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Background and purposes: Recent developments in high-throughput

proteomic approach have shown the potential to discover biomarkers for

diagnosing acute stroke and to elucidate the pathomechanisms specific

to di�erent stroke subtypes. We aimed to determine blood-based protein

biomarkers to diagnose total stroke (IS+ICH) from healthy controls, ischemic

stroke (IS) from healthy controls, and intracerebral hemorrhage (ICH) from

healthy control subjects within 24h using a discovery-based SWATH-MS

proteomic approach.

Methods: In this discovery phase study, serum samples were collected

within 24h from acute stroke (IS & ICH) patients and healthy controls and

were subjected to SWATH-MS-based untargeted proteomics. For protein

identification, a high-pH fractionated peptide library for human serum

proteins (obtained from SCIEX) comprising of 465 proteins was used.

Significantly di�erentially expressed (SDE) proteins were selected using the

following criteria:>1.5-fold change for upregulated,<0.67 for downregulated,

p-value<0.05, and confirmed/tentative selection using Boruta random forest.

Protein–protein interaction network analysis and the functional enrichment

analysis were conducted using STRING 11 online tool, g:Profiler tool and

Cytoscape 3.9.0 software. The statistical analyses were conducted in R

version 3.6.2.

Results: Our study included 40 stroke cases (20 IS, 20 ICH) within

24h and 40 age-, sex-, hypertension-, and diabetes-matched healthy

controls. We quantified 375 proteins between the stroke cases and

control groups through SWATH-MS analysis. We observed 31 SDE

proteins between total stroke and controls, 16 SDE proteins between

IS and controls, and 41 SDE proteins between ICH and controls within

24h. Four proteins [ceruloplasmin, alpha-1-antitrypsin (SERPINA1),

von Willebrand factor (vWF), and coagulation factor XIII B chain

(F13B)] commonly di�erentiated total stroke, IS, and ICH from healthy
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control subjects. The most common significant pathways in stroke cases

involved complement and coagulation cascades, platelet degranulation,

immune-related processes, acute phase response, lipid-related processes, and

pathways related to extracellular space and matrix.

Conclusion: Our discovery phase study identified potential protein biomarker

candidates for the diagnosis of acute stroke and highlighted significant

pathways associated with di�erent stroke subtypes. These potential biomarker

candidates warrant further validation in future studies with a large cohort of

stroke patients to investigate their diagnostic performance.

KEYWORDS

stroke, ischemic stroke, intracerebral hemorrhage, proteomics, blood biomarkers,

SWATH-MS

Introduction

Stroke is a medical emergency in which brain cells die
rapidly post its onset. It is broadly classified based on its
etiology into two types: (1) ischemic stroke (IS)—occlusion of
the artery supplying oxygen-rich blood to the brain resulting in
brain cell or tissue death within minutes; and (2) intracerebral
hemorrhage (ICH)—rupturing of the blood vessel that bleeds
into the surrounding brain leading to further brain damage (1).
Despite the two stroke subtypes sharing a similar risk profile
(2), they exhibit distinct molecular mechanisms in the acute
phase (3–6). Thus, an efficient and rapid diagnosis of stroke
is warranted within the first few hours of symptom onset for
the effective treatment strategies to be implemented to prevent
adverse outcomes. Due to the unavailability of neuroimaging
facilities in most developing nations and time-sensitive nature of
revascularization therapies, blood biomarkers are needed to aid
clinical decision-making. Biomarkers detected in the blood may
also help in elucidating the molecular mechanisms underlying
the two stroke subtypes.

Recent developments in high-throughput proteomic
approaches have shown the potential to discover biomarkers for
diagnosing acute stroke and to elucidate the pathomechanisms
specific to different stroke subtypes. The label-free approach
using data-independent acquisition (DIA) method acquires
superior peptide peaks compared to conventional proteomic
data-dependent acquisition (DDA) methods and allows
screening of a broad range of protein biomarkers with high
reproducibility and efficiency.

Few studies in the past have utilized the high-throughput
proteomic approaches for blood biomarker identification in
stroke (7–11). However, these studies were conducted beyond
the 24-h time window and failed to identify the expression
pattern of proteins in the acute phase of stroke. Majority of these
studies pooled their samples for proteomic analysis, whichmight
lead to false-positive or false-negative results as pooled samples

do not reflect the diseased/non-diseased state of a single person
(10, 11). Therefore, our exploratory study aimed to determine
blood-based protein biomarkers related to the pathogenesis of
stroke in the acute phase of onset. Our goal was to provide a list
of candidate protein markers that can diagnose and differentiate
total stroke (IS + ICH) from healthy controls, IS from healthy
controls, and ICH from healthy control subjects within 24 h of
symptom onset using a discovery-based SWATH-MS proteomic
approach without pooling any sample. We used an age-, sex-
, and risk factor- (hypertension and diabetes) matched healthy
control group, to identify biomarker expression pattern specific
to stroke pathophysiology.

Methods

The study was conducted at the Department of Neurology,
All India Institute of Medical Sciences, New Delhi, India, from
August 2016 to August 2021 in collaboration with Institute
of Genomics and Integrative Biology (IGIB), New Delhi,
India. Stroke patients aged 18 years and above, ischemic or
hemorrhagic confirmed by neuroimaging and clinical diagnosis
admitted within 24 h of symptom onset to the neurology wards
and/or emergency department of AIIMS, New Delhi, were
included in the study. All included patients had clinical signs
consistent with the definition of stroke given by the Stroke
Council of American Heart Association (AHA)/ American
Stroke Association (ASA) (12). A control group comprising
of age- (±2 years), sex-, hypertension-, and diabetes-matched
individuals was taken from subjects in the general outpatient
department (OPD) with no prior history of any neurological
disorder and was evaluated by questionnaire for verifying
stroke-free status (QVSFS) (13). A written informed consent
was taken from all the subjects included in the study prior to
collecting blood samples and clinical history.
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Sample size

The literature suggests a sample size of 10 to 30 to
be adequate for conducting an exploratory/discovery
phase study (14, 15). Therefore, based on the feasibility,
budget, and time frame of the study, the sample size
for the discovery phase was kept as 40 per group
consisting of 40 stroke (20 IS and 20 ICH) and 40
control subjects.

