
TYPE Original Research

PUBLISHED 20 September 2022

DOI 10.3389/fneur.2022.998251

OPEN ACCESS

EDITED BY

Rossella Tupler,

University of Modena and Reggio

Emilia, Italy

REVIEWED BY

Filippo M. Santorelli,

Stella Maris Foundation (IRCCS), Italy

Marc Bartoli,

Aix Marseille Université, France

*CORRESPONDENCE

Li Zeng

zengli@med.uestc.edu.cn

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Neuromuscular Disorders and

Peripheral Neuropathies,

a section of the journal

Frontiers in Neurology

RECEIVED 19 July 2022

ACCEPTED 23 August 2022

PUBLISHED 20 September 2022

CITATION

Xie Y, Li Y-h, Chen K, Zhu C-y, Bai J-y,

Xiao F, Tan S and Zeng L (2022) Key

biomarkers and latent pathways of

dysferlinopathy: Bioinformatics

analysis and in vivo validation.

Front. Neurol. 13:998251.

doi: 10.3389/fneur.2022.998251

COPYRIGHT

© 2022 Xie, Li, Chen, Zhu, Bai, Xiao,

Tan and Zeng. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Key biomarkers and latent
pathways of dysferlinopathy:
Bioinformatics analysis and in

vivo validation

Yan Xie1,2†, Ying-hui Li3†, Kai Chen1,2, Chun-yan Zhu1,2,

Jia-ying Bai1,2, Feng Xiao1,2, Song Tan1,2 and Li Zeng1,2*

1Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science

and Technology of China, Chengdu, China, 2Chinese Academy of Sciences Sichuan Translational

Medicine Research Hospital, Chengdu, China, 3Department of Neurology, People’s Hospital of

Yilong County, Nanchong, China

Background: Dysferlinopathy refers to a group of muscle diseases with

progressive muscle weakness and atrophy caused by pathogenic mutations

of the DYSF gene. The pathogenesis remains unknown, and currently no

specific treatment is available to alter the disease progression. This research

aims to investigate important biomarkers and their latent biological pathways

participating in dysferlinopathy and reveal the association with immune

cell infiltration.

Methods: GSE3307 and GSE109178 were obtained from the Gene

Expression Omnibus (GEO) database. Based on weighted gene co-expression

network analysis (WGCNA) and di�erential expression analysis, coupled with

least absolute shrinkage and selection operator (LASSO), the key genes

for dysferlinopathy were identified. Functional enrichment analysis Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were

applied to disclose the hidden biological pathways. Following that, the key

genes were approved for diagnostic accuracy of dysferlinopathy based on

another dataset GSE109178, and quantitative real-time polymerase chain

reaction (qRT-PCR) were executed to confirm their expression. Furthermore,

the 28 immune cell abundance patterns in dysferlinopathy were determined

with single-sample GSEA (ssGSEA).

Results: 1,579 di�erentially expressed genes (DEGs) were screened out.

Based on WGCNA, three co-expression modules were obtained, with

the MEskyblue module most strongly correlated with dysferlinopathy. 44

intersecting genes were recognized from the DEGs and the MEskyblue

module. The six key genes MVP, GRN, ERP29, RNF128, NFYB and KPNA3

were discovered through LASSO analysis and experimentally verified later. In a

receiver operating characteristic analysis (ROC) curve, the six hub genes were

shown to be highly valuable for diagnostic purposes. Furthermore, functional

enrichment analysis highlighted that these genes were enriched mainly

along the ubiquitin-proteasome pathway (UPP). Ultimately, ssGSEA showed

a significant immune-cell infiltrative microenvironment in dysferlinopathy

patients, especially T cell, macrophage, and activated dendritic cell (DC).
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Conclusion: Six key genes are identified in dysferlinopathywith a bioinformatic

approach used for the first time. The key genes are believed to be involved in

protein degradation pathways and the activation of muscular inflammation.

And several immune cells, such as T cell, macrophage and DC, are considered

to be implicated in the progression of dysferlinopathy.

