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In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by

distal axonopathy that begins at the distal axons, including the neuromuscular

junctions, and progresses proximally in a “dying back” manner prior to the

degeneration of cell bodies. However, the molecular mechanism for distal

axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A),

a repulsive axon guidance molecule that phosphorylates collapsin response

mediator proteins (CRMPs), is known to be highly expressed in Schwann cells

near distal axons in a mouse model of ALS. To clarify the involvement of

Sema3A–CRMP signaling in the axonal pathogenesis of ALS, we investigated

the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35

patients with sporadic ALS and seven disease controls. In ALS patients, we

found that pCRMP1 accumulated in the proximal axons and co-localized with

phosphorylated neurofilaments (pNFs), which are a major protein constituent

of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal

in spheroid immunostaining was inversely correlated with disease duration

in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1

may precede that of pNFs in spheroids or promote ALS progression. In

addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited

axonal outgrowth in Neuro2A cells. Taken together, these results indicate that

pCRMP1may be involved in the pathogenesis of axonopathy in ALS, leading to

spheroid formation through the proximal progression of axonopathy.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal and progressive

neurodegenerative disorder caused by selective loss of both

upper motor neurons in the motor cortex and lower motor

neurons in the brain stem and spinal cord (1). Ninety percent

of cases with ALS are sporadic and 10% are familial. At least 27

genes have been found to be definitively associated with familial

ALS (2). Multiple hypotheses have been proposed regarding

the molecular pathogenesis of ALS, such as mitochondrial

dysfunction, cytoskeletal impairment, axonal transport

dysfunction, toxic protein aggregation, impaired protein

degradation, excitotoxicity, decreased neurotropic support

from non-neuronal cells, oxidative stress, hypermetabolism,

inflammation, RNA metabolism defects, and RNA toxicity (3).

Among these, the importance of cytoskeletal impairment

and disrupted axonal transport is directly suggested by the

function of proteins encoded by several genes responsible for

familial ALS, including neurofilament heavy chain (4), dynactin

subunit 1 (5), peripherin (6), profilin 1 (7), tubulin alpha 4a

(8), and kinesin family member 5A (9). The involvement of

axonal dysfunction is further demonstrated by the fact that

previous studies in patients and animal models of ALS have

shown that the pathology of motor neuron axons begins at

distal sites, including neuromuscular junctions (NMJs), and

progresses proximally in a “dying back” manner prior to the

degeneration of cell bodies (distal axonopathy) (10–13).

Among the candidate mechanisms of distal axonopathy

in ALS is semaphorin-3A (Sema3A) signaling (12). Sema3A

is an important repulsive axon guidance cue involved in

neurodevelopmental pattern formation (14). Sema3A binds to

the neuropilin-1 (NRP1) and plexin A receptor complexes and

activates downstream kinases such as cyclin-dependent kinase

5 (Cdk5). Sema3A signaling mediates axon guidance, dendritic

outgrowth, and synapse formation via the phospho-regulation

of downstream proteins, including collapsin response mediator

proteins (CRMPs) 1 and 2 (15–19).

In the G93A-SOD1 transgenic mouse model of ALS,

Sema3A is upregulated in specific populations of terminal

Schwann cells located at the distal ends of motor neuron axons

near fast-fatigable muscle fibers that are particularly vulnerable

to denervation in ALS (20). In addition, the administration of

anti-NRP1 antibody, which blocks Sema3A signaling, improved

motor function and survival and reduced denervation of NMJs

in G93A-SOD1 mice (21), and similar ameliorative effects

are observed after inhibition of CRMP2 phosphorylation (22).

Furthermore, we recently reported that while Crmp1 knockout

leads to deterioration of motor function in G93A-SOD1 mice,

phospho-null Crmp1 improves motor function and prevents

motor neuron loss and denervation of NMJs (23).

These findings suggest that Sema3A–CRMP signaling may

be involved in the pathogenesis of ALS, especially in terms

of triggering distal axonopathy. However, the CRMP family

has not been examined in ALS patient tissues. Because CRMP

phosphorylation is critical as the effector of Sema3A signaling, in

this study we investigated the status of CRMP1 phosphorylation

in the spinal cords of 35 ALS patients. We found that

Thr509-phosphorylated CRMP1 (pCRMP1) was co-localized

with phosphorylated neurofilaments (pNFs) at the sites of

proximal axon swelling (spheroids) in the spinal cord. In

ALS patients with short disease duration, the accumulation of

pCRMP1 in spheroids was more evident than that of pNFs.

In addition, in vitro experiments revealed that overexpression

of a phospho-mimicking CRMP1 mutant, Thr509Asp-CRMP1,

impaired the neurite outgrowth in Neuro2a cells. These findings

suggest that pCRMP1 may be involved in the pathogenesis of

distal-to-proximal axonal dysfunction in ALS.

Materials and methods

Crmp1 knockout (KO) mice

Details of the generation of Crmp1 KO mice were described

previously (24). Themutantmice weremaintained heterozygous

on a C57BL/6 background. Three to five mice of the same

sex were housed per aluminum cage (W 32.5 cm × D 22.5 cm

× H 11 cm) with a floor mat, at a temperature of 21 ± 3◦C

and humidity of 30–70% on a 12-h light/dark cycle in the

animal facility at Yokohama City University Graduate School

of Medicine. These mice were fed an autoclaved diet and given

water ad libitum. Homozygous mice were obtained by crossing

heterozygous mutant mice. Mice were sacrificed by an overdose

of isoflurane (7–8%). Four mice were analyzed in this study.