Blood sample collection

After the written informed consent was obtained, 5ml
of peripheral blood samples was taken in serum vacutainer
tubes from 20 IS and 20 ICH patients admitted within 24-
h onset of stroke. Blood samples were also taken from 40
healthy individuals who served as controls for the study. For
serum collection, it was left standing at room temperature
for 30min until clotted. It then underwent centrifugation
at 3,000 rpm for 10min, after which the serum was
separated into serum-containing vials. Five aliquots of each
sample (100 µl) were prepared and stored at −80◦C until
further analysis.

Sample preparation

Ten µl of serum samples was used for protein precipitation.
To 90µl of 1X phosphate buffer saline (PBS), 10 µl serum
was added and vortex mixed. Protein precipitation was
performed using pre-chilled acetone. Briefly, to 100 µl
protein extract, four times volume of pre-chilled acetone
was added, vortex mixed, and centrifuged at 15,000 g
for 10min at 4◦C. The supernatant was discarded, and
the protein pellets were air-dried at room temperature
and suspended in 0.1M Tris-HCl with 8M urea and
pH 8.5. Protein quantitation was performed using the
Bradford assay.

Reduction, alkylation, and trypsin
digestion

A total of 20 µg of protein from each sample were reduced
with 25mMof dithiothreitol (DTT) for 30min at 60◦C, followed
by alkylation using 55mM of iodoacetamide (IAA) at room
temperature (in the dark) for 30min. These samples were then
subjected to trypsin digestion in an enzyme to substrate ratio of
1:10 (trypsin: protein) for 16–18 h at 37◦C. Finally, the tryptic
peptides were vacuum-dried in vacuum concentrator.

Sequential window acquisition of all
theoretical fragment ion spectra-mass
spectrometry (SWATH-MS) data
acquisition

Peptides from each sample were cleaned up using C18
ZipTip (Merck) using the manufacturer’s protocol. SWATH-MS
analysis (16) for the samples was performed on a quadrupole-
TOF hybrid mass spectrometer (TripleTOF 6600, SCIEX)
coupled to an Eksigent NanoLC-425 system. Optimized source
parameters were used, and curtain gas and nebulizer gas were
maintained at 25 psi and 30 psi, respectively. The ion spray
voltage was set to 5.5 kV, and the temperature was set to 250◦C.
About 4 µg of peptides was loaded on a trap column (ChromXP
C18CL 5µm 120 Å, Eksigent, SCIEX), and online desalting was
performed with a flow rate of 10 µl per min for 10min. Next,
the peptides were separated on a reverse-phase C18 analytical
column (ChromXP C18, 3µm 120 Å, Eksigent, SCIEX) in
57min long gradient with a flow rate of 5 µl/min using water
with 0.1% formic acid and acetonitrile with 0.1% formic acid.

SWATH method was created with 95 precursor isolation
windows, defined based on precursor m/z frequencies in DDA
run using the SWATH Variable Window Calculator (SCIEX),
with a minimum window of 5 m/z. Data were acquired using
Analyst TF 1.7.1 Software (SCIEX). Accumulation time was set
to 250msec for theMS scan (400–1,250m/z) and 25msec for the
MS/MS scans (100–1,500 m/z). Rolling collision energies were
applied for each window based on them/z range of each SWATH
and a charge 2+ ion, with a collision energy spread of five. The
total cycle time was 3.37 s.

Bioinformatic and statistical analyses

For identification of the proteins using SWATH analysis,
a high-pH fractionated peptide library for human serum
proteins (obtained from SCIEX) comprising of 465 proteins
was used. SWATH peaks were extracted using this library
in SWATH 2.0 microapp in PeakView 2.2 software (SCIEX),
excluding shared peptides. SWATH run files were added, and
retention time calibration was performed using peptides from
abundant proteins. The peptide query parameters (PQPs) for
peak extraction were as follows: maximum of 10 peptides per
protein, five transitions per peptide, >95% peptide confidence
threshold, and 1% peptide false discovery rate (FDR). XIC
extraction window was set to 55min with 75 ppm XIC Width.
These PQPs were derived from the high-pH fractionated peptide
library for peptide identification. All information was exported
in the form of MarkerView (mrkw) files. In MarkerView 1.2.1
(SCIEX), data normalization was performed using total area
sum normalization for internal correction and exported to excel.
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The data were log2 transformed to account for naturally skewed
intensity values.

Batch correction for removing the non-biological
experimental variations including the sample batches run
at different timepoints was performed using the “ComBat”
function inside the “sva” package (17) in R version 3.6.2.
The principal component analysis (PCA) plots for the batch
uncorrected and batch corrected data were plotted using the

“prcomp” function inside the “factoextra” package (18) in R
version 3.6.2. Significant differences between the means of the
two groups were calculated using a t-test.

Significantly differentially expressed proteins were selected
using two criteria: (i) p-value<0.05 and± 1.5-fold change (>1.5
for upregulated and <0.67 for downregulated proteins) cutoffs
wherein significantly upregulated/downregulated proteins were
visualized using the volcano plot created in R version 3.6.2; or

FIGURE 1

Study flow diagram.
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(ii) confirmed/tentative selection in the Boruta random forest
feature selection method using the “Boruta” package (19) in R
version 3.6.2.

The STRING 11 online tool (Search Tool for the Retrieval
of Interacting Genes/Proteins 11) (20) was used to create the
protein network of the significantly differentially expressed
proteins between various conditions. Furthermore, protein–
protein interaction network analysis was conducted using
Cytoscape 3.9.0 software (21). Centrality analysis was conducted
to identify the most important node with a high degree of
interaction in the network. The functional enrichment analysis
was conducted using the g:Profiler tool.

Results

Our study included 80 subjects; 40 stroke cases (20 IS and
20 ICH) were recruited within 24 h of symptom onset and
age- (±2), sex-, hypertension-, and diabetes-matched 40 healthy
control subjects. The mean age of IS, ICH, and control subjects
was 52.85 ± 10.86, 47.60 ± 9.76, and 50.20 ± 10.64 years,
respectively. Both stroke cases and healthy controls consisted
of 25 (62.5%) males and 15 (37.5%) females, respectively. The
mean blood sampling time (in h) from the symptom onset
was 12.11 ± 6.23 in IS cases and 12.46 ± 6.68 in ICH cases
(p=0.86). The study flow diagram is given in Figure 1. The
baseline characteristics of the subjects included in our study
are given in Table 1, and blood investigations are given in
Supplementary Table 1.

