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Collateral circulation results from specialized anastomotic channels which are

capable of providing oxygenated blood to regions with compromised blood

flow caused by arterial obstruction. The quality of collateral circulation has been

established as a key factor in determining the likelihood of a favorable clinical

outcome and goes a long way to determining the choice of a stroke care model.

Though many imaging and grading methods exist for quantifying collateral blood

flow, the actual grading is mostly done through manual inspection. This approach

is associated with a number of challenges. First, it is time-consuming. Second,

there is a high tendency for bias and inconsistency in the final grade assigned

to a patient depending on the experience level of the clinician. We present a

multi-stage deep learning approach to predict collateral flow grading in stroke

patients based on radiomic features extracted from MR perfusion data. First, we

formulate a region of interest detection task as a reinforcement learning problem

and train a deep learning network to automatically detect the occluded region

within the 3D MR perfusion volumes. Second, we extract radiomic features from

the obtained region of interest through local image descriptors and denoising

auto-encoders. Finally, we apply a convolutional neural network and other

machine learning classifiers to the extracted radiomic features to automatically

predict the collateral flow grading of the given patient volume as one of three

severity classes - no flow (0), moderate flow (1), and good flow (2). Results from

our experiments show an overall accuracy of 72% in the three-class prediction

task. With an inter-observer agreement of 16% and a maximum intra-observer

agreement of 74% in a similar experiment, our automated deep learning approach

demonstrates a performance comparable to expert grading, is faster than visual

inspection, and eliminates the problem of grading bias.

KEYWORDS

collateral flow, radiomics, perfusion, reinforcement learning, image descriptors,

angiography, auto-encoder, deep learning

1. Introduction

Collateral circulation results from specialized anastomotic channels which are present

in most tissues and capable of providing nutrient perfusion to regions with compromised

blood flow due to ischemic injuries caused by ischemic stroke, coronary atherosclerosis,

peripheral artery disease, and similar conditions or diseases (1). Collateral circulation
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helps to sustain blood flow in the ischaemic areas in acute,

subacute, or chronic phases after an ischaemic stroke or transient

ischaemic attack (2). The quality of collateral circulation has

been convincingly established as a key factor in determining the

likelihood of successful reperfusion and favorable clinical outcome

(3). It is also seen as one of themajor determinants of infarct growth

in the early time windows which is likely to have an impact on the

chosen stroke care model that is the decision to transport or treat

eligible patients immediately.

A high number of imaging methods exist to assess the structure

of the cerebral collateral circulation and several grading criteria

have been proposed to quantify the characteristics of collateral

blood flow. However, this grading is mostly done through visual

inspection of the acquired images which introduces two main

challenges.

First, there are biases and inconsistencies in the current grading

approaches: There is a high tendency of introducing bias in the final

grade assigned to a patient depending on the experience level of the

clinician. There are inconsistencies also in the grade assigned by a

particular clinician at different times for the same patient. These

inconsistencies are quantified at 16% interobserver agreement and

a maximum intraobserver agreement of 74% respectively in a

similar study by Ben Hassen et al. (4).

Second, grading is time-consuming and tedious: Aside the

problem of bias prediction, it also takes the clinician several

minutes to go through the patient images to first select the correct

image sequence, detect the region of collateral flow and then to be

able to assign a grading a period of time which otherwise could have

been invested in the treatment of the patient.

In this work, we analyze several machine learning and deep

learning strategies that aim toward automating the process of

collateral circulation grading.We present a set of solutions focusing

on two main aspects of the task at hand.

First, the region of interest needs to be identified. We automate

the extraction of the region of interest (ROI) from the patient

images using deep reinforcement learning (RL). This is necessary

for achieving a fully automated system that will require no human

interaction and save the clinician the time spent on performing

this task.

Finally, the region of interest needs to be processed and

classified. We consider various feature extraction schemes and

classifiers suitable for the task described above. This helps to

extract useful image features, both learned and hand-crafted,

which are relevant to the classification task. We predict digitally

subtracted angiography (DSA) based collateral flow grading from

MR perfusion images in this task. This saves the time required in

choosing the right DSA sequence from the multiple DSA sequences

acquired and helps achieve a fully automated system.

1.1. Prior work and open challenges

1.1.1. Imaging criteria for cerebral collateral
circulation

Imaging methods for assessing cerebral collateral flow can

be grouped under two main classification schemes, invasive vs.

non-invasive and structural vs. functional imaging. Structural

imaging methods provide information about the underlying

structure of the cerebral collateral circulation network. Some of

the commonly used structural imaging modalities are traditional

single-phase computed tomography angiography (CTA), time-of-

flight magnetic resonance angiography (TOF-MRA), and digitally

subtracted angiography (DSA), among others. Other imaging

modalities have been used in clinical practice and relevant research

areas in accessing the structure of the cerebral collateral circulation

are discussed in Liu et al. (2), McVerry et al. (5), Martinon et al.