This study was approved by the Institutional Review Board of

Yokohama City University School of Medicine (FA16-069). All

procedures were conducted according to the guidelines of the

Institutional Animal Care and Use Committee of the Yokohama

City University School of Medicine.

Antibodies

Antibody against phosphorylated Thr509-CRMP1

(pThr509-CRMP1) was generated as described previously

(25). Briefly, rabbits were immunized with a synthetic

phosphopeptide [VYEVPA(pT)PKHAAPC: mouse CRMP1

amino acids 503–515 plus cysteine] conjugated to keyhole

limpet hemocyanin. The antibody was affinity-purified through

a phosphopeptide column. Other antibodies used in this study

are listed in Supplementary Table S1.

Immunoblot analysis of mouse brain
lysate

Four-week-old male C57BL/6 and Crmp1 KO mice were

sacrificed as described above. Cerebral cortices from mice were
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homogenized in immunoprecipitation (IP) buffer containing

20mM Tris-HCl (pH 8.0), 150mM NaCl, 1mM EDTA, 10mM

NaF, 1mM Na3VO4, 1% Nonidet P-40, and 50µM ρ-APMSF

(ρ-amidinophenylmethanesulfonyl fluoride). The lysates were

centrifuged at 17,600 g for 15min at 4◦C, and supernatants were

diluted to a 1 mg/ml concentration. The samples were then

used for immunoblotting analysis with anti–pThr509-CRMP1

antibody (1:3,000 dilution).

Immunohistochemistry of mice brain
sections

Ten-week-old male C57BL/6 mice and Crmp1 KO mice

were sacrificed as described above. The mice were then

perfused with phosphate-buffered saline [PBS; 137mM NaCl,

2.68mM KCl, 8.09mMNa2HPO4, 1.47mM KH2PO4 (pH7.4)],

followed by 4% paraformaldehyde (PFA). Brains were extracted

and incubated in 4% PFA at room temperature for 2 h

and then transferred to PBS. Coronal sections (50µm) were

sliced using a Leica VT1200 vibratome. The sections were

soaked in 0.3% Triton X-100 in PBS (PBST) containing 0.3%

H2O2 for 30min and rinsed with PBST. The sections were

blocked with PBST−3% normal goat serum (NGS) for 30min

and incubated with anti–pThr509-CRMP1 antibody (1:1,000

dilution with PBST−3% NGS) at 4◦C overnight. After rinsing

with PBST, the sections were incubated with anti–rabbit IgG

secondary antibody–conjugated biotin (Vector Laboratories,

Cat No. BA-1000, 1:1,000 dilution with TBST−2% NGS) for

2 h at room temperature. The sections were washed with PBST

and immersed in avidin–biotin–peroxidase complex (Vector

Laboratories, ABC kit, Cat No. PK-6100) for 1 h at room

temperature. The sections were rinsed with PBST and immersed

in diaminobenzidine solution (MBL, Histostar, Cat No. 8469)

for 10min. After rinsing with PBST, the sections were mounted

onto glass slides.

Patient samples

The use of autopsied samples was approved by the

institutional review board of Yokohama City University School

of Medicine (B090903014). Written informed consent was

obtained for all experiments involving autopsy tissues.

We pathologically investigated the lumbar spinal cords of

35 sporadic ALS patients (age 70.11 ± 10.81 years) and seven

disease control patients (age 79.14 ± 11.13 years) (Table 1)

autopsied at Yokohama City University Hospital or Yokohama

City University Medical Center. All ALS patients were clinically

diagnosed according to the revised El Escorial criteria (26) and

the diagnosis was confirmed pathologically. Only one patient

did not have obvious upper motor neuron symptoms, but this

patient was diagnosed with ALS based on the disease course

and the pathological involvement of the corticospinal tract. Four

patients with frontotemporal dementia (FTLD) were included in

this study (Table 1). Pathologically, the presence of cytoplasmic

inclusions positive for phosphorylated 43-kDa transactivating

response region DNA–binding protein (TDP-43) was confirmed

in all ALS patients.

Immunohistopathology of patients’
spinal cords

Each lumbar spinal cord was fixed in 20% formalin for 1–

2 weeks, embedded in paraffin, and cut into 6-µm sections.

Sections from each case were deparaffinized and stained with

hematoxylin and eosin, and the Klüver-Barreramethodwas used

to assess the number of neurons.

Staining with 3,3
′

-diaminobenzidine tetrahydrochloride

(DAB) was performed as reported previously (27). After paraffin

removal, sections were autoclaved at 121◦C for 10min with

10mM citric acid (pH 6.0), and then incubated in 1% H2O2

for 20min. Sections were then incubated in blocking solution

(7% goat serum, 0.1% Triton X-100 in PBS) for 20min at

room temperature. Sections were incubated with anti–pThr509-

CRMP1 antibody (1:300) for 2 days at 4◦C, washed with

PBS, incubated with a biotinylated secondary antibody for

2 h at room temperature, and reacted with avidin–biotin–

peroxidase complex (Vectastain ABC kit, Vector Laboratories,

Cat No. PK6100). The sections were washed with PBS then

incubated with staining solution (0.1% DAB, Dojindo, Cat

No. 411496) with or without 0.1% nickel (ammonium nickel

sulfate hexahydrate, Wako, Cat No. 146-01012) for 15–20min

at room temperature. Then the sections were counterstained

with hematoxylin (Muto Pure Chemicals, Cat No. 30022),

dehydrated, and coverslipped.

