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randomized, single-blind
controlled study
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and Qi Fang1*

1Department of Neurology, The First A�liated Hospital of Suzhou University, Suzhou, Liaoning, China,
2Department of Neurology, Hubei Provincial Third People’s Hospital, Zhongshan Hospital, Wuhan, Hubei,

China

Objective: To investigate the safety and e�cacy of selective intraarterial hypothermia

combined with mechanical thrombectomy in the treatment of acute cerebral

infarction based on microcatheter technology.

Methods: A total of 142 patients with anterior circulation large vessel occlusion

were randomly assigned to the hypothermic treatment group (test group) and the

conventional treatment group (control group). National Institutes of Health Stroke

Scale (NIHSS) scores, postoperative infarct volume, the 90-day good prognosis

rate (modified Rankin Scale (mRS) score ≤2 points), and the mortality rate of the

two groups were compared and analyzed. Blood specimens were collected from

patients before and after treatment. Serum levels of superoxide dismutase (SOD),

malondialdehyde (MDA), interleukin-6 (IL-6), IL-10, and RNA-binding motif protein 3

(RBM3) were measured.

Results: The 7-day postoperative cerebral infarct volume [(63.7 ± 22.1) ml vs. (88.5

± 20.8) ml] and NIHSS scores at postoperative Days 1, 7, and 14 [(6.8 ± 3.8) points

vs. (8.2 ± 3.5) points; (2.6 ± 1.6) points vs. (4.0 ± 1.8) points; (2.0 ± 1.2) points vs.

(3.5 ± 2.1) points] in the test group were significantly lower than those in the control

group. The good prognosis rate at 90 days postoperatively (54.9 vs. 35.2%, P = 0.018)

was significantly higher in the test group than in the control group. The 90-day

mortality ratewas not statistically significant (7.0 vs. 8.5%, P= 0.754). Immediately after

surgery and 1 day after surgery, SOD, IL-10, and RBM3 levels in the test group were

relatively higher than those in the control group, and the di�erences were statistically

significant. Immediately after surgery and 1 day after surgery, MDA and IL-6 levels in

the test group were relatively reduced compared with those in the control group, and

the di�erences were statistically significant (P < 0.05). In the test group, RBM3 was

positively correlated with SOD and IL-10.

Conclusion: Mechanical thrombectomy combined with intraarterial cold saline

perfusion is a safe and e�ectivemeasure for the treatment of acute cerebral infarction.

Postoperative NIHSS scores and infarct volumes were significantly improved with this

strategy compared with simple mechanical thrombectomy, and the 90-day good

prognosis rate was improved. The mechanism by which this treatment exerts its

cerebral protective e�ect may be by inhibiting the transformation of the ischaemic

penumbra of the infarct core area, scavenging some oxygen free radicals, reducing
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inflammatory injury to cells after acute infarction and ischaemia–reperfusion, and

promoting RBM3 production in cells.

KEYWORDS

infarction, endovascular therapy, hypothermia, controlled studies, oxidative stress,

