal function

assessment tool, providing convenient and quick evaluation

compared with previous imaging tools for insomnia research.

Using fNIRS to assess prefrontal lobe function in patients

with insomnia may be a potential means to investigate the

mechanism of insomnia and guide clinical treatment. Increased

excitability of the left prefrontal cortex contributes to sleep

onset and sleep maintenance. We used fNIRS to assess whether

patients had increased excitability in the left prefrontal cortex

after taking the drug. In addition, we hypothesize that the drug

improves the connections between different brain regions in the

prefrontal cortex to help sleep.

Materials and methods

2.1 Participants

Patients with CID were recruited from the neurology

clinics and wards of Tongji University Affiliated Hospital.

The patients were diagnosed according to the criteria of

“Guidelines for the Diagnosis and Treatment of Insomnia

in Adults in China (2017 Edition)” (1). The patients had a

good cognitive function, had no impairments in daily living

activities, and cooperated to complete all tests. Exclusion criteria

included a Mini-mental State Examination (MMSE) score

of < 27 points (11), anxiety or depression-related disorders

diagnosed by a professional doctor, serious physical and mental

illnesses that prevented the evaluation, alcoholism, or intake of

neuropsychiatric drugs within 3months, and brain lesions found

inMRI. This study was approved by the Ethics Committee of the

Tongji University Affiliated Hospital (approval K-2020-026). All

subjects understood the study and signed informed consent.

2.2 Protocol and devices

The functional neuroimaging with multi-channel near-

infrared spectroscopy device used in this study was the

NirScan6000B (Danyang Huichuang Medical Equipment Co.,

Ltd., Jiangsu, China). The fNIRS head cap includes 24 emitter
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optodes and 20 receiver optodes, providing a total of 48

channels. The magnetic source navigation device Nirspace

(Danyang Huichuang Medical Equipment Co., Ltd., Jiangsu,

China) was used to determine the corresponding brain region

for each channel to localize the optode on a standard brain

(Figure 1A).

To reduce the experimental error, the subjects were asked

to lie on the rehabilitation treatment bed comfortably with their

face up. The participants were requested to minimize body

movements such as facial movements and frequent eye blinks

and try to avoid any noise during data recording. In addition,

the researchers observed the head, torso, and other movements

(Figure 1B). After wearing the fNIRS device, the participants

were subjected to a 450-s resting-state assessment, followed by

a verbal fluency test (VFT) task-state assessment. The VFT task-

state assessment required subjects to list words within the range

of the cue within 30 s according to the voice prompt, followed

by a 20-s rest. This step was repeated six times (Figure 1C). After

the fNIRS assessment, professional rehabilitation physicians

evaluated the patients with scales, including the Pittsburgh Sleep

Quality Index (PSQI), Hamilton Depression Scale (HAMD), and

Hamilton Anxiety Scale (HAMA) (12–14).

2.3 Data analysis and statistics

This study adopted a per-protocol set (PPS), and patients

who successfully completed all assessments were included

in the final data analysis. The basic conditions of the

three groups before treatment were analyzed. Binary data

such as gender were analyzed using the exact probability

method. The W-test method and the F-test were used to

confirm that the age, PQSI, HAMA, and HAMD followed

a normal distribution and to verify the homogeneity of

variance. The differences among the three groups were

compared using an analysis of variance. If there was a

statistical difference, a t-test was used to compare between

the groups.

First, quality control of the fNIRS data was performed

using FC-NIRS2.1 (https://www.nitrc.org/projects/fcnirs/), and

subjects or channels with large artifacts were removed (15).

For resting-state data, the preprocessing function in FC-NIRS

was used, with band-pass filters set to 0.1–0.08Hz and using

PCA-OD for motion detection. Pearson’s correlation analysis

was performed on 400 s of data from the middle section,

and the Z-value obtained was tested for the hypothesis.

FIGURE 1

fNIRS channel location and experimental paradigm. (A) Shows the brain regions corresponding to the 48 channels, with the numbers indicating

the channel numbers. The yellow curve corresponds to the frontopolar area and its channels (CH41, CH40, C42, CH26, CH28, CH44, CH27,

CH43, and CH45). The red area indicates the dorsolateral prefrontal cortex and its covered channels (CH6, CH7, CH21, CH8, CH23, CH24, CH9,

CH10, CH11, CH29, CH30, CH32, and CH12). (B) Shows a subject being tested by fNIRS. (C) Shows the test paradigm. The fNIRS assessment

was divided into two parts. The 450’s resting state (TEST1) was performed first, and the VFT task state was performed after a 1-min rest. The task

state included a total of six blocks, each consisting of 30’s to execute the VFT task and 20’s to rest.
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TABLE 1 CID group and treatment CID group demographics.