Peptide blocking was performed as follows. Prior to reacting

with tissue sections, the diluted anti–pThr509-CRMP1 antibody

solution was preincubated with an equal volume of 1 mg/ml

human CRMP1 phosphopeptide [VYEVPA(pT)PKHAAP-c]

overnight at 4◦C.

For the dephosphorylation assay, sections were incubated

with calf intestinal alkaline phosphatase (100 U/ml CIP (New

England Biolabs, Cat No. M0290) in 100mM Tris HCl (pH 8.5)

and 1% protease inhibitor cocktail (Nacalai Tesque, Cat No.

03969–21) for 3 h at 37◦C prior to immunohistochemistry.

Immunofluorescence histochemistry was performed as

follows. Sections were deparaffinized and autoclaved at 121◦C

for 10min with 10mM citric acid (pH 6.0). Lipofuscin

Autofluorescence Quencher (TrueBlack, Biotium, Cat No.

23007) was left on the sections for 30 s. Then, the sections

were rinsed with PBS and incubated in blocking solution (7%

goat serum, 0.1% TritonX-100 in PBS) for 20min at room

temperature. The sections were incubated with the diluted
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TABLE 1 Clinical and pathological information in ALS patients and disease controls.

ALS Control

No. of patient No. of patient

Diagnosis ALS 35 Control 7

Initial symptom site Bulbar 8 CI 1

UL 19 CPA 1

LL 8 AGD 1

Special note FTLD 4 HAM 1

Head trauma 1 Sarcoidosis 1

Ventilation 2 CCA 1

UMN (–) 1 AD 1

Sex (male:female) 28:7 2:5

Walking score (ALSFRS-R) 1 14

2 13

3 6

Unknown 2

Mean ± SD (range) Mean ± SD (range)

Age at death (years) 70.11± 10.81 (41–87) 79.14± 11.13 (53–89)

Disease duration (months) 29.2± 26.31 (3–144)

No. of pCRMP1-positive spheroids 6.06± 7.76 (0–40) 1.14± 1.36 (0–4)

No. of residual neuron 26.97± 15.25 (1–58) 38± 14.27 (12–63)

Area of anterior horn (mm2) 6.27± 2.31 (1.42–10.19) 7.26± 2.05 (3.07–8.95)

Initial symptom sites were classified as upper limb (UL), lower limb (LL), and bulbar region. The walking item score in the ALS Functional Rating Scale–Revised (ALSFRS-R) represents

the score measured just before death. Notable additional information is presented as a special note, and includes lack of upper motor neuron symptoms (UMN-), use of a ventilator,

and comorbidity of frontotemporal lobar degeneration (FTLD) and head trauma. The disease controls include individuals with cerebral infarction (CI), cardiopulmonary arrest (CPA),

argyrophilic grain dementia (AGD), human T-cell leukemia virus type 1–associated myelopathy (HAM), sarcoidosis, cortical cerebellar atrophy (CCA), and Alzheimer’s disease (AD). The

numbers (No.) of pThr509-positive spheroids and residual motor neurons, and the area of the anterior horn, were evaluated in single sections of the lumbar spinal cord (L4 or L5). SD,

standard deviation.

primary antibodies, anti–pThr509-CRMP1 rabbit antibody

(1:300), and anti–phosphorylated neurofilament H antibody

(mouse monoclonal IgG1, 1:1,000; BioLegend, Cat No. SMI

31P) for 2 days at 4◦C. Then the sections were incubated with

secondary antibody solution containing Alexa Fluor 488 goat

anti–rabbit IgG (H + L) (1:1,000; Thermo Fisher Scientific, Cat

No. 11034), Alexa Fluor 568 goat anti–mouse IgG (H + L)

(1:1,000; Thermo Fisher Scientific, Cat No. 11019), and Hoechst

33342(1:5,000; Thermo Fisher Scientific, Cat No. H3570) for

2 h at room temperature, protected from light. Coverslips were

mounted using ProLong Gold anti-fade reagent (Thermo Fisher

Scientific, Cat No. P36934).

With the Bodian silver method, normal neurite and

cytoskeleton aggregations (e.g., spheroids) were stained reddish

purple with silver protein. Sections were deparaffinized and

impregnated with silver in 1% silver protein solution at 37◦C

overnight. Sections were rinsed with distilled water (DW) and

incubated in reducing solution (hydroquinone and anhydrous

sodium sulfate solution) for 10min. Sections were then rinsed

in DW and incubated in toning solution (1% gold chloride

solution) for 1 h. Next, sections were rinsed in DW and reduced

(1% oxalic acid solution) for 5min. Finally, sections were

rinsed in DW and fixed (1% thiosulfuric acid) for 10min,

then dehydrated.