KEYWORDS

dysferlinopathy, bioinformatics analysis, biomarker, immune cell infiltration,

ubiquitin-proteasome pathway

Introduction

Dysferlinopathy, caused by mutation in the DYSF gene,

is a family of autosomal recessive muscular disorders with

distinguishing clinical features. Although with a low overall

incidence, dysferlinopathy accounts for as much as 30% of

progressive recessive muscular dystrophies in some geographic

areas (1). Most commonly the symptoms present in late

adolescence with progressive muscle weakness, and the most

common phenotypes are limb girdle muscular dystrophy

R2 (LGMD R2) and Miyoshi distal myopathy depending

on primary involvement of proximal or distal muscles (2).

Currently, dysferlinopathy does not have any effective treatment,

and the molecular mechanism determining its pathogenesis

remains unknown.

Dysferlin is a 237 kDa transmembrane protein that plays

a critical role in membrane repair and vesicle trafficking

(3). Patients with dysferlinopathy typically have dysferlin

labeling loss in muscle biopsies. Evidence from clinical and

experimental studies suggests that inflammatory- and immune-

related pathways contribute to dysferlinopathy progression.

In dysferlinopathy, necrosis, regeneration, inflammation and

upregulation of major histocompatibility complex class I

(MHC-I) are the most common pathological features, causing

the condition to be misdiagnosed as inflammatory myopathy

(4). In contrast to polymyositis, Duchenne muscular dystrophy

or Becker muscular dystrophy (DMD/BMD), CD4T cell,

macrophage, and membrane attack complex (MAC) are

more highly expressed in muscles with dysferlinopathy (5).

Researchers have shown that oxidative stress activates NF-κB

p65 signaling and may contributes to muscle protein loss in

dysferlinopathy (6). However, the treatment with prednisolone

or the inhibition of inflammation with celastrol fails to

improve muscle function in mice with dysferlin deficiency

(7, 8). It is largely unknown how the mutation of the

single gene DYSF could induce muscular inflammation, and

there is no effective treatment available for this condition. In

order to better understand the pathophysiologic mechanisms

behind muscle pathology and provide potential treatments, hub

genes and key pathways associated with dysferlinopathy must

be investigated.

Recent advancements in microarray technologies and

bioinformatics have made it possible to investigate disease

pathogenesis and discover biomarkers for disease progression

and therapeutic efficacy. In this study, we used WGCNA in

combination with LASSO to identify the key biomarkers of

dysferlinopathy, and then functional enrichment analysis to

explore cellular pathways. The key genes were also validated in

vivo. Ultimately, we analyzed the infiltration of 28 immune cells

in dysferlinopathy with single-sample GSEA (ssGSEA). As far

as we know, this is the first to examine immune cell infiltration

and key gene expression in dysferlinopathy, revealing a more

complete picture of its pathogenesis.

Materials and methods

Datasets of dysferlinopathy

Figure 1 illustrates the workflow for bioinformatics analysis.

The dysferlinopathy RNA-sequencing datasets GSE3307 and

GSE109178 were obtained from the GEO databank (Gene

Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/).

FIGURE 1

Flowchart of the analysis.
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GSE3307 contains 10 dysferlinopathy samples and 18 normal

samples, while GSE109178 contains 8 dysferlinopathy samples

and 6 normal samples. Using the R package “affy,” the original

data were analyzed and interpreted.

WGCNA analysis

The GSE3307 dataset was used to construct a signed co-

expression network with theWGCNApackage in R (9). In detail,

a variance calculation was conducted for each gene expression

value, and a subset of genes with absolute deviations of more

than 25% from the median was extracted for analysis (10). The

“goodSampleGenes” function was applied to include qualified

samples, then the “pickSoftThreshold” function was used to

determine an ideal soft threshold (β) to construct the weighted

adjacency matrix. Next, the adjacency matrix was converted

into a topological matrix (TOM), and the genes were grouped

by using the flashClust function. The genes were grouped into

modules as per expression pattern similarity using a hybrid

dynamic tree cutting algorithm, with a minimum of 30 genes

in each module. A MEDissThres (the dissimilarity threshold of

module eigengenes) = 0.2 was used to consolidate the similar

modules to yield the ultimate modules. The association between

modules and the phenotype of interest was revealed by Pearson

correlation analysis. The module with the highest correlation

with the phenotype of interest were chosen as the module

of interest. To determine gene significance (GS) and module

membership (MM), the modules and phenotypic data were

input into the co-expression network. MM is the relationship

between genes andmodules; GS is the linkage of gene expression

and phenotypes, which is calculated by log10 transformation

of the P-value (GS = lgP) in the linear regression (11). Each

candidate gene with |GS|>0.2 and |MM|>0.8 was screened out

to categorize as a dysferlinopathy-related module gene.

