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Hemoglobin (Hb) and lipid metabolism are critical in the pathophysiology of

moyamoya disease (MMD), and Hb and triglycerides (TGs) both play roles in

the development of cerebrovascular illness. However, there is little evidence

of a link between Hb and TGs in patients with MMD. This study aimed to

determine the association between Hb and TGs in patients who had recently

been diagnosed with MMD. FromMarch 2013 to December 2018, 337 patients

clinically diagnosed with MMD were admitted to our hospital. Among these,

235 were selected for analysis in this retrospective, cross-sectional study.

Each patient’s clinical features were documented. For analysis, we used

univariate analysis, smoothed-curve fitting, and multivariable, piecewise linear

regression. Overall, the mean±standard deviation patient age was 48.14 ±

11.24 years, 44.68% were men, and the mean Hb concentration was 135.72 ±

18.99 g/L. After controlling for relevant confounders, smoothed-curve fitting

revealed a nonlinear association between the Hb and TG concentrations (P =

0.0448). When theHb concentrationwas below 141 g/L,multivariate piecewise

linear regression analysis revealed a significant association between the Hb

and TG concentrations [β: 0.01, 95% confidence interval (CI): 0.00, 0.01; P =

0.0182], although the association disappeared above this threshold (β:−0.00,

95% CI:−0.01, 0.01; P = 0.4429). In individuals newly diagnosed with MMD,

there is a significant correlation betweenHb and TGs, whichmay be connected

to MMD pathogenesis.
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Introduction

Moyamoya disease (MMD) is a chronically occlusive

cerebrovascular illness marked by stenosis of the terminal

portions of both internal carotid arteries (ICAs), which leads

to the creation of an aberrant network of collateral vessels. Its

progressive phase can often lead to ischemic and hemorrhagic

strokes (1–3). Thus, given the high risk of stroke in patients

withMMD, it is particularly important to prevent the occurrence

and development of this disease. However, despite more

than 60 years of continuous research, its mechanisms remain

unclear. Recent research suggests that TGs is a risk factor

for cerebrovascular diseases, including carotid artery stenosis

and intracranial artery stenosis (4, 5). Therefore, exploring

the factors associated with abnormal lipid metabolism could

facilitate our knowledge of the its fundamental mechanics. In

a previous study, we discovered that uric acid and triglycerides

(TGs) had a substantial beneficial relationship, and the early

prevention of hyperuricemia and lipid abnormalities was

associated with a decrease in the incidence of MMD (6).

Hb is a cellular protein that binds to oxygen (7, 8). There

is a positive association between the Hb concentration and

inflammation in previously and currently infected populations

(7, 9, 10). Furthermore, the Hb concentration is a well-

known independent risk factor for stroke and a poor

prognosis (11, 12). In general, both Hb and TGs play crucial

roles in the pathology and physiology of cerebrovascular

disease, although the relationship between the two has not

been elucidated.

Taken together, MMD is a cerebrovascular disease that

frequently leads to a stroke, while Hb and TGs are both

linked to the development of a stroke. Therefore, this study

aimed to investigate whether Hb and TGs are independently

associated with each other among patients newly diagnosed

with MMD in China. Clarifying the relationship between

FIGURE 1

Flowchart of inclusion and exclusion criteria.

the two may help to predict the type of stroke induced by

MMD and to better understand their role the development

of MMD.

Methods

Study design

The link between Hb and TGs was studied using a

retrospective, cross-sectional design. The Hb concentration was

defined as the independent variable and the TG concentration as

the predictor variable.

Study population

All data used in this study were acquired from the

computerized medical record system of the Affiliated Hospital

of Jining Medical University. The information we gathered

did not contain any personal information, to protect patient

privacy. Informed consent was not required because this cohort

study was retrospective. The hospital’s institutional review board

approved this study.

Data of 235 patients were initially collected. The start and

end dates for inclusion were March 2013 and December 2018,

respectively. The MMD (Spontaneous Occlusion of the Circle of

Willis) Guidelines for Diagnosis and Treatment (2012 Edition)

were used to guide the clinical strategy for each participant (13).

The following cerebral angiography results were required for

diagnosis: (1) in the arterial phase, stenosis or blockage of the

intracranial ICA, parietal part of the anterior cerebral artery,

and/or middle cerebral artery; (2) anomalies in vascularization

next to an endothelial orstenotic lesion in the first cycle; and

(3) observations in (1) and (3) must be consistent with those
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TABLE 1 Clinical characteristics of the study population.