Variable HC
group

CID
group

Treatment
CID

group

P

Age (years) 69.8± 7.7 71.1± 6.0 70.4± 6.4 0.71

Sex (F/M) 7/8 9/6 7/8 0.46

Insomnia

duration

/ 25.4± 23.2 22.1± 18.6 /

PSQI 4.2± 3.1 16.1± 2.4 13.4± 3.5 0.02∗

HAMA 2.0± 2.0 8.9± 4.8 7.2± 3.2 0.01

HAMD 2.0± 2.0 8.2± 4.7 6.4± 3.1 0.02

∗P < 0.05.

For task-state data, activation analysis was performed using

the MATLAB-based toolkit NIRS-SPM (https://www.nitrc.org/

projects/nirs_spm/). Gaussian smoothing with a full width

at half maximum (FWHM) of 4 s was used as a pre-

coloring parameter to correct the short-time series correlation.

Furthermore, a discrete cosine transform (DCT) with a period

length of 128 s was used as the cutoff frequency parameter

to remove the long-term trend of the sequence. The above

parameters were used as the general linear model (GLM) with

the design matrix established according to the experimental

conditions. A mapping algorithm was used to estimate the

model (estimation). Based on the above beta and residual error

estimations, a one-tailed t-test was used for statistical inference.

The change in hemodynamic oxyhemoglobin (1OxyHb) was

determined, and P < 0.05 was considered statistically significant

(16). Task-state data were corrected for multiple comparisons

using the tube formula multiple comparison correction

in NIRS_SPM.

Results

A total of 45 subjects participated in the study and

completed all assessments. Table 1 shows the demographic

characteristics of patients with and without medication for

CID. The age range was 60 to 84 years, including 16

(53.3%) female subjects and 14 (47.7%) male subjects. The

subjects had been suffering from insomnia for a long

duration (mean 23.8 months). Among them, 15 subjects were

taking sedatives and hypnotic drugs, and all felt that the

drugs alleviated their insomnia. No significant differences in

demographic and clinical characteristics were found between the

two groups.

The PSQI of patients with CID was significantly higher than

that of healthy controls. Moreover, the PSQI of patients who

were on drug treatment was lower than that of the patients

who were not, indicating that drugs can improve the symptoms

of insomnia. Similarly, higher HAMA and HAMD scores were

found in patients with CID compared to healthy subjects.

However, whether patients with CID took medication or not

had little effect on the results. There was no statistical difference

between the two groups.

When performing the VFT task, significant differences in

prefrontal cortex activation were observed among the three

subject groups. During the VFT task, healthy subjects exhibited

extensive activation of the prefrontal cortex, particularly in

the dorsolateral and frontopolar regions. In contrast, the

activation of the prefrontal lobe in patients with CID without

drug treatment was significantly reduced compared with the

normal subjects, with no activation in the frontal pole and

the dorsolateral side of the right prefrontal lobe. In patients

with CID on drug treatment, lower activation of the prefrontal

cortex was observed compared with the normal subjects, but

the frontal pole and the right dorsolateral prefrontal cortex were

significantly activated (Figure 2).

When the sparsity threshold was set to 0.8, the mean

channel connectivity strength of the prefrontal cortex was

weaker in patients with insomnia and no medication, which

was significantly different from normal subjects. In normal

subjects, the right frontal pole and dorsolateral prefrontal

cortex showed high local channel connection strength.

However, patients taking drug treatment showed not only

a significantly higher internal functional connectivity in

the right frontal pole and dorsolateral prefrontal cortex

but also the average channel connection in the entire

prefrontal cortex (Figure 3).

Spearman’s correlation analysis was used to statistically

analyze the PSQI and the number of prefrontal cortex activation

channels in patients with insomnia. The correlation coefficient

was 0.322, and the Spearman rank correlation was not

significant, which could not explain the correlation between

the number of prefrontal cortex channel activation and the

degree of insomnia. The significance level is 0.2 > 0.05,

indicating that the relationship between the two variables is

not significant.