Di�erential genes expression analysis

A gene expression abnormality analysis of dysferlinopathy

and control samples in the GSE3307 dataset was implemented

with the “LIMMA” package in R software. Log2|fold change

(FC)|>0.7 adjusted P-value<0.05 were the screening criteria.

Key gene screening and validation

Common elements between dysferlinopathy-related module

genes and differentially expressed genes (DEGs) were revealed

using the Jvenn online tool-based cross-tabulation function

in http://jvenn.toulouse.inra.fr/app/example.html. A LASSO

analysis was then performed using the new glmnet package of

R software to screen for the key genes (12). The GraphPad Prism

software (version 9.3) was used to calculate expression levels

of the six genes in dysferlinopathy and controls. The receiver

operating characteristic (ROC) curves were calculated with the

“ROCR” package to assess the ability of key genes to distinguish

dysferlinopathy from controls. Furthermore, the expression

levels and diagnostic value of key genes were validated by using

a separate external dataset GSE109178.

GO and KEGG enrichment analysis

In R, the “enrichplot” and “clusterProfiler” packages were

used for functional annotations, including Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG).

An enrichment of terms/pathways matching p < 0.05 was

recognized as statistically significant. The top ten terms were

visualized using the “ggplot2” package.

Gene set enrichment analysis (GSEA)

In order to elucidate their hidden functions of the key

genes, the samples were grouped into high and low expression

series according to their median expression values. The

GSEA software (version 4.4.3) from the Broad Institute

(http://software.broadinstitute.org/gsea/downloads.jsp) was

used to analyze KEGG enrichment in the high and low

expression segments (13). The C2 curated gene set database

was freely available from the Molecular Signature Database

(MsigDB) as a reference for the KEGG analysis. The gene set

arrangement was performed 1,000 times per analysis. Those

with |NES|≥1 and P-value<0.05 were regarded as significantly

enriched pathways.

Assessment of immune cell abundance in
dysferlinopathy

In dysferlinopathy tissues and controls, 28 immune

cells were quantified using single-sample gene set

enrichment analysis (ssGSEA). A boxplot was drawn

to show the differential expression of the 28 immune

infiltrating cells between the two groups. With

the “ggplot2” package, Spearman correlations were

analyzed between the key genes and the 28 immune

infiltrating cells.

RNA extraction and quantitative real-time
polymerase chain reaction (qRT-PCR)

Four patients with dysferlinopathy were diagnosed based on

their clinical features, muscle biopsy, dysferlin immunostaining
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and DYSF gene sequencing. For non-dysferlinopathy control,

the muscle samples were collected from 4 patients without a

muscle disease as per clinical, histologic, and EMG criteria.

Supplementary Table S1 provides relevant clinical information.

Muscle samples were obtained and stored at −80◦C for

further experiment. The RNA from muscles was prepared

with Trizol reagent (Thermo Fisher Scientific, Waltham,

USA) in accordance with the manufacturer’s protocol. The

extracted RNA was reverse-transcribed to cDNA using

PrimeScript RT reagent kit (Takara, Japan). Quantitative

PCR was performed with the TB Green Premix Ex Taq II

(Takara, Japan) following the manufacturer’s instructions. PCR

amplification was performed for 30 s at 95◦C and followed

by 40 cycles of 5 s at 95◦C 30 s at 55◦C, and 30 s at 72◦C.

The 2−11CT method was used to determine the relative

expression of the s key mRNAs. The primers are listed in

Supplementary Table S2.

Statistical analysis

Statistics were conducted using GraphPad Prism 9.3. A

Student’s non-parametric t-test (Mann-Whitney test) with a

P-value of 0.05 was used to compare the two groups.

Results

Identification of dysferlinopathy-related
module genes

With the R package WGCNA, we implemented

co-expression network analysis on the GSE3307 dataset.