SWATH-MS to identify di�erential
proteome in stroke cases and controls

Serum proteomic profiles were compared between 40 stroke
(20 IS and 20 ICH) and 40 healthy controls using the SWATH-
MS approach. From the high-pH fractionated peptide library
for human serum proteins (obtained from SCIEX) comprising
of 465 proteins, we could quantify 375 proteins at 1% peptide
FDR between the stroke cases and control groups through
SWATH-MS analysis. The total ion chromatogram (TIC) of
all the 80 serum samples analyzed using the discovery-based
SWATH-MS proteomics is given in Supplementary Figure 1.
The batch variation observed in our samples due to the different
run times was removed as depicted in the PCA plots in
Supplementary Figure 2.

Di�erentially expressed proteins between
total stroke and healthy controls

Between 40 stroke and 40 control subjects, 119 proteins
were upregulated with a fold change of >1.5, and 72 were
downregulated with a fold change of <0.67 in total stroke

cases compared to healthy controls. Using the fold change and
p-value cutoffs, 22 proteins were significantly differentially
expressed between total stroke and healthy controls. Seventeen
proteins were significantly upregulated, while five were
significantly downregulated in total stroke compared to healthy
controls (Figure 2A). Using the Boruta random forest method,
19 proteins were identified as confirmed/tentative features
(Figure 2B; Supplementary Table 2). Ten proteins (UniProt IDs:
P00450, P01009, P04275, P05160, P05155, P02750, P02786,
Q15848, P06318, and P06331) were common in both the fold
change with p-value and the Boruta random forest criteria.
Thus, after combining the distinctly expressed proteins using
both approaches, 31 significantly differentially expressed
proteins were identified between total stroke and control
subjects within 24 h (Table 2). A heatmap of 31 significantly
differentially expressed proteins showing the log2 fold change
expression pattern between total stroke and controls is given in
Figure 3A.

Out of 31 proteins, 26 were successfully matched to
proteins within the STRING database. The interaction network
consisted of 26 nodes and 115 edges. Twenty-five proteins
formed a highly connected network except for the GGH
protein. Centrality analysis identified that APOB had the highest
degree of interaction (DoI)= 19 with other proteins followed
by haptoglobin (HP) (DoI = 18), APOB (DoI = 15), and
SERPINA1 (DoI= 15). Eight protein–protein interactions in
our network had an interaction score of more than 0.90, with
the highest interaction score of 0.97 for HPX-HP followed by
0.944 for LBP-SAA1, 0.940 for SERPING1-C1QB, 0.937 for
MMP2-A2M, and 0.92 for MMP2-SAA1 (Figure 3B).

Using Gene Ontology (GO) database, the top 10 cellular
components, molecular interactions, or biological processes
involved are as follows: serine-type endopeptidase inhibitor
activity, acute phase response, acute inflammatory response,
extracellular space, extracellular region, blood microparticle,
extracellular exosome, extracellular vesicle, extracellular
membrane-bounded organelle, and extracellular organelle. One
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway,
namely complement and coagulation cascades, was identified to
be significantly involved. Using the Reactome database, the top
five pathways involved are as follows: platelet degranulation,
response to elevated platelet cytosolic Ca2+, hemostasis,
binding and uptake of ligands by Scavenger Receptors, and
innate immune system (Figure 4).

Di�erentially expressed proteins between
ischemic stroke and healthy controls

Between 20 IS and 20 controls, 118 proteins were
upregulated, and 72 were downregulated in IS cases compared
to control subjects. Using the fold change and p-value
criteria, 13 proteins were significantly differentially expressed,
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TABLE 1 Baseline characteristics of acute stroke patients and healthy control subjects.

S.

No

Characteristics IS patients

(N = 20)

ICH patients

(N = 20)

p-value Total stroke

(N = 40)

No. of obs.

(Controls)

Control subjects

(N = 40)

P-value

1. Age (years), Mean± SD and Median (IQR) 52.85± 10.86,

53.5 (45.5–61.5)

47.60± 9.76, 48

(43–55.5)

0.12 50.22± 10.53, 49

(45–59.5)

40 50.20± 10.69, 48.5

(44.5–60)

Matched

2. Male, n (%) 11 (55) 14 (70) 0.33 25 (62.5) 40 25 (62.5)

3. Female, n (%) 9 (45) 6 (30) 15 (37.5) 40 15 (37.5)

4. Blood sampling time from onset (in h.), Mean±

SD &Median (IQR)

12.11± 6.23,

11.5 (7.12–17)

12.46± 6.68, 12.58

(6.25–18.62)

0.86 12.28± 6.38, 12.58

(6.5–17.75)

- - -

5. Time taken to reach hospital (in hrs.), Mean± SD

&Median (IQR)

4.21± 2.98,

3.87 (2–5)

6.41± 6.27, 3.75

(2.08–10.12)

0.16 5.31± 4.97, 3.87

(2–5.75)