(6). DSA is the gold standard for assessing the collateral flow,

however, due to the associated high cost and invasive nature, other

non-invasive methods like CTA and MRA are commonly used (2).

Functional imaging methods are used to assess the function

of the underlying cerebral collateral circulation. Single-photon

emission CT (SPECT), MR perfusion, and positron emission

tomography (PET) are examples of imaging methods that provide

functional information about the cerebral collateral flow. MR

perfusion imaging is often followed by a post-processing step

to extract parametric information. Very common parametric

information includes the time-to-peak (Tmax) time taken for the

blood flow to reach its peak (max) at a given region in the brain,

relative blood flow (rBF) volume of blood flowing through a given

brain tissue per unit of time, and relative blood volume (rBV)

volume of blood in a given brain tissue relative to an internal

control (e.g. normal white matter or an arterial input function).

Functional imaging is sometimes combinedwith structural imaging

either in a single scanning procedure or separate procedures and

can serve as complementing information in the decision making

process. Here, structural imaging is oftentimes used to map the

anatomy and probe tissue microstructure.

MRI perfusion and diffusion have evolved as key biomarkers

in determining collateralization of stroke patients, and a patient

stratification based on these markers has been proposed repeatedly

(7). At the same time, a qualitative CTA and DSA based grading

are the most common approaches for evaluating collateralization

(8–10).

1.1.2. Cerebral collateral flow grading
Cerebral collateral circulation plays an important role in

stabilizing cerebral blood flow when the normal blood circulation

system is compromised in cases of acute, subacute, or chronic

ischaemic stroke. The quality of the cerebral collateral circulation

system is one of the factors that determine the speed of infarct

growth and the outcome of stroke treatment and reperfusion

therapies. A poor collateral flow is associated with worse outcomes

and faster growth of infarcts while a good collateral flow is

associated with good outcomes and slower growth of infarcts in

acute stroke treatment (11). Due to the important role played

by cerebral collateral blood flow, various grading scales and their

association with risk factors and treatment outcomes have been

discussed extensively in literature.

Several grading systems have been proposed for assessing

the quality of the collateral circulation network. Among these

grading systems, the DSA based system proposed by the American

Society of Interventional and Therapeutic Neuroradiology/Society

of Interventional Radiology (ASITN/SIR) is the most widely
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accepted scheme. This grading system describes the collateral flow

as one of five levels of flow which are; absence of collaterals (0),

slow collaterals (1), rapid collaterals (2), partial collaterals (3),

and complete collaterals (4) to the periphery of the ischaemic site

(2, 12). In most studies that use the ASITN/SIR scheme, the grading

scale is merged into three levels—grades 0–1 (poor), 2 (moderate)

and 3–4 (good collateral) flow. CTA based systems also have several

grading schemes ranging from two (good, bad) to five (absent,

diminished >50%, <50%, equal, more) labels (12).

The relationship between pretreatment collateral grade and

vascular recanalization has been assessed for patients who received

endovascular therapy for acute cerebral ischemia from two

distinct study populations by Bang et al. (13). The study showed

that 14.1, 25.2, and 41.5% of patients with poor, good, and

excellent pretreatment collaterals respectively achieved complete

revascularization. Another study by Bang et al. (14) on the

relationship between MRI diffusion and perfusion lesion indices,

angiographic collateral grade, and infarct growth showed that

the greatest infarct growth occurred in patients with both

non-recanalization and poor collaterals. Mansour (15) assessed

collateral pathways in acute ischemic stroke using a new grading

scale (Mansour Scale) and correlated the findings with different

risk factors, clinical outcomes, and recanalization rates with

endovascular management. More research (13–17) has been

conducted into the relationship between the cerebral collateral

circulation, its grading, and the clinical outcome of the choice of

treatment of acute ischemic stroke, and they all confirm a positive

association between collateral flow and the success of the outcome.

Due to the crucial role played by collateral circulation, it is

a common practice in most clinical procedures to determine the

quality of a patient’s collateral as first-hand information toward

the choice of the treatment or care model. This grading is done

manually by inspecting patient scans which is time-consuming

and also introduces some level of bias in the final grade assigned

to a patient. Ben Hassen et al. (4) evaluated the inter-and

intraobserver agreement in angiographic leptomeningeal collateral

flow assessment on the ASITN/SIR scale and found an overall

interobserver agreement κ = 0.16 ± 6.5 × 10−3 among 19

observers with grades 0 and 1 being associated with the best results

of κ = 0.52 ± 0.001 and κ = 0.43 ± 0.004 respectively.

By merging the scales into two classes, poor collaterals (grade 0,

1, or 2), versus good collaterals (grade 3 or 4), the interobserver

agreement increased to κ = 0.27 ± 0.014. The same study

recorded maximum intraobserver agreements of κ = 0.74 ± 0.1

and κ = 0.79 ± 0.11 for the ASITN/SIR and dichotomized

scales respectively. McHugh (18) presented a study on interrater

reliability and the kappa statistic as a measure of agreement and

recommended a moderate interobserver agreement of 0.60 ≤ κ ≤

0.79 as a minimum requirement for medical data and study. These

results are evidence of the need to automate the collateral grading

process to achieve speed and consistency in the assigned grading.