The expression information from the dataset was used as

input, and the total samples were analyzed by hierarchical

clustering. Outlier samples (height >150) were excluded from

FIGURE 2

Identification of key module based on WGCNA analysis. (A) Calculation of soft-thresholding power. A correlation coe�cient of 0.9 and a

soft-thresholding power of four are shown on the red line. (B) Gene cluster dendrogram on the basis of module eigengenes. The di�erent

colors represent di�erent modules. (C) Module gene and clinical phenotype correlation analysis. The MEskyblue module was significantly

associated with dysferlinopathy. (D) Scatter plot for correlation between genes within the MEskyblue module and clinical phenotype data.
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FIGURE 3

Analysis of DEGs in GSE3307 dataset and screening of key genes. (A) Heat map of the DEGs in dysferlinopathy. (B) Volcano plot showing DEGs

between dysferlinopathy muscles and normal controls. (C) Venn diagram for intersections between MEskyblue module and DEGs. (D) The partial

likelihood deviance curve was plotted vs. log (λ) in 10-fold cross-validations. (E) Seven key genes screened by LASSO regression analysis in a

cross-validation of 10 fold.

subsequent analyses in WGCNA. No samples were eliminated

due to high heterogeneity (Supplementary Figure S1). A soft

threshold of β = 4 was chosen for the scale-free network, and

then the co-expression matrix was conducted (Figure 2A).

After module merging, three gene modules were obtained

(Figure 2B). Based on the Pearson correlation heat maps of

the interest phenotypes (dysferlinopathy) and modules, the

most attractive module was the MEskyblue module (cor =

0.83; p = 6e−8) as shown in Figure 2C. Furthermore, analyses

of the genes in the MEskyblue module and dysferlinopathy

clinical phenotypes showed a strong correlation (cor = 0.82;

p < 1e−200) (Figure 2D). Therefore, the MEskyblue module

was deemed as the dysferlinopathy-related module. A total

of 61 genes were defined as module genes affiliated with

dysferlinopathy for subsequent analysis based on |GS| >0.2 and

|MM| >0.8.

Recognition of DEGs in dysferlinopathy
and screening of key genes

After normalization of the GSE3307 dataset

(Supplementary Figure S2), 1579 DEGs (683 up-regulated

and 896 down-regulated genes) were extracted based on

the defined criteria. The DEGs are visualized in the heat

map (Figure 3A) and volcano plot (Figure 3B). Furthermore,

44 common genes were derived from the intersection of

61 dysferlinopathy-related module genes and 1,579 DEGs

(Figure 3C). The LASSO algorithm was then executed, and the

following seven key genes were identified: MVP, GRN, ERP29,

RNF128, NFYB, KPNA3 and PRKN (Figures 3D,E).

GO and KEGG enrichment analysis of
intersecting genes

In order to understand the biological pathways associated

with dysferlinopathy, 44 intersecting genes were analyzed using

enriched GO and KEGG pathways. In terms of the GO, these

genes were mainly relevant with intrinsic apoptotic signaling

pathways, wounding and wound healing process, and protein

degradation pathways (e.g., regulation of lysosome organization

and free ubiquitin chain polymerization) (Figure 4A). In terms

of the KEGG functional enrichment analysis, the gene set was
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significantly enriched in ubiquitin-mediated proteolysis, cGMP-

PKG signaling pathway, peroxisome proliferator-activated

receptors (PPAR) pathway, protein processing in endoplasmic

reticulum (ER) and so forth (Figure 4B).

Evaluation of key gene expression levels
and diagnostic value

The expression levels of MVP, GRN, ERP29, RNF128,

NFYB, KPNA3 and PRKN in GSE3307 and GSE109178 were

compared. In both datasets, MVP, GRN, and ERP29 showed

significantly higher expression levels, while RNF128, NFYB,

and KPNA3 had significantly lower expression levels in

dysferlinopathy than normal controls (Figures 5A,B). The

only gene with an expression level showing no statistically

significant difference between dysferlinopathy tissues and

controls in GSE109178 dataset was PRKN, so this gene

was excluded from the key gene list. To further validate

the identified key genes in vivo, muscle tissues were

extracted from dysferlinopathy patients and controls to

confirm whether the mRNA levels of the key genes in these

samples were consistent with the bioinformatics analysis.