- - -

6. Ambulance as a mode of transport, n (%) 6 (30) 4 (20) 0.53 10 (25) - - -

7. Any surgical procedure, n (%) 2 (10) 5 (25) 0.21 7 (17.5) - - -

Risk factors for stroke

8. Hypertension, n (%) 8 (40) 14 (70) 0.06 22 (55) 40 22 (55) Matched

9. Diabetes, n (%) 4 (20) 1 (5) 0.15 5 (12.5) 40 5 (12.5)

10. Dyslipidemia, n (%) 4 (20) 0 (0) 0.03 4 (10) 40 6 (15) 0.50

11. Myocardial Infarction, n (%) 0 0 – 0 40 1 (2.5) 0.31

12. Atrial Fibrillation, n (%) 0 0 – 0 40 1 (2.5) 0.31

13. Angina Pectoris, n (%) 1 (5%) 0 0.31 1 (2.5) 30 1 (3.33) 0.83

14. Migraine, n (%) 0 0 – 0 40 3 (7.50) 0.08

15. Current Smoking, n (%) 9 (45) 10 (50) 0.75 19 (47.5) 40 7 (17.50) 0.004

17. Alcohol Intake, n (%) 2 (10) 6 (30) 0.11 8 (20) 40 11 (27.5) 0.43

17. No exercise, n (%) 18 (90) 17 (85) 0.63 35 (87.5) 39 11 (28.21) <0.001

18. Sedentary lifestyle, n (%) 7 (35) 7 (35) 1.00 14 (35) 37 6 (16.22) 0.06

19. Low Education, n (%) 13 (65) 15 (75) 0.49 28 (70) 39 12 (30.77) 0.0005

20. Low socio-economic status, n (%) 9 (45) 11 (55) 0.53 20 (50) 40 0 <0.001

21. Obesity, n (%) 7 (35) 10 (50) 0.34 17 (42.5) 38 24 (63.16) 0.07

22. Family history of stroke, n (%) 3 (15) 1 (5) 0.29 4 (10) 40 2 (5) 0.39

23. Family history of hypertension, n (%) 10 (50) 6 (30) 0.20 16 (40) 40 12 (30) 0.44

24. Family history of diabetes, n (%) 7 (35) 3 (15) 0.14 10 (25) 40 16 (40) 0.15

25. Family history of heart attack, n (%) 4 (20) 3 (15) 0.68 7 (17.5) 40 12 (30) 0.19

Vitals at admission

26. SBP (mmHg), Mean± SD &Median (IQR) 152.7± 35.71,

147 (127.5–175)

178± 35.29, 176

(150–214)

0.03 165.35± 37.31, 163

(137–190)

39 141.46± 24.55, 134

(121–155)

0.001

27. DBP (mmHg), Mean± SD &Median (IQR) 87.5± 17.27,

87 (80–95)

100.10± 17.00, 100

(90–110)

0.02 93.8± 18.08, 90

(82–104)

39 89.95± 15.90, 90

(78–98)

0.32

obs, observations; IS, ischemic stroke; ICH, intracerebral hemorrhage; SD, standard deviation; IQR, interquartile range; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Bold values, p < 0.05.
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FIGURE 2

(A) Volcano plot depicting the log2 fold change on the x-axis and -log10 p-value on the y-axis for the upregulated and downregulated proteins

in 40 total stroke cases compared to 40 healthy controls. The two vertical lines represent the threshold for log2 fold change (>0.58 and <

−0.58), and the horizontal line represents the threshold for log10 p-value (>1.3). The red dots on the graph indicate the proteins which are

(Continued)
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FIGURE 2 (Continued)

significantly upregulated (log2 fold change>0.58; log10 p-value>1.3), and blue dots indicate the proteins which are significantly downregulated

(log2 fold change< −0.58; log10 p-value>1.3). (B) Feature selection using the Boruta random forest depicting important features/proteins to

di�erentiate 40 total stroke and 40 healthy controls. The blue bars on the graph indicate shadow features for minimum, average, and maximum

shadow feature values. The red bars on the graph indicate the proteins which were rejected as irrelevant features, yellow bars indicate the

proteins which were marked tentative as uncertain features, and green bars indicate the proteins which were marked confirmed as valid features

and identified as important proteins after the Boruta random forest feature selection analysis.

wherein 11 were significantly upregulated while two were
significantly downregulated in IS compared to controls
(Figure 5A). Using the Boruta random forest method, nine
more proteins were identified as confirmed/tentative features
(Figure 5B; Supplementary Table 3). Six proteins (UniProt
IDs: P04114, P01023, P01009, P02786, P05090, and Q99972)
were common using both approaches. Finally, 16 distinct
proteins were identified using the above two criteria which were
significantly differentially expressed between IS and healthy
controls within 24 h (Table 3). A heatmap of 16 significantly
differentially expressed proteins showing the log2 fold change
expression pattern between IS and healthy controls is given in
Figure 6A.

All the 16 proteins were successfully matched within the
STRING database. The interaction network analysis identified
16 nodes and 29 edges. Thirteen out of 16 proteins formed
a highly connected network with other proteins, whereas
three proteins (TBC1D30, MINPP1, and MYOC) remained
disconnected from the network. Centrality analysis identified
that APOB and SERPINA1 had the highest DoI of 9
with other proteins, followed by vWF (DoI = 6), APOD
(DoI = 5), and TFRC (DoI = 5). Seven protein–protein
interactions in our network had an interaction score of
more than 0.70 with the highest protein–protein interaction
score of 0.950 for APOB-APOF followed by 0.888 for A2M-
SERPINA1, 0.857 for CP-SERPINA1, and 0.806 for CP-A2M
(Figure 6B).

For conducting the functional enrichment analysis

of significantly differentially expressed proteins identified
between IS and controls, the top 10 cellular components
were selected in the GO database, including chaperone

binding, acute phase response, negative regulation of smooth
muscle cell proliferation, extracellular region, extracellular
space, endoplasmic reticulum, endoplasmic reticulum

lumen, blood microparticle, extracellular exosome, and
extracellular vesicle. The only KEGG pathway that was

found to be significantly associated was complement and
coagulation cascades. When the enrichment analysis was
done using the Reactome database, the top five pathways

observed were formation of fibrin clot (clotting cascade),
regulation of IGF transport and uptake by IGFBPs, post-
translational protein phosphorylation, LDL remodeling, and

plasma lipoprotein assembly, remodeling, and clearance
(Figure 7).

Di�erentially expressed proteins between
intracerebral hemorrhage and healthy
controls

Between 20 ICH and 20 controls, 102 proteins were
upregulated while 83 were downregulated in ICH cases
compared to control subjects. Using the fold change and
p-value criteria, 30 proteins were significantly differentially
expressed; 23 significantly upregulated and seven significantly
downregulated in ICH cases compared to healthy controls
(Figure 8A). Using the Boruta random forest method, 21 more
proteins were further identified as confirmed/tentative features
(Figure 8B; Supplementary Table 4). Ten proteins (UniProt IDs:
P00450, P04275, Q06033, P04217, P36955, B9A064, P02750,
P01833, P35443, and P24592) were common using both the
above-mentioned criteria for protein selection. Thus, after
combining the distinct proteins using both the criteria, we
identified 41 proteins that significantly differentially expressed
ICH from healthy controls within 24 h (Table 4). A heatmap
of 41 significantly differentially expressed proteins showing the
log2 fold change expression pattern between ICH and healthy
controls is given in Figure 9A.