Variable Total

Number of cases, n 235

Age (years, mean± SD) 48.14± 11.24

BMI (kg/m2 , mean± SD) 25.42± 3.47

Sex, n (%)

Male 105 (44.68)

Female 130 (55.32)

Current smoker, n (%)

No 169 (71.91)

Yes 66 (28.09)

Alcohol consumption, n (%)

No 174 (74.04)

Yes 61 (25.96)

Disease type

Hemorrhagic 58 (27.75)

Ischemic 151 (72.25)

TGs (mmol/L, mean± SD) 1.30± 0.82

TC (mmol/L, mean± SD) 4.17± 0.90

HDL-C (mmol/L, mean± SD) 1.19± 0.23

LDL-C (mmol/L, mean± SD) 2.42± 0.70

VLDL-C (mmol/L, mean± SD) 0.56± 0.36

Lipoprotein (mmol/L, mean± SD) 265.03± 304.83

Hb (g/L) 135.72± 18.99

Hb, hemoglobin; TGs, triglycerides; TC, total cholesterol; HDL-C, high-density

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-

density lipoprotein cholesterol.

in (2). The following were the exclusion criteria: (1) short-

term use of anemia-correcting drugs, (2) atherosclerosis, (3)

autoimmune disease, (4) meningitis, (5) brain tumors, (6)

Down syndrome, (7) cerebrovascular lesions detected via head

irradiation, (8) head injury, (9) von Recklinghausen’s disease,

(10) age <18 years and (11) other conditions. We only included

patients newly diagnosed with MMD who were admitted to

our hospital. Further exclusion criteria were patients with

myeloproliferative illnesses receiving toxic treatments, pregnant

women, breastfeeding women, patients currently using diuretics

or lipid-regulating medicines, patients with renal or liver illness,

and patients on antinociceptive drugs.

Variables

Hb and TG concentrations were measured at the start of the

study and used as continuous variables. Briefly, the department

nurse collected the patients’ peripheral venous blood while

they were fasting, instantly submitting it to the laboratory. All

measurements were performed at our hospital laboratory by

laboratory technicians and physicians.

TABLE 2 Univariate analysis for TGs (mmol/L).

Covariate β (95% CI) P-value

Age, years −0.00 (−0.01, 0.01) 0.9422

BMI, kg/m2 0.06 (0.03, 0.09) <0.0001

Sex, n (%)

Male Reference

Female −0.09 (−0.30, 0.12) 0.3854

Smoking, n (%)

No Reference

Yes 0.13 (−0.11, 0.36) 0.2851

Alcohol consumption, n (%)

No Reference

Yes 0.18 (−0.06, 0.42) 0.1361

Disease type, n (%)

Hemorrhagic Reference

Ischemic 0.15 (−0.09, 0.39) 0.2210

TC, mmol/L 0.29 (0.18, 0.40) <0.0001

HDL-C, mmol/L −1.09 (−1.53,−0.65) <0.0001

LDL-C, mmol/L 0.14 (−0.01, 0.29) 0.0618

VLDL-C, mmol/L 1.75 (1.55, 1.95) <0.0001

Lipoprotein, mmol/L −0.00 (−0.00, 0.00) 0.9993

Hb, g/L 0.01 (−0.00, 0.01) 0.0628

Hb, hemoglobin; TGs, triglycerides; TC, total cholesterol; HDL-C, high-density

lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-

density lipoprotein cholesterol.

The covariates in this investigation were divided into

three categories: (1) demographic data; (2) variables previously

reported to affect the Hb and/or TG concentration; and (3)

variables identified based on our clinical experience. As a

result, multivariable models were constructed, adjusting for

the following: (1) quantitative variables: sex, smoking status,

and alcohol intake and (2) continuous variables: age and

body mass index (BMI). All these variables were obtained

at baseline.

Equations

Continuous variables are displayed as means ± standard

deviations, and categorical variables are displayed as

frequencies and percentages. All analyses were performed

using the R statistical package (http://www.R-project.

org, R Foundation for Statistical Computing, Vienna,

Austria) and EmpowerStats (http://www.empowerstats.

com, X&Y Solutions, Inc., Boston, MA). Statistical

significance was defined as a P < 0.05 (two-tailed).

For details of the statistical methods, please see the

Supplementary material.
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TABLE 3 Relationship between Hb (g/L) and TGs (mmol/L) in di�erent models.