Quantification and statistical analysis of
spheroids in patients’ spinal cords

DAB-stained lumbar spinal cord sections from patients

with ALS and disease controls were examined using a Nikon

scanner under ×40 magnification. To analyze the number of

spheroids, pThr509-CRMP1–positive spheroids with a solid

brown color were counted in a section of the anterior

horn of the lumbar spinal cord. The criterion for defining

spheroids was the presence of oval or round structures in the

neurons. The lower confidence limit (20µm) was thereafter

used as the cut-off for defining pathologic spheroids. Spheroid

diameter was measured using the measurement tool of the NIS-

elements D software program (Nikon). Neuronal cell bodies

were evaluated by the following criteria: size (>10µm), shape

(triangular or oval), location (cortical layer), and nucleus (round

shape). Analysis was performed using the Mann–Whitney U-

test because of the limited sample size and the non-normal

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.994676
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kawamoto et al. 10.3389/fneur.2022.994676

distribution of the number of spheroids in each ALS patient and

disease control.

For immunofluorescence analysis of spheroids, slides were

imaged using a BZ-X800 microscope (Keyence). pThr509-

CRMP1 was visualized with the Alexa Fluor 488 channel,

pNFs with the Alexa Fluor 568 channel. Five spheroids were

selected per spinal cord section, and the fluorescence intensities

of pThr509-CRMP1 and pNFs were measured using ImageJ

software in 18 evaluable ALS patients.

First, Spearman’s rank-order correlation coefficient was used

to assess the degree of association between the duration of ALS

and the fluorescence intensities of pThr509-CRMP1 and pNFs

in spheroids. Next, patients with ALS were divided equally into

three groups [short-term, 7.67 ± 3.08 (3–11) months, n = 6;

medium-term, 21.3 ± 5.50 (14–30) months, n = 6; long-term,

41.0 ± 11.0 (31–61) months, n = 6] based on ALS duration,

and all fluorescence intensities of pThr509-CRMP1 and pNFs

were compared between the groups using the Kruskal–Wallis

test at a significance level of p < 0.05. If there were significant

differences, Dunn’s post hoc comparison was applied following

the Kruskal–Wallis test. GraphPad Prism software (v 8.4.3) was

used for calculations and graphics creation.

DNA, cell culture, and transfection

The expression plasmids for V5-tagged CRMP1 and its

phosphorylation-mimicking Thr509Asp mutant CRMP1 were

generated as previously described (28) using two primers

(5
′

-CCCAAACATGCAGCTCCTGCTCCTTCTGCC-3
′

, 5
′

-

ATCAGCTGGCACCTCGTACACGGGGCCATC-3
′

). Cdk5

and His-tagged p35 cDNA were provided by Dr. Ashok

B. Kulkarni (National Institute of Dental and Craniofacial

Research, Bethesda, MD). The mutation in all constructs was

confirmed by DNA sequencing.

Human embryonic kidney (HEK) 293T cells were cultured

in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher

Scientific, Cat No. 10564011) supplemented with 10% fetal

bovine serum (FBS, Biosera, Cat No. FB1285/500), 50 U/ml

penicillin, and 50µg/ml streptomycin (P/S, Nacalai Tesque, Cat

No. 0936734). These cells were passaged two times weekly for up

to 30 times. HEK 293T cells (1.0 × 106 cells/6-well plate) were

transfected with expression vectors of human CRMP1 either

with or without V5-tagged Cdk5/p35 using Lipofectamine LTX

(Thermo Fisher Scientific, Cat No. 5338100). After 2 days of

incubation, the cells were rinsed once with PBS and lysed in

500 µl of IP150 buffer (20mM Tris-HCl (pH 8.0), 150mM

NaCl, 1mM EDTA, 10mM NaF, 1mM Na3VO4, 1% Nonidet

P-40, diluted 1,000-fold in Protease Inhibitor Cocktail [Nacalai

Tesque, Cat No. 25955-11)]. The lysates were centrifuged at

10,000 g for 15min at 4◦C. The supernatants were subjected to

immunoblot analysis.

Neuro2a cells were purchased from American Type Culture

Collection (ATCC). Cells were maintained in DMEM (Thermo

Fisher Scientific, Cat No. 10564011) supplemented with 1%

P/S (Nacalai Tesque, Cat No. 0936734) and 10% FBS (Biosera,

Cat No. FB1285/500). Experiments were performed within the

first 20 passages after receipt from ATCC. Micro glass plates

(Matsunami, Cat No. CS01813) used for cell culture were

coated with 100µg/ml poly-l-lysine (PLL, Sigma-Aldrich, Cat

No. P4832) and incubated for 2 h at room temperature. Excess

PLL was rinsed off by washing three times with deionized water.

Neuro2A cells were transfected at 2 days in vitro (DIV) with

either wild-type (WT) CRMP1-V5 or Thr509Asp-CRMP1–V5

using Lipofectamine LTX (Thermo Fisher Scientific, Cat No.

5338100), then differentiated at DIV 3 after the medium was

replaced with serum-free medium containing 5mM N6, 2
′

-

O-dibutyryladenosine-3
′

:5
′

-cyclic monophosphate sodium salt

(Nacalai Tesque, Cat No. 0228961). The cells were fixed at DIV

4 and subjected to immunocytochemistry.

Immunocytochemistry of cultured cells

Differentiated Neuro2a cells were fixed in 4% PFA 48 h after

transfection and 24 h after differentiation. Cells were rinsed with

PBS and incubated in blocking buffer (PBST supplemented with

5% NGS for 1 h, and then for 24 h with primary antibody,

anti-V5 tag antibody (1:2,000, Thermo Fisher Scientific, Cat

No. 46-0705), and anti–α-tubulin (YL1/2, 1:500, Santa Cruz

Biotechnology, Cat No. sc53029) diluted in PBST at 4◦C.