Discussion

This study demonstrated that prefrontal activation was

attenuated in patients with CID compared with healthy subjects,

which was consistent with previous findings (17). Jing-Jing

Sun et al. showed that patients with CID exhibited low PFC

activation when performing cognitive tasks. Moreover, patients

with insomnia taking medication showed improved prefrontal

activation but still did not reach the level of normal subjects.

In addition, the mean channel functional connectivity of the

prefrontal lobe was significantly decreased in patients with

insomnia. However, the patients treated with hypnotics showed

significantly enhanced mean channel functional connectivity,

which was even higher than that of normal subjects. Therefore,
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FIGURE 2

Activation of the prefrontal lobe of the three subject groups. Di�erent colors in the figure represent the corresponding T-values.

FIGURE 3

Prefrontal functional connectivity of subjects in the three groups. The blue balls in the figure represent the channels, and the red lines represent

the correlation between the channels. The width of the line is proportional to the correlation coe�cient.

one of the targets of drug therapy likely promotes sleep. It

is worth noting that the results of the study showed that the

improvement in sleep quality was not related to the size of the

prefrontal cortex activation area. Normal cortical function plays

a crucial role in sleep, and global or local dysfunctionmay lead to

insomnia. Several brain networks, such as the default network,

salience network, cognitive control network, and negative

emotion network, are closely related to insomnia. The prefrontal

lobe is an essential structure of the brain. It collaborates with

other brain regions to maintain the human brain in the resting

state and takes part in the integration of internal and external

environmental information, emotional integration, and episodic

memory retrieval. In clinical studies utilizing high-frequency

TMS and anodal tDCS, increased PFC excitability was shown

to enhance sleep therapy (18–20). Ellemarije Altena et al. used

fMRI to study the prefrontal function in patients with CID, while

performing VFT tasks, revealing low activation of the medial

and inferior prefrontal cortical areas (Brodmann Area 9, 44, 45),

which objectively demonstrated the importance of PFC in sleep

(21). Perrier et al. used EEG to study the differences in prefrontal

cortex functional connectivity between patients with CID and

normal subjects. The β1 power spectrum of the prefrontal cortex

was lower in patients with primary insomnia compared with

normal people, which is also consistent with the results of this

study (22). The normalization of the prefrontal cortex function

has important significance in guiding the treatment of CID

and evaluating the function of the prefrontal cortex may be a

potential method to evaluate the efficacy of sleep therapy.

Notably, the functional network complexity of patients

with drug-treated stroke was greater than that of healthy

subjects, which may be a form of frontal hyperconnectivity.

Hyperconnectivity refers to the paradoxical increase in

functional connectivity between network regions resulting from

damage to neural systems (23). It is generally considered to be

a compensatory mechanism for brain dysfunction. Compared

with the conventional functional network, the hyperconnectivity
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network is decentralized, which may be attributed to greater

resource requirements to achieve normal functions. In this

study, the functional network connections of the prefrontal

lobe in patients with CID were reduced, and the brain network

complexity was significantly increased after drug treatment.

This may be due to the drug mobilizing more prefrontal lobe

resources to complete sleep. However, this hypothesis is only an

assumption, and complex network analysis methods are needed

to verify this conjecture.

In this study, fNIRS showed good sensitivity and specificity

in assessing the function of the prefrontal cortex in patients

with insomnia, which is consistent with previous studies. fNIRS

has certain advantages in the evaluation of cortical function

and can be used as a routine tool for the evaluation of

insomnia. fNIRS is more cost-effective than other commonly

used neuroimaging assessment techniques, such as fMRI and

EEG. The low testing cost, simple site requirements, and simple

operation allow fNIRS to be used in multiple clinical situations.

More importantly, the fNIRS evaluation is quick, and patients

can be repeatedly evaluated during the treatment process to

identify patterns, providing objective biological markers for

treatment. The application of fNIRS in CID assessment is still

in the preliminary exploratory stage. To verify its potential,

whole-brain fNIRS should be performed to comprehensively

assess various network functions involved in CID, and the results

should be compared with previous studies. Identifying specific

biomarkers will help develop the role of fNIRS in the evaluation

and treatment of CID.
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