Consistent with the two datasets, MVP, GRN, and ERP29

expression were significantly upregulated, and RNF128,

NFYB, and KPNA3 were significantly downregulated in

the dysferlinopathy patients compared with the controls

(Figure 5C). Furthermore, the six genes were validated in

other muscular disorders, including Limb-girdle muscular

dystrophy 2A (LGMD2A), facioscapulohumeral muscular

dystrophy (FSHD), dermatomyositis and polymyositis.

As with dysferlinopathy, the six genes were significantly

dysregulated in LGMD2A tissues compared to controls

(Supplementary Figure S3A). Intriguingly, only MVP was

statistically significant differences between FSHD muscles and

healthy controls (Supplementary Figure S3B). In polymyostis

and dermatomyositis, MVP and GRN expression levels were

significantly higher, while NFYB levels were significantly lower

(Supplementary Figures S3C,D). To evaluate the diagnostic

value of the six key genes, the area under the curve (AUC)

values were determined. The AUC values of all six key genes

in the GSE3307 dataset were > 0.95, showing their high

diagnostic value for dysferlinopathy (Figure 6A). Furthermore,

all six key genes had AUC values above 0.85 in the GSE109178

dataset, supporting their diagnostic value in dysferlinopathy

(Figure 6B). In the LGMD2A and FSHD datasets, all six genes

were diagnostically significant for LGMD2A, but MVP was the

only diagnostically significant gene for FSHD with an AUC

value of 0.808 (Supplementary Figures S4A,B). NFYB, GRN and

MVP were diagnostically significant for both dermatomyositis

and polymyositis in the dataset for inflammatory myopathy

(Supplementary Figures S4C,D).

FIGURE 4

Functional enrichment analysis results of the intersecting genes between the MEskyblue module and the DEGs. (A) Bubble diagram of the top 10

GO terms. (B) The top 10 KEGG pathways. The size of bubbles indicates number of enrichment genes, and the color indicates value.
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FIGURE 5

Expression validation of seven genes. (A) Expression of MVP, GRN, ERP29, RNF128, NFYB, KPNA3 and PRKN in dysferlinopathy (n = 10)

compared with controls (n = 18) in the GSE3307 dataset. (B) Expression of MVP, GRN, ERP29, RNF128, NFYB, KPNA3 and PRKN in

dysferlinopathy (n = 8) compared with controls (n = 6) in the GSE109178 dataset. PRKN was the only gene with an expression level not

statistically significant in the GSE109178 dataset. (C) Expression of MVP, GRN, ERP29, RNF128, NFYB, KPNA3 and PRKN in four dysferlinopathy

patients compared to four controls by qRT-PCR. A Student’s non-parametric t-test with a P-value of 0.05 was taken to compare the two groups.

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, non significance.

FIGURE 6

Diagnostic e�ciency of the seven key genes. (A) The ROC curves of the key genes in the GSE3307. (B) The ROC curves of the key genes in

the GSE109178.
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FIGURE 7

Gene set enrichment analysis. KEGG entries most positively and negatively linked to MVP (A), GRN (B), ERP29 (C), RNF128 (D), NFYB (E), and

KPNA3 (F).

Genomic enrichment analysis

Using native GSEA software, we administered gene set

enrichment analysis for each of the six key genes individually to

investigate their potential biological functions in dysferlinopathy

progression. Figure 7 had showed the KEGG pathways most

positively and negatively linked to the six genes. It revealed

that all the six genes were engaged in the ubiquitin-mediated

proteolysis pathway, and most of the genes were enriched in

pathogenic E-coli infection (Figures 7A–F).

Immune landscape in dysferlinopathy
and its correlation with key genes

Dysferlinopathy, which mimics polymyositis, shows

necrosis, regeneration and inflammatory cell infiltration along

with high MHC-I expression in muscle biopsy. Therefore, we

assessed the degree of immune cell infiltration in dysferlinopathy

compared with controls using ssGSEA. As shown in Figure 8A,

17 out of 28 immune cells illustrated higher infiltration in

the dysferlinopathy muscles, such as CD4T cells, CD8T

cells, natural killer T cells, regulatory T cells, type I T helper

cells, macrophage, activated dendritic cells (DC), neutrophils.

Analyzing of the 28 immune cells with six key genes, the

abundance of immune cell infiltration was positively correlated

with GRN,MVP, ERP29, but negatively correlated with RNF128,

NFYB, KPNA3 (Figure 8B).