Methods for automating the grading of collateral flow have

not yet been properly explored in literature. Kersten-Oertel et al.

(19) presented an automated technique to compute a collateral

circulation score based on differences seen in mean intensities

between left and right cerebral hemispheres in 4D angiography

images and found a good correlation between the computed

score and radiologist score (r2 = 0.71) and good separation

between good and intermediate/poor groups. Grunwald et al. (20)

used a machine learning approach to categorize the degree of

collateral flow in 98 patients who were eligible for mechanical

thrombectomy and generated an e-CTA collateral score (CTA-

CS) for each patient. The experiments showed that the e-CTA

generated improved the intraclass correlation coefficient between

three experienced neuroradiologists from 0.58 (0.46–0.67) to 0.77

(0.66–0.85, p = 0.003).

1.1.3. Reinforcement learning for medical imaging
Defining the region of interest (ROI) is often the first step in

most image-based radiomics pipelines. This is the case because

full patient scans often include artifacts and other information

which are irrelevant and can affect the final outcome of the study.

Therefore, most pipelines propose a manual localization of a ROI

as a preprocessing step. However, it is crucial to define the ROI

in an automated and reproducible fashion in other to achieve a

fully automated pipeline. We propose a reinforcement learning

approach for the localization of the region of interest due to

increased speed and lower training data requirements compared to

other supervised learning approaches.

Reinforcement learning (RL) has become one of the most active

research areas in machine learning and involves the training of

a machine learning agent to make a sequence of reward-based

decisions toward the achievement of a goal through interaction

with the environment. The idea of RL has been long applied

in the field of robotics for robot vision and navigation (21–23)

before the topic became very popular in the image processing

society. RL has been used in the general field of computer vision

mainly for object detection (24–26), image segmentation (27, 28),

and image enhancement (29–31). However, in medical imaging

RL is still in the research phase with very high potential. Netto

et al. (32) presented an overview of medical imaging applications

applying reinforcement learning with a detailed illustration of a use

case involving lung nodules classification which showed promising

results. Sahba et al. (27) implemented an RL based thresholding for

segmenting prostate in ultrasound images with results that showed

high potential for applying RL in medical image segmentation.

Alansary et al. (33) evaluated reinforcement learning agents for

anatomical landmark detection by comparing fixed and multi-scale

search strategies with hierarchical action steps in a coarse-to-fine

manner and achieved a performance better than state-of-the-art

supervised learning methods.

1.2. Main contributions

In this study, we employ parametric information (Tmax, rBF,

rBV) from MR perfusion images of patients with acute ischaemic

stroke and predict the three-level DSA based grading of these

patients based on this functional information. We hypothesize that

the rich information on blood flow visible from MRI perfusion

can be used to predict collateral flow in a similar manner to DSA.

Moreover, we argue that this approach, using 3D information, may

even offer a more reliable biomarker than the interpretation of

DSA images. As collateralization patterns are often unstable and
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may undergo significant changes in the course of minutes, a second

estimate of the activation of collateral flow using MRI—in addition

to the subsequent DSA—will offer better diagnostic information.

We explore machine learning and deep learning methods in

collateral flow grading. We apply deep reinforcement learning,

a variant of RL which combines the power of deep learning

and reinforcement learning, to detect a rigid-sized cube around

the occluded region in an acute ischemic stroke patient scan as

an initial step toward the prediction of cerebral collateral flow

grading. This step is necessary to automate the detection of the

occluded region which improves the accuracy of the prediction.

Reducing the time spent on this task and ensuring that the proposed

methodology is fully automated.

We provide experiments on different feature extraction

strategies including denoising autoencoder (DAE), histogram of

oriented gradient (HOG), and local binary pattern (LBP). The

extracted features are further utilized in a random forest (RF),

K-nearest neighbor (KNN), support vector machine (SVM), and

convolutional neural network (CNN) classifiers for the prediction

of the collateral flow grading. We provide detailed experimental

setup and results which will serve as a guide for further research

in this direction.

2. Methodology

In this section, we will discuss the details of the steps we

employed in predicting the collateral flow grading from MR

perfusion data. Figure 1 shows an overview of the main steps

involved in the classification process. The first step is the detection

of the region of interest (ROI) using reinforcement learning. This

step helps to narrow down the classification task to only the area

which has been occluded from normal blood flow. The second step

deals with extracting features from the ROI. Finally, we feed the

extracted features to a set of classifiers to obtain the collateral flow

grading for the given patient data.