Cells were washed in PBST and then incubated for 1 h with

secondary antibody solution containing Alexa Fluor 488 goat

anti–mouse IgG (H + L) (1:1,000; Thermo Fisher Scientific,

Cat No. A11029), Alexa Fluor 568 goat anti–rat IgG (H + L)

(1:1,000; Thermo Fisher Scientific, Cat No. 11007), and Hoechst

33342 (1:5,000; Thermo Fisher Scientific, Cat No. H3570) in

PBST. Cells were washed in PBS and then mounted using

ProLong Gold Antifade Reagent (Thermo Fisher Scientific,

Cat No. P36934). The cells were imaged using a BZ-X800

microscope (Keyence). Neurite length was measured using the

Neuroanatomy plugin of ImageJ software.

Quantification and statistical analysis of
axon length in Neuro2a cells

Immunostained Neuro2a cells were examined using a BZ-

X800 microscope (Keyence) under ×20 magnification. V5-

tagged CRMP1 (WT, Thr509Asp mutant) was visualized with

the Alexa Fluor 488 channel, tubulin with the Alexa Fluor 568

channel, and cell nuclei with Hoechst 33342. Neurite length

analysis was performed using the Neuroanatomy plugin of

ImageJ software. Differences between groups were analyzed

with the 2-sided t-test. All statistical analyses were performed
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using GraphPad Prism software (v 8.4.3). p values <0.05 were

considered statistically significant.

Results

Specificity of anti–pThr509-CRMP1
antibody

To specifically investigate the phosphorylation status of

CRMP1 in ALS spinal cords, we used anti–pThr509-CRMP1

antibody raised against mouse/rat CRMP1 (503–515) peptide

(Figure 1A) instead of the commonly used phospho-antibody

against Ser522-CRMP1/2, which is an identical phosphorylation

consensus motif for CRMP1 and CRMP2. The reactivity of

our antibody with human CRMP1 was verified by western

blotting using HEK 293T cell lysate transfected with human

CRMP1, either with or without exogenous Cdk5 expression

(Figure 1B). We found that the antibody reacted with the

phosphorylated human CRMP1 under the presence of Cdk5,

indicating that Cdk5 phosphorylates Thr509 of CRMP1. Using

the brain tissues of Crmp1 knockout mice, the specificity of this

antibody for CRMP1 was further confirmed by negative results

with immunoblotting of brain lysate (Figure 1C). pThr509-

CRMP1 immunoreactivity was observed in areas corresponding

to the dendrite-rich molecular layer of the hippocampal dentate

gyrus in WT mice, but not in CRMP-1KO mice (Figure 1D).

Accumulation of pThr509-CRMP1 in the
lumbar spinal cord of ALS patients

We examined the phosphorylation status of CRMP1 in the

lumbar spinal cord of ALS patients by immunohistochemistry

with the anti–pThr509-CRMP1 antibody, and detected

immunoreactivity in ALS patients but rarely in disease controls

(Figure 2A). The observed oval or round immunostaining

pattern resembled the morphology of spinal spheroids. In fact,

these pThr509-CRMP1–positive structures co-immunostained

with pNFs, a major cytopathological hallmark of spheroids

(Figure 2B), in most of the examined pThr509-CRMP1–positive

structures. These structures were also positive for Bodian

silver staining in consecutive sections (Figure 2C). To further

characterize the pThr509-CRMP1 signal in ALS tissues, we

performed peptide block and dephosphorylation assays. As

shown in Figures 2D,E, a human sequence–derived CRMP1

(503–515) peptide and also alkaline phosphatase blocked

immunostaining of pThr509-CRMP1. We therefore concluded

that pThr509-CRMP1 is a constituent of spheroids in ALS

spinal cords.

Next, we performed pThr509-CRMP1 immunostaining of

lumbar spinal cords in 35 patients with ALS and seven disease

controls (Table 1), and calculated the number of pThr509-

CRMP1–positive spheroids in each patient along with the

FIGURE 1

Specificity of anti–pThr509-CRMP1 antibody. (A) Sequence

comparison of the C-terminal domain in human and mouse

CRMP1. Underlined letters indicate the antigen peptides

comprising the anti–pThr509-CRMP1 antibody. (B)

Phosphorylation of Thr509 in CRMP1 by Cdk5. HEK 293T cells

were transfected with human CRMP1 and Cdk5. The

anti–pThr509-CRMP1 antibody successfully recognized

pThr509 in human CRMP1. (C) Immunoblotting of brain lysates

of WT and Crmp1 knockout KO mice with anti–pThr509-CRMP1

antibody. pThr509-CRMP1 signals are lost in Crmp1 KO mice.