Variable Model I Model II Model III

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Hb, g/L 0.01 (−0.00, 0.01) 0.0628 0.00 (−0.00, 0.01) 0.0874 0.00 (0.00, 0.01) 0.0448

Hb (min-max)

Q1 (67–125) Reference Reference Reference

Q2 (126–136) 0.30 (0.00, 0.59) 0.0512 0.17 (−0.04, 0.39) 0.1106 0.22 (0.03, 0.40) 0.0255

Q3 (137–146) 0.28 (-0.02, 0.58) 0.0641 0.25 (0.03, 0.47) 0.0291 0.24 (0.04, 0.44) 0.0189

Q4 (147–183) 0.30 (0.01, 0.59) 0.0453 0.20 (−0.05, 0.45) 0.1253 0.20 (−0.02, 0.43) 0.0801

Model II adjusted for sex; age; smoking status; alcohol consumption; BMI; disease type; TC; HDL-C; LDL-C; VLDL-C; and lipoproteins.

Model III adjusted for: sex; age (smooth); smoking; alcohol consumption; BMI (smooth); disease type; TC (smooth); HDL-C (smooth); LDL-C (smooth); VLDL-C (smooth); and

lipoprotein (smooth).

Results

Clinical features

We included 235 patients were identified for the final data

analysis (Figure 1). They had an average age of 48.14 ± 11.24

years; 44.68% were men, and 27.75% had hemorrhagic MMD

(Table 1). The TG and Hb concentrations were 1.30 ± 0.82

mmol/L and 135.72± 18.99 g/L, respectively.

Univariate analysis for TGs

Table 2 displays the results of the univariate analyses.

Therein, age, sex, smoking status, drinking habits, ischemic

disease type, low-density lipoprotein cholesterol concentration,

lipoprotein concentration, and Hb concentration were

not linked with TG concentration. Furthermore, high-

density lipoprotein cholesterol was negatively associated

with TG concentration (β: −1.09, 95% confidence interval

[CI]: −1.53, −0.65), whereas BMI (β: 0.06, 95% CI: 0.03,

0.09), total cholesterol concentration (β: 0.29, 95% CI: 0.18,

0.40), and very low-density lipoprotein cholesterol (β: 1.75,

95% CI: 1.55, 1.95) were positively associated with TG

concentration.

Unadjusted and adjusted linear
regression results

Models were created to explore the indirect effects of Hb

on the TG concentration after confounders were removed

(multivariable linear regression). The effect sizes (β) and

95% CIs are shown in Table 3. The model-based effect size

in TG concentration in the unadjusted model (Model I) is

estimated for a 1 g/L increase in the Hb concentration. For

sensitivity analysis, Hb was transformed from a continuous

to a categorical variable (quartiles). The P-value for the trend

FIGURE 2

Association between Hb (g/L) and TGs (mmol/L). (A) smooth

fitted curve of Hb and TGs, (B) scatter plot for the distribution of

Hb and TGs. The solid red line represents the smooth curve fit

between the variables. The blue bands represent the 95% CI of

the fit. The model is adjusted for sex; age; smoking status;

alcohol consumption; BMI; disease type; TC; HDL-C; LDL-C;

VLDL-C; lipoproteins.

in the Hb concentration in the fully adjusted model was

similar to the results when Hb concentration was treated as a

continuous variable.
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TABLE 4 Threshold e�ect analysis of the relationship between Hb and

TG levels.

TGs (mmol/L)

Adjusted β (95% CI) P-value

Model I

Linear effect 0.00 (−0.00, 0.01) 0.0874

Model II

Inflection point (K) 141

<141, effect 1 0.01 (0.00, 0.01) 0.0182

>141, effect 2 −0.00 (−0.01, 0.01) 0.4429

Model I, linear analysis; Model II, non-linear analysis. Adjusted variables: sex; age;

smoking status; alcohol consumption; BMI; disease type; TC; HDL-C; LDL-C; VLDL-C;

and lipoproteins. P < 0.05 was considered statistically significant.

Association between Hb and TG
concentrations

Figure 2 illustrates the smooth curve fitting after controlling

for possible confounders. The TG concentration had a non-

linear relationship with the Hb concentration. The threshold

effect was further investigated using curve fitting, as summarized

in Table 4. A significant positive correlation between Hb and TG

concentrations was identified when the Hb concentration was

below 141 g/L (β: 0.01, 95%CI: 0.00, 0.01; P= 0.0182).When the

Hb concentration was more than 141 g/L, there was no clinically

significant link between the two parameters (β: −0.00, 95% CI

−0.01, 0.01; P = 0.4429).