2.1. Deep reinforcement learning for region
of interest detection

The idea of reinforcement learning includes an artificial agent

which is trained to interact with an environment through a

sequence of reward-based decisions toward a specific goal. At

every time step t, the agent takes into account its current state

s and performs an action a in a set of actions A and receives a

reward r which is a measure of how good or bad the action a

is toward the achievement of the set goal. The aim of the agent,

which is to find an optimal policy (set of states, actions, and

rewards) that maximizes the future reward, can be formulated as a

Markov Decision Process. Since Markov Decision Process involves

a large number of possible decision points which are normally not

fully observable, RL approximates the optimal decision function

by iteratively sampling from the set of policies through a process

known as Q-learning.

2.1.1. Q-learning
At time point t and state s, let π = ai

t+T
i=t be a policy that is a

sequence of actions needed by the agent to move from the current

state s to the target. Let Qt be a future discounted reward function

such that

Qt(s,π) =

t+T∑

i=t

γ i−trπ i, (1)

where rπ i is the reward associated with the action ai of policy π at

time t = i, γ ∈ [0, 1] is the future reward discounting factor, and

T is the number of steps needed to reach the target by the chosen

policy π . At any time step t the optimal policy π∗ is the policy that

maximizes the expected value of Qt . This can be represented by an

action-value function Q∗
t (s) defined by

π∗ = Q∗
t (s) = max

π
E[Qt(s,π)] (2)

The optimal value function Q∗
t (s) obeys the Bellman equation,

stating that if the optimal value Q∗
t+1(s) of the next state is known

for all possible policies π , then the optimal behavior is to select the

policy π∗ that maximizes the expected value of rπ t + Qt+1(s,π)

[which follows from setting i = t in Equation (1)]. The action-value

function can therefore be estimated recursively as

Q∗
t (s) = max

π
E[rπ t + Qt+1(s,π)] (3)

If the problem space is small enough then the set of policies

and state can be fully observed and Equation (3) can be used to

determine the optimal policy toward the target. However, in most

cases, the problem space is too complex to explore, and hence

evaluating the future reward for all possible policies is not feasible.

Q∗
t (s) is therefore approximated by a non-linear deep network

Q∗(s, θ) with a set of parameters θ resulting in what is known as

deep Q-learning (34).

2.1.2. Agent state, action definition, and reward
function

Given a 3-D scan as the agent’s environment, a state s is

represented by (sx, sy, sz) which is the top-left corner of a (64 ×

64×64) cube contained in the 3-D scan. We adopt an agent history

approach which involves feeding the last four states visited by the

agent to the network to prevent the agent from getting stuck in a

loop. Since we have a fixed-sized cube as a state our agent’s set of six

actions {mu,md,ml,mr ,mf ,mb} is made up of only movements up,

down, left, right, forward, and backward respectively which enables

the agent to visit all possible locations within the volume. The

agent’s reward for taking an action a is a function of the intersection

over union (IoU) of the target state s∗ and the state before (sab), and

after (saa) taking the action. This is given by

Ra(saa, sab) = sign[IoU(saa, s
∗)− IoU(sab, s

∗)] (4)

where sign is the sign function that returns −1 for all values less

than 0 and 1 otherwise. This leads to a binary reward (r ∈ {−1, 1})

scheme which represents good and bad decisions respectively.

During the training stage, the agent search sequence is terminated

when the IoU of the current agent’s state and the target state is
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FIGURE 1

An overview of the steps involved in predicting collateral flow grading from MR perfusion parametric data. The first step involves a region of interest

detection using reinforcement learning, followed by histogram of gradient (HOG), local binary pattern (LBP), and denoising autoencoder (DEA)

feature extraction schemes and then the classification step which uses random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM),

and convolutional neural network (CNN) classifiers.

greater than or equal to a predefined threshold τ . At test time

the agent is terminated when a sequence of decisions leads to an

oscillation [as proposed by Alansary et al. (33)], that is when the

agent visits one state back and forth for a period of time.

Experiments by Alansary et al. (33) and Navarro et al. (35)

show that deep reinforcement learning has superior performance

in object detection as compared to classical supervised learning,

especially in images with a noisy background. RL agents also

require lesser training data as compared to other supervised

learning methods like CNN. These proven advantages make deep

reinforcement learning the right choice for our limited and

noisy data.

2.2. Feature extraction and classification

Feature extraction methods are used in many machine learning

tasks to either reduce the dimension of the problem or to extract

information from the raw input which would otherwise not be

easily extracted by the underlying classifier. In this work, we

extract two main classes of features—learned features through a

denoising auto-encoder (DAE), and local image descriptors made

up of histogram of oriented gradients (HOG) and local binary

pattern (LBP).

2.2.1. Denoising auto-encoder
An auto-encoder is an unsupervised deep learningmethod used

for dimension reduction, feature extraction, image reconstruction

or denoising and is sometimes also used as a pre-training strategy

in supervised learning networks. An auto-encoder is made up of

two parts: an encoder 8 :X → F which maps an image x ∈ X to

fx ∈ F in the features domain and a decoder 9 :F → X which

maps a feature set f ∈ F to xf ∈ X. The full auto-encoder is

therefore a composite function of the form 9 ◦ 8 :X → X . Let

ŷ = 9(8(x)) for a given input image x ∈ X , then the learning

process of auto-encoder involves finding a pair of {8,9} such that

ŷi = xi for all xi ∈ X . The encoder 8 then becomes the feature

extractor which is used for extracting the needed features.