Out of 41 proteins, 34 successfully matched within the
STRING database. The interaction network analysis identified
34 nodes and 125 edges. Except for three proteins (TUBA1A,
IGFBP6, and LCP1), the interaction network of the remaining 31
proteins was highly connected with each other. SERPINA1 had
the highest DoI of 18 with other proteins followed by APOA1
(DoI = 17), CLU (DoI =14), PLG (DoI = 14), and ORM1 (DoI
= 14) after conducting the centrality analysis. Twelve protein–
protein interactions in our network had an interaction score
of more than 0.90 with the highest protein–protein interaction
score of 0.999 for APOA1-APOA2 and SERPING1-C1S followed
by 0.998 for PLG-SERPINF2, 0.997 for APOA1-APOE, and
0.995 for APOA1-CLU and APOE-APOC1 (Figure 9B).

The top 10 cellular components and biological processes
when analyzed using the GO database involved are as follows:
extracellular space, extracellular exosome, extracellular
region, extracellular vesicle, extracellular membrane-bounded
organelle, extracellular organelle, blood microparticle, collagen-
containing extracellular matrix, vesicle, and extracellular
matrix. Using the KEGG database, we observed that two
pathways were significantly involved: complement and
coagulation cascades and cholesterol metabolism. The top five
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TABLE 2 List of significantly di�erentially expressed proteins between total stroke and healthy controls within 24h of symptom onset using fold change with p-value and Boruta random forest feature

selection criteria.

S. No UniProt ID Protein name (Gene annotation) Fold change* P-value Boruta decision

1 Q15848 Adiponectin (GN= ADIPOQ) 3.30 0.003 Confirmed

2 P00450 Ceruloplasmin (GN= CP) 2.57 0.0002 Confirmed

3 P04433 Ig kappa chain V-III region VG (Fragment) 2.54 0.01 Rejected

4 P00739 Haptoglobin-related protein (GN=HPR) 2.18 0.04 Rejected

5 P20851 C4b-binding protein beta chain (GN= C4BPB) 2.13 0.008 Rejected

6 P04275 von Willebrand factor (GN= VWF) 2.12 <0.001 Confirmed

7 P02750 Leucine-rich alpha-2-glycoprotein (GN= LRG1) 2.11 0.006 Tentative

8 P05090 Apolipoprotein D (GN= APOD) 1.99 0.02 Rejected

9 P02763 Alpha-1-acid glycoprotein 1 (GN= ORM1) 1.97 0.002 Rejected

10 P04430 Ig kappa chain V-I region BAN 1.96 0.006 Rejected

11 P05160 Coagulation factor XIII B chain (GN= F13B) 1.87 0.0007 Confirmed

12 P06331 Ig heavy chain V-II region ARH-77 1.86 0.0035 Confirmed

13 P04114 Apolipoprotein B-100 (GN= APOB) 1.72 0.045 Rejected

14 P01009 Alpha-1-antitrypsin (GN= SERPINA1) 1.63 <0.001 Confirmed

15 P01023 Alpha-2-macroglobulin (GN= A2M) 1.58 0.002 Rejected

16 P02746 Complement C1q subcomponent subunit B (GN= C1QB) 1.53 0.003 Rejected

17 P02786 Transferrin receptor protein 1 (GN= TFRC) 1.52 0.003 Confirmed

18 Q92820 Gamma-glutamyl hydrolase (GN= GGH) 1.28 0.03 Confirmed

19 Q06033 Inter-alpha-trypsin inhibitor heavy chain H3 (GN= ITIH3) 1.26 0.0007 Confirmed

20 P02790 Hemopexin (GN=HPX) 1.20 0.004 Confirmed

21 P18428 Lipopolysaccharide-binding protein (GN= LBP) 1.20 0.0002 Confirmed

22 P01011 Alpha-1-antichymotrypsin (GN= SERPINA3) 1.03 0.001 Confirmed

23 P08185 Corticosteroid-binding globulin (GN= SERPINA6) 0.99 0.004 Confirmed

24 P19827 Inter-alpha-trypsin inhibitor heavy chain H1 (GN= ITIH1) 0.98 0.06 Confirmed

25 Q9UK55 Protein Z-dependent protease inhibitor (GN= SERPINA10) 0.85 0.073 Confirmed

26 P08697 Alpha-2-antiplasmin (GN= SERPINF2) 0.78 0.006 Confirmed

27 P01859 Ig gamma-2 chain C region (GN= IGHG2) 0.64 0.04 Rejected

28 P05155 Plasma protease C1 inhibitor (GN= SERPING1) 0.51 0.001 Confirmed

29 P06318 Ig lambda chain V-VI region WLT 0.50 0.03 Tentative

30 P08253 72 kDa type IV collagenase (GN=MMP2) 0.34 0.03 Rejected

31 P0DJI8 Serum amyloid A-1 protein (GN= SAA1) 0.26 0.006 Rejected

*Fold change is a ratio representing the change of protein concentration between total stroke cases and healthy control subjects.
Bold values, Fold change >1.5 or <0.67, p-value<0.05 and confirmed/tentative in Boruta random forest.
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FIGURE 3

(A) Heatmap showing the distribution and expression pattern of 31 significantly di�erentially expressed proteins between total stroke and

healthy controls. Each column represents a di�erent subject, while each row represents the UniProt ID of di�erent proteins. The blue squares

represent upregulated, and the red squares represent downregulated proteins in total stroke compared to healthy controls. White squares

represent no change in protein expression. (B) Protein–protein interaction network analysis of di�erentially expressed proteins between total

(Continued)
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FIGURE 3 (Continued)

stroke and healthy controls. The color of the nodes represents the level of degree of interaction between the proteins ranging from 0 to 19, with

dark green representing a high degree of interaction (toward 19) and light green representing a low degree of interaction (toward zero). The

color of edges represents the interaction score ranging from zero to one, with dark red edges representing an interaction score with high

confidence (toward one) and light red edges representing an interaction score with low confidence (toward zero).

FIGURE 4

Functional enrichment analysis of di�erentially expressed proteins between total stroke and healthy controls.

pathways identified using the Reactome database were platelet
degranulation, response to elevated platelet cytosolic Ca2+,
complement cascade, hemostasis, platelet activation, signaling,
and aggregation. Complement cascade was a common pathway
identified in KEGG and Reactome databases (Figure 10).