Discussion

Dysferlinopathy is a group of autosomal recessive inherited

myopathies caused by mutations in the DYSF gene. Mutations

in the DYSF gene may cause either LGMD2B or a Miyoshi

myopathy phenotype. The exact pathogenesis of dysferlinopathy

is unclear, and no treatment is available yet. In this study,

using bioinformatics analysis, we identified the key genes and

important pathways associated with the disease, and uncovered

the immune infiltration microenvironment in dysferlinopathy.

Microarray technology application has allowed

bioinformatics researchers to identify key genes involved

in disease pathogenesis in an efficient and rapid manner,

providing a new avenue for diagnosis and treatment of diseases.

In this study, using GO and KEGG functional enrichment
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FIGURE 8

Immune infiltration analysis associated with dysferlinopathy. (A) A comparison of 28 types of immune cells between dysferlinopathy and

controls. (B) Infiltration levels of immune cells and six key genes in a heat map. Red indicates a strong positive correlation, whereas blue

indicates a strong negative correlation. *p< 0.05; **p< 0.01.
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analyses, it was found that the identified DEGs were largely

involved in ubiquitin-proteasome pathway (UPP),would

healing, PPAR signaling pathway and protein processing in ER.

GSEA functional enrichment results demonstrated all the six

key genes were involved in the ubiquitin-mediated proteolysis

pathway. These terms provide insight into the molecular

mechanisms of dysferlinopathy and may provide treatment

targets for the disease. In dysferlinopathy, UPP is important

(14, 15). Dysferlin depletion activates the inflammasome

pathway, which increases monocyte phagocytosis (16, 17).

Mutant dysferlin has been found to aggregate on the ER, and

can be degraded by the UPP and autophagy-lysosome system

(18). Muscle-specific ubiquitin E3 ligase RING-finger protein-1

(MuRF1) is found elevated in both mRNA and protein levels,

and the overall amount of ubiquitinated muscle proteins is

higher in dysferlinopathy (6, 19). Conversely, inhibition of

proteasome activation results in a trend toward increased

dysferlin and alleviates muscle inflammation (20), suggesting an

important role of UPP in dysferlinopathy. The best agreement

among these studies and the enrichment results indicate that the

UPP plays a key role in dysferlinopathy onset and progression,

and may act as a therapeutic target.

Using WGCNA and LASSO algorithms and in vivo

experiments, we have identified six key genes: MVP, GRN,

ERP29, RNF128, NFYB and KPNA3. Significant abnormality

in the expression levels of the six genes were revealed in

dysferlinopathy, withMVP, GRN and ERP29 genes significantly

upregulated, while RNF128, NFYB and KPNA3 significantly

downregulated. Endoplasmic reticulum protein 29 (ERP29) is

localized in the ER lumen and serves as a chaperone that

facilitates the transport of proteins from the ER to the Golgi

apparatus (21). It plays a key role in promoting protein

degradation and preventing protein aggregation by removing

misfolded proteins from the ER. Under stress conditions, ERP29

upregulates chaperones involved in stress response pathways

and promotes cell survival (22). When unfolded/misfolded

proteins are not eliminated and accumulate in the ER system,

they cause ER homeostasis to be out of balance, which

promotes apoptosis and inflammation in cells (14). There is a

strong possibility that ERP29 is upregulated in dysferlinopathy

as a compensatory mechanism. The ring finger protein 128

(RNF128) is a type I transmembrane protein containing a ring

zinc-finger motif and is an E3 ubiquitin ligase. By catalyzing

the formation of polyubiquitin chains linked to lysine 48

and lysine 63, it inhibits the transcription of cytokine genes.

Increasing RNF128 expression in T cells negatively affects IL-2

and IL-4 production, and induces anergic phenotypes (23).

Significantly low expression of RNF128 in dysferlinopathy may

lead to increased production of cytokines, and cause muscle

inflammation. Progranulin is encoded by the Granulin gene

(GRN) and is primarily present in the lysosome membrane.

As a key regulator of lysosome function, progranulin allows

for protein trafficking and lysosome acidification, and may

also affect wound healing, inflammation, and cell proliferation

(24, 25). A decrease in GRN expression induces neutrophil

migration and cytokine response in neurons. Numerous studies

have shown that down-regulation of GRN expression is

associated with inflammation in multiple neurodegenerative

diseases such as amyotrophic lateral sclerosis, frontotemporal

dementia, Alzheimer’s disease and Parkinson’s disease (26).