If the function 8 is invertible, then the learning process can

lead to a trivial solution by just choosing 9 to be the inverse of

8, and 9 ◦ 8 becomes an identity function leading to what is

known as identity-function risk. To prevent this, the input image

x is first corrupted by adding noise before feeding it to 8 leading to

a denoising auto-encoder. We therefore have

ŷ = 9(8(x̃)), x̃ = ϒ(x) (5)

where ϒ is the random image corruption function. We

approximate the encoder and decoder by deep CNNs E(x, θe)

and D(f , θd) parameterized by θe and θd; respectively. Training is

done through back-propagating the Mean Squared Error (MSE) of

the original image x and the reconstructed image ŷ given by

L =
1

N

N∑

i=1

(̂yi − xi)
2 (6)

where N is the number of images in the training set or

training batch. We adopt the V-Net architecture proposed by

Milletari et al. (36) and simplify it by removing the fine-grained

feature forwarding, and reducing the depth of the network due

to limitations on the amount of training data available. The

downsampling layers of the VNET architecture represent the

encoding part [E(x, θe)] of the DAE and the upsampling layers

represent the decoding part [D(f , θd)] of the DAE. Figure 2 shows

an overview of the simplified architecture used for extracting the

DAE features.
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FIGURE 2

The network architecture used for extracting the DAE features. The downsampling layer is a convolution with a stride of (2× 2× 2) which

downsamples the input volume to half of the size on every axes. The upsampling layer is a transposed convolution with a stride of (2× 2× 2) which

doubles the size of the input on every axes.

2.2.2. Local image descriptors and classifiers
We consider two types of local image descriptors - histograms

of oriented gradients (HOG) and a local binary pattern (LBP).

Given a volume X, we extract the LBP encoding of each voxel by

thresholding its 3×3×3 neighborhood by the intensity value p∗ of

the center voxel which results in 26 long bits b0, b1, b2, ..., b25 where

bi = {1, if pi ≥ p∗, 0 otherwise} and pi is the intensity value of the

ith neighbor. We then concatenate the binary encoding to a single

binary number b0b1b2...b25 and then into a decimal value which

results in 225 possible binary codes. Details of the implementation

until this point can be found in Heikklä and Pietikäinen (37). We

group the codes into two main classes—uniform codes which have

at most two binary transitions and non-uniform codes which have

more than two binary transitions. A binary transition is a switch

from 0 to 1 or vice versa. For example the codes 0000, 000111,

011100, and 110110 have zero, one, two, and three transitions

respectively. To handle noisy data and to reduce the feature space,

we group all the non-uniform codes into one class and add it to the

uniform codes resulting in 927 codes instead of 225 . Finally, the

histogram distribution of the individual codes is extracted as the

LBP feature representation for the volume X.

We also explore the HOG feature extractor based on the

method proposed in Klas̈er et al. (38). Given a volume X, we

quantize gradient orientations over an icosahedron and merge

opposite directions in one bin resulting in 10 gradient orientations.

The gradient for each voxel xi ∈ X is obtained by convolving the

5×5×5 neighborhood of the voxel by gradient filters kx , ky , and kz
of the same size, giving us a gradient vector−→x i ∈ R

3. The gradient

filters are zero everywhere except for the center columns along the

respective axes kx(i, 3, 3) = ky(3, i, 3) = kz(3, 3, i) = [1, 0,−2, 0, 1]

for i ∈ {1, 2, ..., 5}. The gradient vectors −→x i are then projected

to the gradient orientations and a histogram representation of

these orientations are obtained and used as the HOG feature

representation of the volume X.

We run experiments with four machine learning classifiers

on each of the features extracted. We implement Convolutional

Neural Network (CNN), Random Forest (RF), Support Vector

Machine (SVM), and K-Nearest Neighbor (KNN) classifiers. Our

CNN classifier in Figure 3 has four convolutional layers, aimed at

extracting local image features, followed by two fully connected

layers and a sigmoid layer for classification. Each layer is followed

by a non-linear hyperbolic tangent (tanh) activation function. For

classification based on theHOG, LBP, andDEA features, we remove

the convolutional layers and feed the features directly to the fully

connected layers and then the sigmoid layer for the classification.

For the RF, SVM, and KNN classifiers we use the implementation

of these classifiers from the Scikit-Learn library (39) in python.