inflammatory response

Introduction

The results of several large randomized controlled clinical
studies published in 2015 showed that stroke patients with anterior
circulation large vessel occlusion should receive timely vascular
recanalization therapy (1–5). Due to the rapid development of
endovascular interventional therapy, a vascular recanalization rate
of 66–94% can be achieved. However, only 46% of patients
undergoing endovascular treatment have a good prognosis after
90 days, and ∼15% of patients eventually die (6). Therefore, on
the basis of intravascular interventional therapy to achieve vascular
recanalization, we urgently need new ancillary therapeutic strategies
to improve the prognosis of AIS patient. As early as 1987, Busto et al.
found that reducing the brain temperature by only a few degrees
during ischaemia can produce a significant neuroprotective effect
(7). In recent years, therapeutic hypothermia has been considered
the most effective neuroprotective strategy. Many clinical studies of
acute cerebral infarction have also shown that mild hypothermia
(33–35◦C) treatment can increase the tolerance of brain cells to
ischemic injury, and after vascular recanalization, hypothermia
can continue to play a protective role in neurological function
(8, 9). However, although traditional therapeutic hypothermia
has been demonstrated to be effective for ischaemic stroke in
animal experiments, its application in clinical practice has resulted
in a series of complications, especially pneumonia. Therefore,
therapeutic hypothermia is not recommended as a routine treatment
method in current clinical guidelines for acute stroke (10–12).
At present, a novel hypothermia strategy has emerged; that is,
selective brain hypothermia that does not need to reduce core
body temperature. Thus, in theory, many serious adverse effects
caused by systemic hypothermia can be avoided. Recently, Chen and
Wu successively published studies confirming that short-duration
injecting cold saline into the microcatheter to treat acute cerebral
infarction during mechanical thrombectomy is feasible and safe
(13, 14). However, randomized control trials (RCTs) investigating
the safety and efficacy of selective intraarterial hypothermia
combined with mechanical thrombectomy based on microcatheter
technology in the treatment of acute cerebral infarction are
currently lacking.

Cold-induced proteins, also known as cold shock proteins, are
associated with the neuroprotective effect of hypothermia (15, 16).
Hypothermia inhibits cell metabolism and most protein synthesis
in the body, but promotes cold shock protein synthesis (17–19).
Previous basic studies have shown that cold-induced RNA-binding
motif protein 3 (RBM3) plays a key role in organ protection during
hypothermia treatment (16, 20, 21). To date, many data on RBM3
have been obtained in cell culture or animal models. RBM3 can be
detected and regulated in human neurons in vitro, but few studies are
available on the detection and regulation of RBM3 in patients’ blood.
At the same time, although therapeutic hypothermia is considered to

have considerable potential in the treatment of ischaemic stroke, the
specific role of RBM3 in treatment is still unclear.

Oxidative stress is an important mechanism of ischaemic
stroke cell injury (22, 23). In the acute phase of ischaemia,
mitochondrial dysfunction and increased production of reactive
oxygen species (ROS) occur (24). ROS can oxidize unsaturated
fatty acids on cell membranes, and the final product of the
reaction is malondialdehyde (MDA) (25, 26). Superoxide dismutase
(SOD) is an important antioxidant enzyme in the body and
an important free radical scavenger. MDA and SOD levels
can indirectly reflect the body’s oxidative and antioxidative
abilities (27). The oxidative stress response also leads to the
increased release of proinflammatory cytokines (28). The main
proinflammatory cytokines include tumor necrosis factor-α (TNF-
α), interleukin (IL)-1β , IL-6, and chemokines. Anti-inflammatory
factors such as IL-10 and transforming growth factor (TGF) -β have
neuroprotective effects.

Therefore, based on the above research background, we
conducted a single-center, prospective, randomized, single-blind
controlled study to investigate the safety and efficacy of selective
intraarterial cooling combined with mechanical thrombectomy in
the treatment of acute cerebral infarction based on microcatheter
technology. At the same time, MDA, SOD, IL-6, IL-10, and RBM3
levels in the blood of patients were measured and compared.

Methods

Study design and research subjects

This study used a single-center, randomized, single-blind,
controlled study. Previous studies has shown that the rates of
90-day functional independence (mRS scores of 0–2) in patients
selected for mechanical thrombectomy by CTP are 41.3–45%. Wu
et al. conducted a prospective non-randomized cohort study of
113 consecutive patients to investigate the safety and efficacy of a
short-duration IA-SCI combined with MT in patients with large
vessel occlusion-induced acute ischemic stroke. They found that an
aOR of a favorable outcome (mRS, 0–2) was 1.9. The Wu study’s
hypothermia therapy lasted 15min. According to preliminary studies,
the advantages of hypothermia treatment will increase with longer
time. By improving the mode of hypothermia, the duration of
hypothermia in our study was extended to 35min. Thus, better
therapeutic results can be expected in our study. The estimated odds
ratio (OR) in our study was 2.8. The sample size was calculated based
on PASS software 11.0. The test level was set to α = 0.05, the power
level 1-β was set to 80%, and the intergroup ratio was predicted to be
1:1. Considering the possibility of loss to follow-up, the calculation
result was that at least 62 patients needed for each group, with a total
of at least 124 patients. Subjects provided written informed consent
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to participate in the study. This study was approved by the Medical
Ethics Committee of the hospital.