Discussion

A stroke, if left untreated, results in the loss of 1.9 million
neurons per min after its onset (22). Therefore, rapid diagnosis
of stroke is critical to initiate stroke type-specific treatment
and prevent large-scale brain damage. In this discovery phase
study, we identified several differentially expressed proteins
in stroke and its subtypes that elucidated key pathological
processes involved in the acute phase of IS and ICH. Our study

identified four proteins (ceruloplasmin, SERPINA1, vWF, and
F13B) that commonly differentiated total stroke, IS, and ICH
from healthy control subjects. To the best of our knowledge,
this is the first label-free proteomic study that identified blood
biomarkers for the diagnosis of stroke within 24 h of symptom
onset. A list of proteomic studies conducted till now for the
identification of diagnostic biomarkers in stroke is given in the
Supplementary Table 5.

Protein biomarkers identified between
total stroke and healthy controls

We identified 31 significantly differentially expressed
proteins between total stroke (IS + ICH) and healthy controls
within 24 h. Twenty-five proteins formed a highly connected
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FIGURE 5

(A) Volcano plot depicting the log2 fold change on the x-axis and –log10 p-value on the y-axis for the upregulated and downregulated proteins

in 20 IS cases compared to 20 healthy controls. (B) Feature selection using the Boruta random forest depicting important features/proteins to

di�erentiate 20 IS and 20 healthy controls.
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TABLE 3 List of significantly di�erentially expressed proteins between ischemic stroke and healthy controls using fold change with p-value and Boruta random forest feature selection criteria.

S. No UniProt ID Protein name (Gene annotation) Fold change* P-value Boruta selection

1 Q15848 Adiponectin (GN= ADIPOQ) 3.30 0.02 Rejected

2 P05160 Coagulation factor XIII B chain (GN= F13B) 2.64 0.02 Rejected

3 P05090 Apolipoprotein D (GN= APOD) 1.99 0.01 Confirmed

4 P04003 C4b-binding protein alpha chain (GN= C4BPA) 1.95 0.02 Rejected

5 P00450 Ceruloplasmin (GN= CP) 1.81 0.02 Rejected

6 P04114 Apolipoprotein B-100 (GN= APOB) 1.72 0.01 Confirmed

7 P01009 Alpha-1-antitrypsin (GN= SERPINA1) 1.63 0.005 Confirmed

8 P01023 Alpha-2-macroglobulin (GN= A2M) 1.58 0.02 Confirmed

9 P02746 Complement C1q subcomponent subunit B (GN= C1QB) 1.53 0.04 Rejected

10 P02786 Transferrin receptor protein 1 (GN= TFRC) 1.52 0.04 Confirmed

11 P04275 von Willebrand factor (GN= VWF) 1.50 0.01 Rejected

12 Q13790 Apolipoprotein F (GN= APOF) 1.38 0.02 Confirmed

13 Q9UNW1 Multiple inositol polyphosphate phosphatase 1 (GN=MINPP1) 1.18 0.07 Confirmed

14 Q9Y2I9 TBC1 domain family member 30 (GN= TBC1D30) 0.74 0.01 Confirmed

15 Q99972 Myocilin (GN=MYOC) 0.66 0.04 Confirmed

16 P17936 Insulin-like growth factor-binding protein 3 (GN= IGFBP3) 0.09 0.03 Rejected

*Fold change is a ratio representing the change of protein concentration between IS cases and healthy control subjects.
Bold values: Fold change >1.5 or <0.67, p-value<0.05 and confirmed/tentative in Boruta random forest.
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FIGURE 6

(A) Heatmap showing the distribution and expression pattern of 16 significantly di�erentially expressed proteins between IS and healthy

controls. (B) Protein–protein interaction network analysis of di�erentially expressed proteins between IS and healthy controls.
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FIGURE 7

Functional enrichment analysis of di�erentially expressed proteins between ischemic stroke and healthy controls.

network, with APOB having the highest DoI. The most common
significant pathways involved complement and coagulation
cascades, immune-related processes, acute phase response, acute
inflammatory response, hemostasis, and pathways related to
extracellular space and matrix. In the Malicek et al. (9) study,
they identified 12 significantly differentially expressed proteins
between seven stroke and two control subjects in plasma. The
stroke subjects were recruited within an average of 7 days (1–
15 days) of symptom onset. Only two proteins (ITIH3 and
LBP) were commonly differentially expressed in our study
when compared to Malicek et al. (9). Another proteomic
study conducted by Allard et al. (23) in plasma samples
utilized the SELDI approach and identified four differentially
expressed proteins (Apo C-1, Apo C-III, serum amyloid A, and
antithrombin-III fragment) between 21 total stroke (IS = 11,

ICH = 10) and 21 healthy controls recruited within 72 h. Of
these four proteins, serum amyloid A was also differentially
expressed in our study and was significantly downregulated in
total stroke (fold change= 0.26) compared to the control group.

Protein biomarkers identified between
ischemic stroke and healthy controls

Between IS and healthy controls, our study identified 16
proteins within 24 h. The interaction network for 13 out of 16
proteins was highly connected. APOB and SERPINA1 had the
highest DoI within the network. The most common significant
pathways/processes associated with these proteins included
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FIGURE 8

(A) Volcano plot depicting the log2 fold change on the x-axis and –log10 p-value on the y-axis for the upregulated and downregulated proteins

in 20 ICH cases compared to 20 healthy controls. (B) Feature selection using the Boruta random forest depicting important features/proteins to

di�erentiate 20 ICH and 20 healthy controls.

Frontiers inNeurology 16 frontiersin.org

https://doi.org/10.3389/fneur.2022.989856
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


M
isra

e
t
a
l.

1
0
.3
3
8
9
/fn

e
u
r.2

0
2
2
.9
8
9
8
5
6

TABLE 4 List of significantly di�erentially expressed proteins between intracerebral hemorrhage and healthy controls using fold change with p-value and Boruta random forest feature selection

criteria.