3. Experiments and results

3.1. Patient population and image data

We test our proposed methods on parametric volumes

extracted from MR perfusion data from 183 patients with acute

ischemic stroke. Details of the image acquisition and preparation

are already published by Pinto et al. (40). Our dataset is made up

of three parametric information—Tmax volumes which refer to the

time taken for the blood flow to reach its peak, relative blood flow

(rBF) volumes which refer to the volume of blood passing through a

given brain tissue per unit of time, and relative blood volume (rBV)

defined as the volume of blood in a given brain tissue relative to

an internal control (e.g., normal white matter or an arterial input

function). Each volume has a resolution of (0.9, 0.9, and 6.5 mm)
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FIGURE 3

The CNN architecture used in the classification task. Convolutional layers are made up of (5× 5× 5) kernels with a stride of (2× 2× 2) which reduces

the volume by half of the input size on each layer. The first two layers extract 2 feature cubes and the last two layers extract 4 feature cubes each.

The fully connected layers have 64 and 32 hidden nodes respectively and the convolutional and fully connected layers are followed by a non-linear

hyperbolic tangent (tanh) activation function.

and a dimension of (256, 256, and 19) voxels on the sagittal, coronal

and axial planes respectively. Ground truth labels are obtained from

a trained neuroradiologist, with over ten years of experience, who

manually investigates the DSA slides of the associated patient and

assigns one of three labels (0-poor, 1-medium, 2-good) to this

patient. We use these labels for a 3-class prediction experiment

and we also experiment on a risk-stratified nested test where we

first predict good - (2) against not good (0, 1) collaterals and then

separate the not good class into poor (0) andmedium (1) collaterals

in a cascaded approach.

3.2. Preprocessing

Our image preprocessing involves two main tasks. First, we

make our datasets isotropic by applying a B-spline interpolation to

the axial axis since the other two axes have the same spacing leading

to volume with a resolution of 0.9 mm on each plane and a new

dimension of (256, 256, and 127). This is followed by an extraction

of the brain region from the skull using the brain extraction tool

(BET) from the ANTS library. The brain extraction is carried out

on the Tmax volumes and the resulting mask is then applied to the

rBF and rBV volumes.

3.3. Region of interest localization

After the preprocessing step we extract the occluded regions

as the region of interest (ROI) using the reinforcement learning

architecture described in Section 2.1. We adopt the network

architecture from Alansary et al. (33) with modifications proposed

in Navarro et al. (35). A stopping criterion of τ = 0.85 is used

during training—that is, an intersection over union (IoU) value

greater than or equal to 0.85 implies that the region of interest is

detected. We perform the ROI detection task on the Tmax volumes

since the occluded regions are easier to detect in these volumes. The

TABLE 1 Quantitative results from the region of interest detection task.

Type Class Mean Std Max Min

IoU 0 0.49 0.22 0.79 0.08

1 0.52 0.14 0.81 0.09

2 0.42 0.21 0.81 0.04

Center points

displacement (in

voxels)

0 20 13 51 5

1 17 9 52 4

2 23 14 63 5

IoU refers to the intersection over union ratio between the prediction and the ground truth.

Center point displacement is the euclidean distance between the predicted center point and

the ground truth center point.

resulting cube region is then applied on the rBF and rBV volumes

to extract the corresponding cubes in these volumes as well. For

each volume, we select 20 starting cubes of size (64 × 64 × 64)

at random and run the agent till the stopping criterion is reached.

We then aggregate the results from the 20 different runs to get the

prediction of the final ROI. After getting the region we extract the

mirror of the ROI (ROI+M) by reflecting the ROI on the opposite

side of the brain and using it as an additional feature. This results

in 6 cubes per patient (i.e., two volumes each from Tmax , rBF, and

rBV volumes). Qualitative and quantitative results from the region

of interest extraction can be found in Table 1 and Figures 4, 5. From

the box plots in Figure 5, it is evident that the region of interest

detection was more successful in the poor collateral flow classes

(class 0 and 1) than in the good collateral flow class. This can be

explained by the fact that in cases of good collateral flow, there is a

uniform distribution of the Tmax value within the occluded region

and its neighborhood making it hard for the RL agent to detect

the ROI. From Figure 4 we observe that in most cases the ground

truth does not cover the total occluded region [e.g., column (b)] and

hence the predicted ROI, though does not completely overlap the

ground truth, still contains other parts of the occluded region which
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FIGURE 4

Qualitative results from the ROI detection task. The top row is the axial view of the ground truth (in red) and the prediction (in green). The bottom

row is a 3-D visualization of the ground truth cube (in red), the predicted cube (in green), and the intersection between the two (in blue). Column (A)

corresponds to the worst prediction in our test set while column (C) refers to the best result in terms of IoU. In column (B), we can observe that

though the overlap is not perfect the prediction still contains some part of the occluded region which is not in the ground truth. This implies that

though we have poor scores we still have good ROI detection which can be used for the classification task.