The inclusion criteria were as follows: (1) age >18 years; (2)
within 24 h from onset to randomization, although the DAWN or
DEFUSE 3 study criteria were used when the this time exceeded 6–
24 h. (3) an NIHSS score ≥6; (4) cerebral hemorrhage excluded by
cranial CT; (5) a preonset modified Rankin Scale (mRS) score≤1; (6)
stroke with anterior circulation large vascular occlusion confirmed
by CT angiography (CTA)/digital subtraction angiography (DSA);
(note: the anterior large vascular circulation was defined as the M1
and M2 segments of the internal carotid artery (ICA) and the middle
cerebral artery (MCA), including the extracranial and intracranial
segments); and (7) signed written informed consent forms.

Exclusion criteria: (1) genetic or acquired haemorrhagic
constitution, anticoagulant factor deficiency, or oral anticoagulant
drug use, and an international normalized ratio (INR)>3; platelet
count <40 × 109/L, activated partial thromboplastin time (aPTT)
> 50 s; (2) systolic blood pressure > 220 or diastolic blood pressure
>110mm Hg; (3) blood glucose <2.8 mmol/L (50 mg/dl) or >

22.2 mmol/L (400 mg/dl); and (4) life expectancy <1 year due to
any late-stage disease; (5) allergy to contrast agents; (6) a history
of alteplase or urokinase intravenous thrombolytic therapy; (7)
previous cardiovascular and cerebrovascular interventional surgery
or other major surgery within 48 h; (8) severe liver dysfunction,
alanine aminotransferase (ALT) >3 times the upper limit of normal,
or aspartate transaminase (AST) >3 times the upper limit of normal
or chronic haemodialysis and severe renal insufficiency (glomerular
filtration rate <30 ml/min or serum creatinine >220 µmol/L (2.5
mg/dl); (9) pregnancy or lactation; (10) participation in other clinical
trials that may have an impact on this study; (11) intracranial
infection, intracranial aneurysm, o arteriovenous malformation; (12)
myocardial infarction within 30 days; (13) ejection fraction <40%,
insufficiency of vital organs such as the heart and lungs; (14) current
severe alcohol dependence or drug abuse; (15) Alzheimer’s disease or
mental illness affecting follow-up reliability; and (16) an expectation
that the follow-up would not be completed.

Treatment method

In the catheterization laboratory, the patient was placed
in the supine position, followed by oxygen administration,
electrocardiogram (ECG), blood pressure, and oxygen saturation
monitoring, urinary catheterization, and general anesthesia with
endotracheal intubation. Routine bilateral disinfection and draping
of the inguinal area was performed. The Seldinger technique was
used to place an 8F vascular sheath after femoral artery puncture,
and Door Puncture Time (DPT) was recorded, followed by systemic
heparinization. Under the guidance of an angiographic guidewire, a
5F “pigtail” catheter and a “single bend” catheter were placed in the
aortic arch, bilateral carotid, and vertebral arteries for angiography
to determine the vascular occlusion location, vascular alignment,
and blood flow compensation in the area of occlusion. The 8F
guiding catheter or a long sheath was placed in the common carotid
artery or ICA on the lesion side with the help of the angiography
guidewire and the multifunctional catheter, and then the middle
catheter was placed at the proximal end of the arterial occlusion. A
shaped Synchro microguidewire (260 cm, Stryker), together with a