(D) DAB labeling of hippocampi of WT and Crmp1 KO mice with

an anti–pThr509-CRMP1 antibody. The lower panels show

enlargement of the area enclosed by the dotted line in the

upper panels. Brown DAB chromogen is observed in the

dendrite-rich molecular layer of the hippocampal dentate gyrus

in WT mice, but is not seen in Crmp1 KO mice. Scale bars =

100µm (top); 20µm (bottom). DG, dentate gyrus; G, granule

cell layer; M, molecular layer.

remaining motor neurons and the anterior horn area. The

number of pThr509-CRMP1–positive spheroids per anterior

horn area (mm2) in the ALS patient group was significantly

higher than that in the disease control group (Figure 2F) and

was negatively correlated with disease duration, but there was

no correlation with age at death, initial symptoms, walking score

of the ALS Functional Rating Scale–Revised, or the number

of residual neurons (Supplementary Table S2). The statistical

methods used are listed in Supplementary Table S2.

Accumulation of pThr509-CRMP1
precedes that of pNFs in spheroids of ALS
patients

While verifying the co-localization of pThr509-CRMP1 and

pNFs in spheroids, we noticed that the immunofluorescence
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FIGURE 2

pThr509-CRMP1 staining in lumbar spinal cords of ALS patients. (A) Immunostaining of pThr509-CRMP1 in lumbar spinal cords of patients with

ALS (left) and disease controls (right). There were many pThr509-CRMP1–positive oval or round structures (arrows) in ALS patients but rarely in

disease controls. The bottom figures show enlarged views of the enclosed squares in the top figures. Scale bars = 100µm (top); 30µm

(bottom). (B) Double immunofluorescence labeling of pThr509-CRMP1 and pNFs, the latter of which are a major component of spheroids.

Co-localization of both proteins indicated that pThr509-CRMP1 is also a component of spheroids. Scale bar = 50µm. (C) Bodian silver staining

and pThr509-CRMP1 immunostaining of consecutive sections in ALS spinal cords. Spheroids are positive for both stains. Scale bar = 50µm. (D)

Although the epitope of the anti–pThr509-CRMP1 antibody was derived from a mouse sequence, a phosphopeptide with a human sequence

e�ectively blocked the immunostaining signals of spheroids. Scale bar = 50µm. (E) Alkaline phosphatase treatment attenuated

pThr509-CRMP1–positive signals of spheroids. Scale bar = 50µm. (F) The number of pThr509-CRMP1–positive spheroids per anterior horn area

(mm2) in ALS patients and disease controls. *p < 0.05.

intensity of pThr509-CRMP1 was higher than that of pNFs in

the spinal cord of an ALS patient with short disease duration

(3 months), and vice versa in a patient with a long disease

duration (48 months) (Figure 3A). Therefore, we investigated

the effect of disease duration on the fluorescence intensity of

pThr509-CRMP1 and pNFs in 18 evaluable patients with ALS

(Figure 3B). As the disease progressed, the mean fluorescence

intensity of pThr509-CRMP1 in each patient decreased, while

that of pNFs increased. The pThr509-CRMP1:pNF fluorescence

intensity ratio was negatively correlated with disease duration

(Figure 3C).We also plotted the fluorescence values of pThr509-

CRMP1 (Figure 3D) and pNFs (Figure 3E), and the pThr509-

CRMP1:pNF ratio (Figure 3F) in all spheroids according to

short, medium, and long disease durations, and demonstrated

statistical differences between the three duration groups. These

results suggest that accumulation of pThr509-CRMP1 may

precede that of pNFs in ALS spheroids.

Inhibition of neurite outgrowth by the
phosphomimic form of CRMP1 in
Neuro2a cells

To clarify the potential role of Thr509 phosphorylation

in neuron CRMP1, we examined how the overexpression
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FIGURE 3

Time-dependent expression relationships between pThr509-CRMP1 and pNFs in spinal spheroids. (A) Double immunofluorescence labeling of

spinal spheroids with anti–pThr509-CRMP1 antibody (green) and anti-pNF antibody (red) in two ALS patients with short (3 months) or long (48

months) disease duration. Scale bar = 30µm. (B) Mean fluorescence intensity of pThr509-CRMP1 (blue) and pNFs (red) in spheroids of the two

ALS patients with a di�erent disease duration (n = 18). (C) The pThr509-CRMP1: pNF fluorescence ratio in spheroids was significantly and

negatively correlated with disease duration. (D–F) The fluorescence values of pThr509-CRMP1 (D) and pNFs (E), and the pThr509-CRMP1: pNF

ratio (F) in each spheroid, in 18 ALS patients according to short (7.67 ± 3.08 (3–11) months), medium (21.3 ± 5.50 (14–30) months), and long

(41.0 ± 11.0 (31–61) months) disease duration. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 4

E�ect of CRMP1 phosphorylation on neurite outgrowth. (A)

Representative images of neurite elongation in Neuro2A cells

transfected with either WT-CRMP1 (left) or the

phospho-mimicking CRMP1 mutant Thr509Asp-CRMP1 (right).

Scale bar = 50µm. (B) Quantitative analysis of neurite lengths.

The five longest neurites were assessed in each of five fields

using ImageJ software. The experiments were repeated three

times and a total of 75 neurites were evaluated in each

transfection. ****p < 0.0001.

of the phospho-mimicking CRMP1 mutant Thr509Asp-

CRMP1 affected neurite outgrowth in murine neuroblastoma

Neuro2a cells, which are commonly used to study neuronal

cytoskeletal dynamics (29). Neuro2a cells were transfected

with an expression vector harboring either V5-tagged WT-

or Thr509Asp-CRMP1. The cells were differentiated by a

cAMP analog to facilitate neurite outgrowth. We found that

Thr509Asp-CRMP1–expressing cells had shorter neurites than

WT-CRMP1–expressing cells (Figure 4). These data suggest that

the phosphorylation of CRMP1 at residue Thr509 may inhibit

neurite outgrowth.