FIGURE 5

Box plots of results from ROI detection task. Left is the intersection over union (IoU) ratio between the prediction and the ground truth over the three

classes. Right is the euclidean distance between the predicted center point and the ground truth center point. From the distributions, it is clear that it

is easy to detect the ROI in the poor collateral flow class (class 0) compared to the good collateral flow class (class 2). This can be explained by the

fact that in good collateral flow cases Tmax shows uniform values in the whole volume.
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FIGURE 6

Sample of extracted features using Local Binary Pattern (LBP) on the left and Histogram of Oriented Gradients (HOG) on the right. Bar heights from

LBP features represent the frequency of a given pattern and the position on the x-axis is the decimal representation of the binary pattern. Arrow

directions in HOG features are the gradient vectors and the length of the arrows represents the frequency of the given gradient. The LBP features

show a uniform distribution of the extracted patterns with no dominant pattern. The HOG features on the other hand show evidence of high

gradients in the extracted region of interest.

TABLE 2 Results from preliminary experiments on collateral flow grading.

Type Method RAW ROI ROI+M DAE HOG LBP

Three classes CNN+MLP 0.51(±0.04) 0.63(±0.06) 0.65(±0.03) 0.50(±0.07) 0.38(±0.13) 0.25(±0.14)

RF 0.51(±0.02) 0.65(±0.04) 0.67(±0.05) 0.66(±0.04) 0.69(±0.02) 0.60(±0.05)

KNN 0.48(±0.10) 0.54(±0.02) 0.58(±0.05) 0.55(±0.06) 0.59(±0.02) 0.43(±0.04)

SVM 0.56(±0.04) 0.66(±0.05) 0.70(± 0.03) 0.70(±0.04) 0.53(±0.02) 0.25(±0.15)

Cascaded (two

step)

CNN+MLP 0.55(±0.01) 0.72(± 0.05) 0.70(±0.04) 0.66(±0.05) 0.54(±0.02) 0.21(±0.13)

RF 0.47(±0.07) 0.67(±0.03) 0.64(±0.03) 0.65(±0.04) 0.70(±0.03) 0.56(±0.07)

KNN 0.44(±0.04) 0.55(±0.06) 0.56(±0.07) 0.52(±0.08) 0.60(±0.05) 0.48(±0.08)

SVM 0.38(±0.02) 0.51(±0.04) 0.46(±0.04) 0.51(±0.04) 0.46(±0.04) 0.10(±0.00)

RAW features refer to the full-sized three parametric volumes (Tmax , rBF, and rBV) after skullstripping. ROI refers to the corresponding cubes extracted from the parametric volumes based on

the manually annotated ROI and ROI+M is the ROI combined with its mirror cube on the opposite side of the brain. Other features (DEA, HOG, and LBP) are all extracted from the ROI cubes.

Scores represent mean accuracy over the 5-fold cross-validation experiments with their corresponding standard deviation in parenthesis.

Values in bold refer to the feature-classifier combination with the highest accuracy under each experiment type.

is not captured in the ground truth and it is therefore sufficiently

accurate for the classification task.

3.4. Classification

3.4.1. Feature representations
In total three sets of features (DAE, HOG, and LBP) are

extracted in addition to the actual extracted cube (ROI) and its

mirror cube (ROI+M). We learn features automatically through

an unsupervised denoising auto-encoder. The network takes the

extracted ROI cubes from the Tmax, rBV, and rBF volumes as three

input channels and produces a single channel feature set of size

(8 × 8 × 8). We normalize the cubes individually into the range

[0, 1] before feeding them to the network.

For HOG features we extract 10 features each for the three

parametric volumes and concatenate them into a vector of length 30

for the classification task. Figure 6 shows a sample of the extracted

HOG features for a patient for the three input channels. Finally,

LBP features are extracted using the method described in Section

2.2. Here we combine all the three channels and run the histogram

over the three channels which results in a 927 feature vector as

explained in Section 2.2. Figure 6 shows a sample of the extracted

LBP features from our dataset.

3.4.2. Classifier training
We handle the collateral flow classification through two main

approaches—a three-class multi-label classification task where we

predict three labels in one step, and a two-step cascaded approach

where we predict a binary label of classes (0, 1) against 2 in the

first step and separate the class 0 from 1 in the second step.

We implement our CNN architecture using the Keras library

(41) in python with TensorFlow as the backend. Random forest,

support vector machine, and K-nearest neighbor classifiers were
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implemented using the scikit-learn library (39) in python. We set

up our experiments as follows:

CNN classifier: For the CNN classifier, we use a weighted

categorical cross-entropy with a weight of 1
|k|

for each class k in

the training set. A stochastic gradient descent optimizer with a

learning rate of 0.001, decay of 1e−6, and momentum of 0.9 is used

to fine-tune the network parameters at 20 epochs.

K-Nearest neighbor classifier: We conduct preliminary a

experiment with a grid search to know which parameters will work

best. For our final experiment, we use k = 3 neighbors with

uniform weights, a leaf size of 30, and the Minkowski metric.

Random forest classifier: After the initial grid search

experiment, we implement the classifier with 200 estimators, and

the Gini impurity function is used to measure the quality of a split.

Support vector machine classifier: We use a regularization

parameter C = 10, a third-degree polynomial kernel, a balanced

class weight, and a tolerance of 1e−3 for the stopping criterion.