Rebar microcatheter (18/27, EV3), were carefully passed through
the occlusion site. After withdrawal of the microguidewire, smoke
in the microcatheter indicated patency of the distal vessel, and
the position of the microcatheter was appropriately adjusted (to
facilitate complete coverage of the thrombus after stent release). In
the hypothermic treatment group, 4◦C normal saline was perfused
into the microcatheter at 15 ml/min for 5min, and then the
occluded blood vessels were opened using the SOLUMBAR or SWIM
technique. If necessary, balloon dilation and stent placement were
combined to open the blood flow. After successful revascularization,
the guide catheter or the long sheath was perfused with 4◦C normal
saline at 22 ml/min, and perfusion was continued for 10min. After
10-min intervals, 4◦C normal saline was continuously perfused for
10min. No abnormalities requiring termination of the procedure
were observed on repeated angiography. The control group received
a conventional mechanical thrombectomy with a stent retriever to
recanalize the occluded vessel as soon as possible.

Observation indicators

Major safety endpoint events:
The incidence of symptomatic intracranial hemorrhage at 24 h

after treatment (using the Heidelber criteria) and the 90-day
mortality rate.

Secondary safety endpoint events:

(1) Angiography performed 10min after cold saline perfusion
showing the incidence of vasospasm;

(2) The incidence of abnormal haematocrit (HCT) at 3 h after surgery;
(3) Abnormal blood coagulation 3 h after surgery;
(4) The incidence of pneumonia within 7 days after surgery;
(5) The incidence of urinary tract infection within 7 days after surgery.

Primary efficacy endpoint events:
The percentage of patients with a good prognosis at 90 days (mRS

score 0–2 points).
Secondary efficacy endpoint events:

(1) The difference in the final infarct volume (FIV) between the
two groups;

(2) Changes in NIHSS scores at 1 day after surgery;
(3) Changes in NIHSS scores at 7 days after surgery;
(4) Changes in NIHSS scores at 14 days after surgery;
(5) Changes in RBM3 levels before surgery, immediately after surgery,

and 1 day after surgery;
(6) Changes in SOD andMDA levels before surgery, immediately after

surgery, and 1 day after surgery;
(7) Changes in IL-6 and IL-10 levels before surgery, immediately after

surgery, and 1 day after surgery.

Statistical analysis methods

Statistical analysis was performed on various baseline indicators
(such as medical history) and demographic characteristic indicators.
Intention-to-treat analysis was selected for the statistical analysis of
experimental efficacy, and the dataset that met the protocol (i.e., the
statistical analysis was performed based on the data of all patients
who met the criteria of the experimental protocol) was used as the
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FIGURE 1

The study flow diagram.

reference. The measurement data were statistically described using
the mean, median, standard deviation, maximum, minimum, and 25
and 75% quantiles, and the group t-test or Mann–Whitney U-test
was used to compare two groups. Count data or ranked data were
statistically described using frequencies. The χ2 test or Fisher’s exact
probability method was used to compare the count data between the
two groups, and the Mann-Whitney U test was used to compare the
ranked data between the two groups.

Results

Patients

Between September 2019 and March 2022, 270 patients were

screened, and 178 patients met the inclusion criteria. Among them,

36 patients were excluded due to reasons such as a history of contrast

agent allergy, abnormal coagulation function, mental illness, poor
cardiac function, and hospital transfer during the study. A total
of 142 patients were actually randomized to the groups. Figure 1
summarizes the process of patient recruitment and participation. The
average age of the 71 patients in the test group was 73.4 years, 44
(62.0%) of whom were males, while 50 (70.4%) had hypertension,
18 (25.3%) had diabetes, 25 (35.2%) had coronary heart disease, and
36 (50.7%) had a smoking history. The average time from onset to
femoral artery puncture was 258min, the average time from onset
to vascular recanalization was 343min, the average NIHSS score at