S. No UniProt ID Protein name (Gene annotation) Fold change* P-value Boruta decision

1 P01861 Ig gamma-4 chain C region (GN= IGHG4) 3.75 0.01 Rejected

2 P27487 Dipeptidyl peptidase 4 (GN= DPP4) 3.52 0.05 Rejected

3 P01880 Ig delta chain C region (GN= IGHD) 2.49 0.02 Rejected

4 Q71U36 Tubulin alpha-1A chain (GN= TUBA1A) 2.43 0.04 Rejected

5 P00450 Ceruloplasmin (GN= CP) 2.33 0.00 Confirmed

6 P13796 Plastin-2 (GN= LCP1) 2.32 0.01 Rejected

7 P01009 Alpha-1-antitrypsin (GN= SERPINA1) 2.31 0.00 Rejected

8 P02649 Apolipoprotein E (GN= APOE) 2.30 0.20 Confirmed

9 P01625 Ig kappa chain V-IV region Len 2.25 0.01 Rejected

10 P36955 Pigment epithelium-derived factor (GN= SERPINF1) 2.21 0.004 Confirmed

11 P04275 von Willebrand factor (GN= VWF) 2.15 0.003 Tentative

12 P02750 Leucine-rich alpha-2-glycoprotein (GN= LRG1) 2.10 0.005 Confirmed

13 P01833 Polymeric immunoglobulin receptor (GN= PIGR) 1.99 0.0004 Confirmed

14 P09871 Complement C1s subcomponent (GN= C1S) 1.96 0.06 Confirmed

15 P01613 Ig kappa chain V-I region Ni 1.95 0.01 Rejected

16 P05160 Coagulation factor XIII B chain (GN= F13B) 1.89 0.01 Rejected

17 P01701 Ig lambda chain V-I region NEW 1.86 0.02 Rejected

18 P04430 Ig kappa chain V-I region BAN 1.80 0.01 Rejected

19 P10643 Complement component C7 (GN= C7) 1.74 0.01 Rejected

20 P02647 Apolipoprotein A-I (GN= APOA1) 1.72 0.01 Rejected

21 P02763 Alpha-1-acid glycoprotein 1 (GN= ORM1) 1.70 0.01 Rejected

22 P04217 Alpha-1B-glycoprotein (GN= A1BG) 1.69 0.01 Tentative

23 Q06033 Inter-alpha-trypsin inhibitor heavy chain H3 (GN= ITIH3) 1.57 0.01 Tentative

24 P00747 Plasminogen (GN= PLG) 1.54 0.01 Rejected

25 P24592 Insulin-like growth factor-binding protein 6 (GN= IGFBP6) 1.52 0.0005 Confirmed

26 P19827 Inter-alpha-trypsin inhibitor heavy chain H1 (GN= ITIH1) 1.48 <0.001 Confirmed

27 Q9UK55 Protein Z-dependent protease inhibitor (GN= SERPINA10) 1.44 0.001 Confirmed

28 P08697 Alpha-2-antiplasmin (GN= SERPINF2) 1.42 0.02 Confirmed

29 P10909 Clusterin (GN= CLU) 1.27 0.02 Confirmed

30 P06331 Ig heavy chain V-II region ARH-77 1.23 0.004 Tentative

31 P18428 Lipopolysaccharide-binding protein (GN= LBP) 1.23 0.01 Tentative

32 P05155 Plasma protease C1 inhibitor (GN= SERPING1) 1.01 0.004 Confirmed

(Continued)
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complement and coagulation cascade, acute phase response,
blood microparticle, clot formation, and pathways including
extracellular region. A few studies in the past have used the
proteomic approach to identify diagnostic biomarkers in IS
compared to healthy controls, but most of these studies recruited
IS patients beyond the 24-h time window. In a study published
last year by Malicek et al. (9) on plasma samples, four proteins
were significantly differentially expressed between three IS and
two controls using a label-free proteomic approach. The IS
subjects in this exploratory study were recruited within an
average duration of 7 days (1–15 days) from symptom onset.
No protein was commonly expressed upon comparing their
results with our study. The difference in the protein expression
profile between our studies could be attributed to the small
sample size and longer blood sample collection time in the
Malicek et al. study (9). Another recent study by Lee et al. (7)
on serum samples used a similar approach of discovery-based
SWATH-MS proteomics and identified 163 differential proteins
with more than 2-fold change in 20 IS patients recruited within
10 days of symptom onset compared to 20 healthy controls.
After applying the FDR-corrected p-values, they identified 13
significant biomarker candidates. C4BPA was the only common
protein that was differentially expressed (upregulated in IS in
both studies) in our study and in Lee et al. (7). The same authors
conducted another SWATH-MS proteomic study to identify
serum biomarkers related to coagulation cascade between 18
IS cases recruited within 7 days and 16 healthy controls. (8).
They identified 60 upregulated (fold change >1.5) and 50
downregulated (fold change <1/1.5) proteins in IS compared to
controls out of which four proteins (prothrombin, plasminogen,
fibrinogen alpha chain, and histidine-rich glycoprotein) related
to coagulation cascade were finally selected, none of which
were identified in our study. Another study by Qin et al. (10)
on plasma samples recruited 40 IS patients with large vessel
occlusion (LVO) within 7 days of symptom onset and 20
healthy controls. They identified seven differentially expressed
proteins with a fold change of >1.2 or <0.83 between the two
groups using the iTRAQ labeling-based proteomic approach. No
protein was commonly expressed between our study and Qin
et al. (10). Therefore, the differential proteins identified in our
study within 24 h were vastly different from the ones identified
in Lee et al. (7) within 10 days, Lee et al. (8) and Qin et al.
(10) within 7 days of symptom onset. When comparing our
results with the other three studies, these contrasting findings
provide crucial insights into the differences in the expression
level of proteinmarkers in the acute phase of stroke (within 24 h)
compared to 7–10 days after the stroke onset.

The only proteomic study conducted on stroke patients in
the Indian population by Sharma et al. (11) quantified 389
proteins using the iTRAQ labeling approach between pooled
serum samples of 20 IS and 20 healthy controls in their discovery
phase and identified 60 proteins with a difference of 1.5-fold or
greater between the two groups. They observed that 25 proteins

Frontiers inNeurology 18 frontiersin.org

https://doi.org/10.3389/fneur.2022.989856
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Misra et al. 10.3389/fneur.2022.989856

FIGURE 9

(A) Heatmap showing the distribution and expression pattern of 41 significantly di�erentially expressed proteins between ICH and healthy

controls. (B) Protein–protein interaction network analysis of di�erentially expressed proteins between ICH and healthy controls.

were more abundant, while 35 were less abundant in IS cases
compared to controls. Using the p-value cutoff, they observed 23
significantly differentially expressed proteins. Compared to their
study, we obtained three times more (180 proteins) differential

proteins in our study after applying the 1.5-fold cutoff criteria.
Adiponectin and vWF were two proteins that were significantly
differentially expressed in both the studies, and both were
upregulated in IS patients compared to controls. However, the
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FIGURE 10

Functional enrichment analysis of di�erentially expressed proteins between intracerebral hemorrhage and healthy controls.

study by Sharma et al. (11) did not mention the time duration
for blood sample collection from IS subjects.