3.4.3. Classification results
We test different combinations of the feature sets extracted in

the previous experiments and classifiers discussed in a preliminary

experiment and present the results in Table 2. Due to limitations in

the size of the dataset, we adopt a 5-fold cross-validation approach

in a preliminary experiment instead of a training-validation-test

splitting approach and report the average scores over the accuracy

in the individual validations. In the preliminary experiments

(results in Table 2), we use the manually annotated ROI and not

the ROI predicted from the proposed reinforcement learning. We

later, in a follow-up experiment, compare the performance of the

proposed CNN on manually annotated ROI and the predicted ROI

(results in Table 3).

The results in Table 2 show that the region of interest extraction

step helps improve the results in all classification methods. This

can be verified by comparing the performance from the full image

(RAW column) with the performance of the region of interest (ROI

column) in Table 2. Also by adding the mirror of the occluded

region to the extracted ROI (ROI+M) we achieve improved results

in most of the classifiers with performance falling in classifiers

like KNN and SVM due to the increase in the dimension of data

introduced by the mirror of the ROI. The cascaded method shows

higher accuracy in almost all the classifier-feature combinations

when compared to the direct three-class prediction. This can be

explained by the distribution of classes in the dataset. That is,

for the cascaded approach we have fairly balanced data when we

combine poor andmoderate flow against good collateral flowwhich

is not the case with the direct three-class multi-label prediction

approach. It, therefore, suggests that in cases where we have highly

imbalanced class distributions a multi-label classification might

perform poorly. The overall performance of CNN is better than

the other machine learning classifiers and can be explained by

the fact that the convolutional layers of the CNN architecture

extract features while paying attention to the class of the input

data. This makes the feature extraction process more efficient than

the other feature extraction schemes which have no knowledge of

the underlying label of the input data at the time of extracting the

features. Again CNN with only ROI data performs slightly better

TABLE 3 Results from the experiment on collateral flow grading using

only ROI data on our proposed cascaded CNN.

Input data Binary Three classes

Manual ROI 0.84 0.74

Automated ROI 0.80 0.72

Manual ROI refers to the ground truth ROI and automated ROI refers to the predicted ROI

from our proposed Reinforcement Learning approach. Binary refers to the result from the first

binary classification (i.e., {0,1} vs. 2) and three classes is the three-class classification based on

the cascaded networks.

than with the mirror of the ROI (72 vs. 70% in Table 2) and this can

also be explained by the fact that the CNN used in our experiments

is fairly shallow and hence could not handle the additional feature

dimensions introduced by the mirrored images.

Based on the results of the preliminary experiment, we further

probe into the training of the proposed CNN classifier with the

ROI data. In this experiment, we split the data into training and

testing sets. The test set is made up of 50 volumes randomly selected

with reference to the ratio of class count in the entire dataset. We

make use of both the manually annotated ROI and the automated

ROI from our proposed Reinforcement Learning approach during

training. We finally evaluate the trained models on the automated

ROI and compare it with the same network trained and evaluated

solely on the manually annotated ROI data. Table 3 shows the result

of this experiment.

The results in Table 3 from our follow-up experiment show that

the automated ROI from the proposed Reinforcement Learning

approach is comparable to the manually detected ROI in terms of

predicting collateral flow (2% drop in accuracy which represents

one out of the 50 patients in the test set). This is crucial in

automating the whole collateral flow prediction workflow in a

clinical setting.

4. Summary and conclusion

In this work, we present a deep learning approach toward

grading collateral flow in ischemic stroke patients based on

parametric information extracted from MR perfusion data. We

start by extracting regions of interest using deep reinforcement

learning. We then learn denoising auto-encoder features and

modern implementation of 3-D HOG and LBP features. We

proceed to the actual classification task using a combination of the

extracted features and CNN, random forest, K-nearest neighbor,

and support vector machine classifiers.

Our experiments show that the rich information on blood

flow visible from MRI perfusion can be used to predict collateral

flow in a similar manner to DSA images which are invasive in

nature. Region of interest detection with reinforcement learning

is successful to an acceptable level and can be used as a guide to

estimate the region in the brain which requires more attention.

It is evident that high class imbalance can be a major challenge

in the collateral flow grading task and many similar works. We

however show that for datasets with high class imbalance, a two-

step cascaded classification approach performs better than a one-

time multi-label classification method. It is also evident from our

results that a direct CNN classifier is able to extract relevant features
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from the region of interest and has an advantage over classical

machine learning classifiers like RF, KNN, and SVM that depend

on handcrafted features like HOG and LBP.

Collateral flow grading is an essential clinical procedure in

the treatment of ischemic stroke patients. We have presented

a framework for automating the process in clinical setup and

have achieved promising results given our limited dataset. For

the proposed framework to be clinically useful there is the need

for further tests with possibly more data from multiple stroke

centers. The grading can also be customized for specific patient

groups for example providing information about age group,

gender, and other biographical and historical information of

patients as an additional feature can help improve the result of

the framework.
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