admission was 15, the average IC area volume was 58.5ml, and 35
patients (49.3%) had poor collateral circulation. The average age of
the 71 patients in the control group was 72.8 years, 40 (56.3%) of
whom were males, while 52 (73.2%) had hypertension, 16 (22.5%)
had diabetes, 28 (39.4%) had coronary heart disease, and 39 (54.9%)
had smoking history. The average time from onset to femoral artery
puncture was 279min, the average time from onset to vascular
recanalization was 361min, the average NIHSS score at admission
was 16, the average IC area volume was 60.4ml, and 36 patients
(50.7%) had a poor collateral circulation. No statistically significant
difference in the general clinical data was found between the two
groups (Table 1).

E�cacy

The primary efficacy was determined as the percentage of patients
with a good prognosis at 90 days (mRS score 0–2 points). At 90
days after surgery, the rate of a good prognosis in the test group was
significantly higher than that in the control group (54.9 vs. 35.2%, P
= 0.018). The percentage of patients with severe disability (mRS score
≥4) in the test groupwas lower than that in the control group (19.7 vs.
35.2%, P = 0.039). The detailed mRS distribution of the two groups
is shown in Figure 2. The preoperative IC area volumes in the test
group and the control group were 58.5 ± 25ml and 60.4 ± 31.8ml,
respectively, with no significant difference between the two groups
(P = 0.814). CTP was re-examined 7 days after surgery. The IC area
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volumes in the test group and the control group were 63.7± 22.1ml,
and 88.5± 20.8ml, respectively, with a significant difference between
the two groups (P = 0.031) (Figure 3). Compared with that in the
control group, the infarct volume in the test group was reduced by
28%. Compared with those in the control group, the NIHSS scores
in the test group were significantly reduced at 1 d, 7 d, and 14 d after
surgery, with P-values of 0.035, 0.026, and 0.018, respectively, and the
results were all statistically significant (P < 0.05) (Table 2).

Before surgery, no significant difference in serum SOD, MDA,
RBM3, IL-6, or IL-10 levels were identified between the two groups (P
> 0.05). Compared with those in the control group, the SOD, IL-10,
and RBM3 levels in the test group were increased immediately after
surgery and at 1 day after surgery, and the results were significantly
different (P < 0.05). MDA and IL-6 were relatively reduced, with
significant differences (Table 3). Correlation analysis was performed
on RBM3 and SOD levels immediately after surgery in the test group.

TABLE 1 Baseline clinical data of the patients.

Variable Test group
(n = 71)

Control group
(n = 71)

P

Age, year 73.4± 12.6 72.8± 13.6 0.621

Male 44 (62.0%) 40 (56.3%) 0.495

Hypertension 50 (70.4%) 52 (73.2%) 0.709

Diabetes 18 (25.3%) 16 (22.5%) 0.694

Coronary heart
disease

25 (35.2%) 28 (39.4%) 0.603

Smoke 36 (50.7%) 39 (54.9%) 0.614

Time from onset to
puncture, min

258± 71 279± 60 0.485

Time from onset to
recanalization, min

343± 80 361± 92 0.603

NIHSS score 15± 7 16± 8 0.712

Infarct core volume,
ml

58.5± 25 60.4± 31.8 0.814

Poor collateral
circulation

35 (49.3%) 36 (50.7%) 0.867

The calculated Pearson correlation coefficient was 0.894, and the P-
value was <0.001, showing a positive correlation between the two.
Correlation analysis was performed between RBM3 and IL-10 levels
immediately after surgery in the test group. The calculated Pearson
correlation coefficient was 0.733, and the P-value was <0.001, also
showing a positive correlation between the two. This finding indicates
that RBM3 is closely related to SOD and IL-10 (Figure 4).