Besides blood biomarkers, proteomic studies between IS and
healthy controls have also been conducted on other biofluids.
The platelet activation response was assessed in a study by
Cevik et al. (24) in nine IS cases recruited within 24 h and
equal number of control subjects. Using the UPLC-ESI-q-
TOF-MS proteomic approach, they identified 83 statistically
significant (p < 0.05) proteins in the platelets between the
two groups. Two proteins (ceruloplasmin and SERPINA1) were
commonly differentially expressed between our study and Cevik
et al. (24); however, both were not statistically significant in
the Cevik et al. study (24). Both proteins were upregulated
in our study, while both were downregulated in Cevik et al.
(24) in IS cases compared to control subjects. This difference
between the expression pattern of the two proteins might be
due to the different biofluids used to assess the biomarker
levels in both studies. Future comparative studies between
serum and platelet proteomic markers are required to validate
these findings. Wang et al. (25) recently conducted a urinary
proteomic study using the DIA approach between 35 carotid
artery stenosis (CAS) patients and 18 healthy controls. They did
not mention the timing of sample collection in CAS patients.
They identified 194 significantly differentially expressed proteins
in urine samples between the two groups (fold change >1.5
and <0.67 with p < 0.05), of which only myocilin was
commonly expressed in our study. However, myocilin was
downregulated in our study in contrast to Wang et al. (25),
where it was upregulated. Since, Wang et al. recruited only
IS patients with CAS, the difference in the expression pattern

might be due to the different subtype of patient populations
recruited in both the studies. Another urinary proteomic
analysis was conducted by Dawson et al. (26) in a sample of
65 IS/TIA cases and 41 control subjects with urine samples
collected within 24 h. Using the capillary electrophoresis-MS
approach, they identified 35 statistically significant biomarkers
between the two groups. Only ceruloplasmin was the statistically
significant protein which was common between Dawson et al.
and our study. A study conducted by Brea et al. (27) recruited
11 IS patients and an equal number of control subjects
and isolated endothelial progenitor cell colonies within 7
days of symptom onset. They identified four differentially
expressed proteins (endoplasmic reticulum protein-29, CdC-
42, elongation factor-2, and peroxiredoxin-1) using the 2DE
proteomic approach.

Protein biomarkers identified between
intracerebral hemorrhage and healthy
controls

We identified 41 significantly differentially expressed
proteins between ICH and controls within 24 h. Thirty-
four proteins formed a highly connected network, and
the DoI was strongest for SERPINA1. The most common
significant pathways underlying proteins that differentiated ICH
from controls included pathways related to the extracellular
region, platelet degranulation, complement and coagulation
cascade, cholesterol metabolism, and hemostasis. The literature
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on proteomic studies for the identification of diagnostic
biomarkers for ICH is scarce. In the recent study by Malicek
et al. (9) on plasma samples, 14 proteins were significantly
differentially expressed between four ICH cases recruited
within an average of 7 days (1–15 days) and two control
subjects using a label-free proteomic approach. Plasminogen,
inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), and
lipopolysaccharide-binding protein (LBP) were three proteins
that were commonly expressed in Malicek et al. (9) and
our study. Lopez et al. (28) used the multiple reaction
monitoring-based targeted proteomic approach on plasma
samples and identified that Apo C-I individually and in
combination with Apo A-II differentiated 26 ICH from 31
control subjects recruited within 7 days of symptom onset.
Both the proteins were also confirmed in our study using
the Boruta random forest method as important features
for differentiating ICH from controls. Using the targeted
metabolomic approach, Zhang et al. (29) used metabolites and
recently identified twometabolic markers, i.e., 20-OH-LTB4 and
arachidonic acid which differentiated 42 ICH cases from 65
control subjects recruited within 5 days. Our study identified
novel protein biomarkers not discovered previously using a
proteomic approach (apart from Apo C-I and Apo A-II) and
provided crucial insights into the pathophysiology of ICH in
acute stages.

Future directions

This discovery phase study provides crucial insights into
the pathophysiology of stroke and its subtypes. It provides
a potential list of candidate protein markers to explore and
new methodological strategies, including the use of label-free
high-throughput proteomics for conducting biomarker research
in stroke. The label-free SWATH-MS proteomic approach
used in this study provides relative protein expression with
high sensitivity and selectivity. It also has the capacity to
maintain a high throughput, allowing it to evaluate many
samples in a short duration of time with minimal operator
intervention. However, extensive work still needs to be done
before these biomarkers can be implemented in the clinical
settings. A point-of-care test needs to be developed for rapid
assessment of these biomarkers in hospital settings. Future
studies must validate our findings in a large cohort of
stroke patients using either standard immunoassays or targeted
proteomic approaches. They must identify the sensitivity,
specificity, and positive and negative predictive values of
these biomarkers for diagnosing stroke. Studies should further
aim at collecting blood samples in the hyperacute phase
of stroke within 3–4.5 h, which is the clinically acceptable
time window for administering thrombolytic therapy. A
temporal profile depicting the expression pattern of these

biomarkers over the 24-h period is also urgently warranted in
stroke patients.

Limitations

We conducted a pilot/discovery phase study; thus,
the findings were only exploratory. We obtained relative
quantification values for each protein. Therefore, our findings
warrant validation in a large cohort using absolute quantification
approaches. Since we collected serum samples in our study, the
proteins highlighting the significant role of platelet granulation
in stroke might account for some false positives due to the
activation of platelets in the serum samples.

Conclusion

Our discovery phase exploratory study identified a list of
potential protein biomarker candidates for the diagnosis of
acute stroke and highlighted significant molecular pathways
associated with different stroke subtypes. The results of our
study could serve as a platform for conducting future validation
studies. These potential biomarker candidates need to be
validated in studies using either standard immunoassays or
targeted proteomic approach in a large cohort of stroke patients
to investigate their diagnostic performance.
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