However, GRN expression is up-regulated in dysferlinopathy,

which strongly suggests that the lysosome pathway is over-

expressed, perhaps as a protective compensation mechanism.

Karyopherin alphas (KPNAs) transport proteins into and out

of the nucleus through the nuclear pore complex (27). In

Drosophila, KPNA3 is involved in transporting heat shock

transcription factors into the nucleus. When KPNA3 is knocked

down, heat shock protein does not enter the nucleus, causing

heat shock response to end (28). A downregulation of KPNA3

expression in dysferlinopathy may exacerbate the disease by

terminating the heat shock response. The major vault protein

(MVP) is a multi-subunit ribonucleoprotein structure that

may participate in nucleocytoplasmic transport. In a recent

review, Berger et al. explored the effects of MVP in multiple

intracellular transduction as well as immune defense and

inflammation caused by infectious disease (29). The protein

MVP is largely elevated in rheumatoid arthritis and other

inflammatory diseases (30). In the above mentioned studies,

ERP29, RNF128, GRN and KPNA3 are closely related to

protein-degradation pathways and protein processing in ER,

while MVP is associated with inflammation. Dysregulation of

these genes impairs misfolded protein degradation, induces

ER stress and muscle inflammation, and maybe contribute

to the progression of dysferlinopathy. As inflammation is

a secondary pathological change, anti-inflammatory therapies

with prednisone or celasterol cannot effectively address the

disease cause. Currently, it is unclear if NFYB contributes

to dysferlinopathy progression and more studies are needed.

Additionally, we examined the expression levels and diagnostic

values of the key genes involved in hereditary and inflammatory

myopathy. In LGMD2A tissues, the six key genes had similar

diagnostic significance to dysferlinopathy, but only MVP was

diagnostically significant in FSHD. There appears to be an

association between LGMD2A and dysferlinopathy, which

shares common pathogenic molecular mechanisms that are

strikingly different from those of FSHD. In inflammatory

myopathies, GRN, MVP and NFYB showed high diagnostic

value, while RNF128, ERP29 and KPNA3 showed poor

diagnostic value, indicating high inflammation activation but

little involvement of protein homeostasis.

Based on the above functional enrichment analysis and

the key genes, their biological function was mainly enriched

in protein degradation pathway, and dysregulation of these

genes resulted in inflammation activation. Due to the fact that

immune cell infiltration is a common pathogenic feature in

dysferlinopathy, we analyzed the immune infiltration landscape
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in dysferlinopathy using the ssGSEA algorithm for the first

time. Compared to normal controls, dysferlinopathy muscles

had significantly more T cells (including CD4T cell, CD8T

cell, natural killer T cell, regulatory T cell, type I T helper

cell), macrophages, and dendritic cells. The key genes also

significantly affected the infiltration of multiple immune cells.

In agreement with our results, previous studies have shown

that CD4 cells, macrophages, MHC-I and C5b-9 are positive

in immunohistochemically stained dysferlinopathy muscles (5).

Among dysferlin-deficient mice, Urao et al. reported that

macrophage activity was significantly correlated with disease

progression (31, 32). When B and T lymphocytes were removed

from dysferlinopathy animal models, muscle regeneration was

improved (33). These findings provided preliminary insight into

dysferlinopathy’s immune infiltration pattern, and confirmed

that disturbances in immune homeostasis are crucial to

dysferlinopathy progression.

However, our study has several limitations. First, the dataset

for analysis was obtained using oldmicroarray technology rather

than RNA sequencing. Secondly, we simply verified the results of

bioinformatics analysis in experimental studies, further studies

of these key genes and related pathways must be conducted to

confirm our findings.

In summary, based onWGCNA and LASSO, combined with

ssGSEA, six key genes (MVP, GRN, ERP29, RNF128, NFYB, and

KPNA3) involved in dysferlinopathy have been identified, and

their most important functions relate to protein degradation

pathways, which in turn influence immune cell infiltration in

dysferlinopathy. In a sense, the key genes are considered as

potential biomarkers or drug targets for dysferlinopathy.
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