Safety

Rectal temperature was monitored every 5min during the
operation. The average minimum rectal temperature after the first
infusion of cold saline in the test group was 36.5± 0.7◦C. The average
minimum temperature of the second infusion of cold saline was 36.6
± 0.5◦C. The average minimum temperature of the third infusion of
cold saline was 36.6± 0.7◦C. Repeated measures analysis of variance
was used to compare the two groups. No significant difference in
rectal temperature was noted between the two groups during the
entire process (P = 0.493).

Symptomatic intracranial hemorrhage was observed in 11
patients (15.5%) in the test group and in 13 patients (18.3%) in
the control group (P >0.05). Intracranial vasospasm occurred in
2 patients (2.8%) in the test group and in 1 patient (1.4%) in the
control group (P> 0.05). Five patients (7.0%) died in the test group
and 6 (8.5%) in the control group. Three (4.2%) patients in the test
group had abnormal HCT at 3 h after surgery, and one (1.4%) in
the control group had abnormal HCT (P-value >0.05). Two patients
(2.8%) in the test group and 3 (4.2%) patients in the control group had
abnormal coagulation function (P > 0.05). Pneumonia occurred in
17 patients (23.9%) in the test group and in 15 patients (21.1%) in the
control group (P> 0.05). Fifteen (21.1%) patients in the experimental
group and 18 (25.4%) patients in the control group had urinary tract
infections (P > 0.05) (Table 4).

Discussion

In this randomized controlled study, we found that selective
intraarterial hypothermia combined with intravascular intervention

FIGURE 2

Distribution of scores on the modified Rankin Scale at 90 d.
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FIGURE 3

Comparisons of the infarct core (rCBF <30%) and hypoperfused tissue (Tmax >6 s) on CTP, and final infarct volume on CT between test group and

control group. Preoperative CTP of a representative patient in the test group showed 93ml of Tmax >6 s (green) and 26.5ml of <30% rCBF (blue). The

CTP demonstrated a penumbral pattern (infarct core <70mL, penumbra >15mL, mismatch >1.8). At 7 days after the surgery, CTP of the same patient in

the test group showed 35.6ml of Tmax >6 s (green) and 29.5ml of <30% rCBF (blue). Final infarct volume on CT of the patient in the test group was

43.4ml. Preoperative CTP of the other representative patient in the control group showed 91.2ml of Tmax >6 s (green) and 30.2ml of <30% rCBF (blue).

The CTP demonstrated a penumbral pattern as well (infarct core <70mL, penumbra >15mL, mismatch >1.8). At 7 days after the surgery, CTP of the

same patient in the control group showed 36.7ml of Tmax >6 s (green) and 32.4ml of <30% rCBF (blue). Final infarct volume on CT of the patient in the

control group was 85.3ml.

TABLE 2 The clinical indexes of the two groups were compared.

Variable Test group
(n = 71)

Control
group
(n = 71)

P

Final infarct volume 63.7± 22.1 88.5± 20.8 0.031

NIHSS score

Postoperative 1d 6.8± 3.8 8.2± 3.5 0.035

Postoperative 7d 2.6± 1.6 4.0± 1.8 0.026

Postoperative 14d 2.0± 1.2 3.5± 2.1 0.018

mRS 0–2 39 (54.9%) 25 (35.2%) 0.018

mRS ≥4 14 (19.7%) 25 (35.2%) 0.039

for the treatment of patients with acute cerebral infarction
based on microcatheter technology is safe. By monitoring rectal

temperature, the core body temperature did not change significantly
in the hypothermia treatment group. While traditional systemic
hypothermia technology exerts its protective effect on neurological
function, patients may experience a series of side effects, such
as cardiovascular dysfunction, chills, immunosuppression, and
impaired coagulation function (11, 29). Selective intraarterial
hypothermia not only lowers the temperature quickly but also
has fewer systemic side effects (15, 30–33). In this study, the
biochemical and imaging results confirmed that although we

administered a total of 515ml of cold saline infusion, which was

larger than the amount of 350ml used by Chen and Wu, no
significant abnormalities in HCT or coagulation factors were found.