Discussion

In this study, we demonstrated that pThr509-CRMP1

accumulates in the spheroids of human ALS motor neuron

axons before pNFs, suggesting an early contribution of pThr509-

CRMP1 to spheroid pathology. Taken together with the

inhibition of neurite outgrowth by pThr509-mimicking CRMP1,

it is plausible that pCRMP1 is involved in the pathogenesis

of ALS.

CRMP1 is a member of the CRMP family of proteins, which

are involved in signaling downstream of Sema3A, a repulsive

axon guidance molecule; CRMP1 also regulates neuronal

migration, dendritic spine development, and synaptic plasticity

(17, 30, 31). Sema3A signaling stimulates phosphorylation of

CRMP1/2 via Src family Fyn tyrosine kinase and Cdk5 (15–

17, 19). In CRMP1 and CRMP2, it has been reported that

C-terminal Ser522 priming by Cdk5 is followed by sequential

phosphorylation of Ser518, Thr514, and Thr509 by GSK3β

(18, 32, 33), but some steps in this process on CRMP1 are still

unconfirmed. In this study, an anti–pThr509-CRMP1 antibody

was raised against the mouse/rat CRMP1 peptide (Figure 1A),

and Thr509 in CRMP1 is reported to be directly phosphorylated

by Cdk5 in rodents (33). However, it remains uncertain whether

human pThr509-CRMP1 reacts with this antibody and is

directly phosphorylated by Cdk5. As shown in Figure 1B, we

demonstrated that anti–pThr509-CRMP1 antibody successfully

detected human pCRMP1, and Cdk5 phosphorylated CRMP1

in human cells (HEK 293T) without the need for GSK3β.

Furthermore, CRMP1 specificity was confirmed using brain

tissues of Crmp1 KOmice (Figures 1C,D).

It has been suggested that CRMP1 is involved in the

pathogenesis of neurological diseases such as Huntington’s

disease (34) and schizophrenia (35, 36). Although its

contribution in ALS had not been elucidated except that

mass spectrometry data suggests CRMP1 is one of the

interacting partners of the Met337Val TDP-43 mutant (37),

we recently have shown that CRMP1 modulates phenotypes of

G93A-SOD1 mice (23).

In this study, we investigated the localization of pCRMP1

in the spinal cord of ALS patients by immunostaining using

CRMP1-specific anti-pThr509 antibody. Remarkably, pThr509-

CRMP1was found at the sites ofmotor neuron axon swelling but

was not clearly observed in the cell bodies (Figure 2A). The large

hydrophilic axonal swellings in the proximal axons are known

as spheroids, and they consist of accumulated pNFs, peripherin,

mitochondria, and lysosomes (38–40). pThr509-CRMP1 co-

localized with pNFs in our study (Figure 2B), indicating that

the oval or round structures in the ALS spinal cords were

spheroids. Axonal spheroids are not specific to ALS, and

small numbers of spheroids may also appear with increasing

age in healthy elderly individuals and non-ALS neurological

patients. We found that pThr509-CRMP1–positive spheroids

were most common in ALS patients (Table 1; Figure 2F), but

were also rarely seen in disease controls (Figure 2A), suggesting

that pThr509-CRMP1 accumulation in spheroids is not a

phenomenon unique to ALS.

Among various neurofilament subunits, neurofilament

medium chain (NF-M), and neurofilament heavy chain (NF-H)

demonstrate particularly high phosphorylation levels in axons

in pathological conditions such as ALS. This phosphorylation

is considered to slow the axonal transport of pNFs (41, 42),

resulting in their accumulation and the formation of spheroids.
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pNF accumulation also leads to a further delay in anterograde

axonal transport, as shown in an ALS mouse model (43).

Spheroids in ALS patients are also immunoreactive against

galectin-1 (44), and galectin-1 promotes the aggregation of NFs

through its ability to bind and cross-link various molecules

(45). Taken together, spheroid proteins may be involved in

the pathogenesis of ALS, either as a cause, facilitator, or

consequence of axonal transport dysfunction, by interacting

with each other.

Interestingly, our results from 18 ALS patients with various

disease durations indicated that pThr509-CRMP1 was one

of the spheroid proteins that accumulated prior to pNFs

(Figure 3). We speculate that this is because axonal dysfunction

caused by pThr509-CRMP1 leads to axonal transport deficits,

which in turn induces prior accumulation of pThr509-CRMP1

and subsequent accumulation of pNFs. Indeed, our in vitro

experiment showed that the phospho-mimicking mutant of

CRMP1, Thr509Asp-CRMP1, caused distal axonal dysfunction

as shown by axonal outgrowth inhibition that was presumably

caused by growth cone collapse at the distal ends of neurites

(Figure 4). Distal axonal dysfunction through Sema3A–CRMP

signaling has also been suggested to occur in ALS mice.

Sema3A is highly expressed in Schwann cells at the distal

ends of motor neuron axons in G93A-SOD1 ALS mice (20).