Subgroup analysis

Smooth fitted curves were also plotted separately for patients

with hemorrhagic MMD and those with ischemic MMD

(Figures 3, 4, respectively). Both subgroups exhibited a positive

relationship between the TG and Hb concentrations.

Discussion

We observed a non-linear positive correlation between

Hb and TG levels in patients with MMD. Further sensitivity

analysis suggested a critical positive relationship between Hb

and TG levels. Up to an Hb concentration of 141 g/L, we

discovered that the TG concentration increased with the Hb

concentration. However, above that threshold, there was no

association between these two parameters. Upon stratified

analysis of patients with hemorrhagic MMD and those with

ischemic MMD, the Hb concentration was positively associated

with the TG concentration in both groups.

MMD is an uncommon cerebrovascular illness marked

by the creation of an aberrant network of collateral vessels,

often leading to ischemic and hemorrhagic strokes (1, 2). The

Hb level is an easily accessible and sensitive clinical indicator

FIGURE 3

Association between Hb (g/L) and TGs (mmol/L) in patients with

hemorrhagic MMD. (A) smooth fitted curve of Hb and TGs, (B)

scatter plot for the distribution of Hb and TGs. The solid red line

represents the smooth curve fit between the variables. The blue

bands represent the 95% CI of the fit. The model was adjusted

for age; smoking status; alcohol consumption; BMI; disease

type; TC; HDL-C; LDL-C; VLDL-C; and lipoproteins.

that reflects the physiological status of the body (7, 13). A

recent study (12) showed a U-shaped association between

hemoglobin concentration and stroke sequelae and recurrence,

with either too high or too low hemoglobin concentrations

being associated with stroke disability, death and recurrence.

Meanwhile, a multicentre study (14) noted that elevated

hemoglobin concentrations within 3 months of onset were

associated with poor prognosis in men but not significantly in

women with cerebral hemorrhage. Several previous publications

(15–17) suggest that dyslipidaemia is a known risk factor for

cerebrovascular disease. A high concentration of TGs is an

independent risk factor for ICA stenosis, which is strongly

linked to the development of MMD (5). A potential link

between the pathophysiology of MMD and aberrant lipid

metabolism has recently been demonstrated (18). Our team

found a positive association between SUA and TG in a previous

study (6) and concluded that early prevention of dyslipidemia

could help reduce the incidence of cerebrovascular disease.

Our data demonstrated that the Hb and TG concentrations of
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FIGURE 4

Association between Hb (g/L) and TGs (mmol/L) in patients with

ischemic MMD. (A) smooth fitted curve for Hb and TGs, (B)

scatter plot for the distribution of Hb and TGs. The solid red line

represents the smooth curve fit. The blue bands represent the

95% CI of the fit. The model was adjusted for age; smoking

status; alcohol consumption; BMI; disease type; TC; HDL-C;

LDL-C; VLDL-C; and lipoproteins.

Chinese patients diagnosed with MMD were positively related

after adjusting for other factors. These findings suggest a

potential overlapping mechanism between Hb concentration

and abnormal lipid metabolism.

Different derivatives of Hb are formed through oxidation,

each exerting different pro-oxidative and pro-inflammatory

effects, which can increase the sensitivity of vascular endothelial

cells to oxidant-mediated injury and cause lipid peroxidation

through the release of heme and redox-active iron, thereby

leading to inflammation of the vascular wall (19, 20). Several

researchers (21, 22) consider oxidative derivatives formed by Hb

important causes of cerebrovascular disease. Those conclusions

are largely in line with what we discovered.

To the best of our knowledge, there is limited information

on the relationship between lipid metabolism and Hb in patients

with MMD. We are also not aware of previous studies on

the relationship between Hb and TGs in individuals newly

diagnosed with MMD. Future MMD predictive models may

benefit from our results, possibly leading to the development of

a clinically accessible indicator for MMD diagnosis.

Our study had several strengths. First, we explored the

non-linearity of the relationship between the two primary

parameters. Second, as this was an observational study, we

employed rigorous statistical adjustments tominimize the effects

of influencing factors.

This study also had certain limitations. First, our study

population comprised patients newly diagnosed with MMD in

Southwest China, and we excluded certain categories of patients,

which may limit the generalizability of our findings. Second,

family history is a significant feature of patients with MMD,

although only a few familymembers withMMDwere discovered

in the data we collected.

In summary, we revealed in the current study a link between

Hb and TGs in patients recently diagnosed with MMD; this link

may be related to the development of MMD.
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16. Kopčeková J, Lenártová P, Mrázová J, GaŽarová M, Habánová M, Jančichová
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