Furthermore, blockade of Sema3A signaling by anti-NRP1

antibody (21) or inhibition of CRMP1 phosphorylation (23)

mitigates NMJ damage and restores muscle strength in the

G93A-SOD1mouse model of ALS. These findings are consistent

with ALS pathogenesis, which is characterized by progressive

distal axonopathy in motor neurons that precedes degeneration

of cell bodies (10–13).

In ALS patients, distal axonopathy caused by

phosphorylation of CRMP1/2 is speculated to trigger

dysfunction of intracellular axonal transport, with damage

extending to proximal axons (forming spheroids) and then

to the cell body. Phosphorylation of CRMP2 is known to

cause axonal transport dysfunction by inhibiting CRMP2

binding to tubulin dimers and to the anterograde motor

protein, kinesin light chain (46–48). It has also been shown

that the kinesin-1 adaptor fasciculation and elongation protein

zeta 1 (FEZ1), which is involved in axonal transport, forms

a complex with CRMP1 in axons and nerve growth cones

(49). The effect of CRMP1 phosphorylation on its binding to

FEZ1 and axonal transport is currently unknown. However,

considering the established evidence regarding axonal transport

dysfunction upon CRMP2 phosphorylation (47, 48) and

CRMP1 involvement in axonal transport (50), it is likely that

pThr509-CRMP1 also affects transport function and contributes

to its own accumulation of pThr509-CRMP1 in proximal axons

as spheroids.

Recent studies have reported that phosphorylated TDP-

43 (pTDP-43) accumulates and interferes with synaptic

protein synthesis in axons and NMJs of ALS patients,

and this subsequently induces neurodegeneration (51, 52).

Regarding the relationship between CRMP1 and TDP-43, non-

phosphorylated CRMP1 suppresses TDP-43 aggregation (34),

and CRMP1 interacts with TDP-43 (35). Therefore, excessive

phosphorylation of CRMP1 at the distal ends of axons may

inhibit neurite outgrowth (Figure 4) and contribute to NMJ

pathogenesis in ALS, together with TDP-43, such as by affecting

axonal pTDP-43 aggregation. However, this speculation requires

further investigation.

Finally, spheroid proteins are among the most promising

candidate biomarkers for ALS, as exemplified by pNF-H (53–

56) and peripherin (57). As for the application of CRMPs, the

pCRMP2:CRMP2 ratio in lymphocytes was recently reported to

be a useful biomarker for schizophrenia (58). Because CRMPs

are involved in the maintenance of the cytoskeleton, along with

neurofilaments and peripherin, and accumulation of pThr509-

CRMP1 precedes that of pNFs, it is worthwhile to investigate

pCRMP1 as a possible early biomarker for ALS.

One limitation of our study is that differences in

mean fluorescence intensity were used to demonstrate

that accumulation of pThr509-CRMP1 precedes that of

pNFs in ALS spheroids, given that most of the examined

spheroids larger than 20µm were already double positive

for pThr509-CRMP1/pNFs. If we could show the number

of pThr509-CRMP1–positive/pNF-negative spheroids was

much higher than that of pNF-positive spheroids in ALS cases

with short duration, our conclusion might have been more

convincing. pThr509-CRMP1–positive/pNF-negative staining

may be present in swollen axons smaller than 20 µm.

In this study, we first showed that pCRMP1 is one

of the components of spheroids in ALS patients and that

pCRMP1 accumulation may precede the accumulation of

pNFs. Our hypothesis regarding pCRMP1 involvement in ALS

pathogenesis is as follows (Figure 5): (1) enhanced Sema3A

signaling in NMJs leads to Thr509-CRMP1 phosphorylation

by Cdk5, and this phosphorylation is responsible for aspects

of distal axonal dysfunction such as NMJ denervation and

inhibition of axonal outgrowth; (2) pCRMP1 mediates

the progression of distal-to-proximal axonopathy (dying

back), at least partly through axonal transport dysfunction;

(3) pCRMP1 accumulates as spheroids in proximal axons

due to transport dysfunction; and (4) pNF accumulation

is promoted by axonal transport dysfunction and the

prior accumulation of pCRMP1 as a physical obstacle to

transport. To prove this hypothesis, it is necessary to assess

the phosphorylation status of CRMP1 in distal axons in ALS

patients and to clarify the temporal relationship between

pCRMP1 and pNF accumulation through experiments

involving both mouse and cell models. Furthermore, the

effect of phosphorylating CRMP1 on axonal transport need to

be addressed.
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FIGURE 5

Schematic diagram showing the hypothetical mechanism by

which axonal function in ALS is influenced by CRMP1

phosphorylation mediated by Sema3A–Cdk5 signaling.

Non-phosphorylated CRMP1 in healthy individuals maintains

the NMJ and contributes to axon elongation by virtue of the

preserved function of the distal axon (see Figure 4). In ALS, (1)

enhanced Sema3A signaling in the NMJ leads to CRMP1

phosphorylation by Cdk5, and this phosphorylation is

responsible for aspects of distal axonal dysfunction such as NMJ

denervation and inhibition of axonal outgrowth (see Figure 4);

(2) pCRMP1 mediates the progression of distal-to-proximal

axonopathy (dying back), at least partly through axonal transport

dysfunction; (3) pCRMP1 accumulates as spheroids in proximal

axons due to transport dysfunction; and (4) pNF accumulation is

promoted by axonal transport dysfunction and the presence of

pCRMP1 as an obstacle.
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