Postoperative angiography re-examination did not show an increase

in the percentage of vasospasm in the hypothermia group (13, 14).
Compared with those in the control group, no differences in the risk
of bleeding and 90-day mortality were found in the hypothermia
treatment group.
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TABLE 3 Comparison of e�cacy laboratory indexes between the two groups.

Group Indicators Preoperative Postoperative Postoperative 1d

Test group RBM3 356.8± 150.4 454.4± 90.6∗# 410.8± 20.1∗#

SOD 73.3± 17.3a 95.6± 12.5∗# 107.4± 9.9b#

MDA 10.8± 0.5 8.3± 0.7∗# 5.4± 0.3b#

IL-6 40.2± 19.3 45.6± 22.4∗# 44.2± 25.2∗#

IL-10 11.9± 6.9 15.2± 7.4∗# 17.4± 6.8∗#

Control group RBM3 364.2± 161.7 378± 140.5 350.4± 150.9

SOD 72.4± 18.4 76.5± 19.5∗ 88.3± 18.6∗

MDA 10.8± 0.9 9.5± 0.6∗ 8.1± 0.4∗

IL-6 39.8± 21.4 49.7± 23.6∗ 53.1± 28.6∗

IL-10 10.8± 7.1 13.1± 6.6∗ 12.9± 7.6∗

∗On behalf of P<0.05 vs. Preoperative, # on behalf of P < 0.05 vs. Control group.

FIGURE 4

The relationship between RBM3 and SOD (A), IL-10 (B) immediately after operation.

By comparing the IC volumes of the two groups at 7 days after
surgery, we found that hypothermia treatment reduced the IC volume
by 28%. Clearly, the reduced IC volume is achieved by saving the
ischemic penumbra and avoiding transformation of this area into the
irreversible IC area. In this study, the percentage of patients with a
good clinical prognosis after 90 days in the hypothermia group was
higher than that in the control group. In a previous study by Wu,
the percentages of patients with a good prognosis were 51.1% in
the hypothermia treatment group and 41.2% in the control group.
Although the hypothermia treatment group showed an advantage,
the difference was not statistically significant. Wu suggested that this
result is because of a high percentage of poor collateral circulation in
the preoperative hypothermia group, which weakened the advantage
of the hypothermia treatment group (14). The patients enrolled in
Wu’s study were under 80 years of age and were enrolled within
6 h of onset, while the patients enrolled in this study were not
limited to an age under 80 years. Furthermore, by using the CTP
technique, patients with large vascular occlusion at 6–24 h of onset
were screened and included in this study, resulting in a larger sample

size than inWu’s study. The hypothermia treatment time in the study
by Chen and Wu was 15min (13, 14). Evidence from basic research
shows that a longer duration of hypothermia treatment will result
in greater benefits. Intraarterial infusion of cold saline will increase
the hypothermia time, which will increase the amount of saline
perfusion, whichmay lead to a series of side effects, such as electrolyte
imbalance and blood dilution. To overcome this problem, Ji changed
the continuous perfusionmode to the intermittentmultiple perfusion
mode by adjusting the perfusion regimen. Intermittent perfusion was
found to be safe and feasible, not only prolonging the treatment time,
but also contributing to the reduction in cerebral infarct volume in
rats (34). Inspired by this finding, this study was improved on the
basis of Chen and Wu’s study. Only 165ml of fluid was added, and
the 15-min hypothermia treatment time was extended to 35min.
Finally, no significant difference in safety was observed between the
two groups, and the hypothermia group had significant advantages.
The overall efficacy significantly differed.

When acute cerebral infarction occurs, ischaemia causes a
decrease in oxygen supply and a lack of ATP, and the intracellular and
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extracellular ion gradient Na+-K− pumps will fail, causing calcium
ion influx (35). Increased intracellular Ca2+, Na+, and ADP lead to
mitochondrial dysfunction and increased (ROS) (36). ROS include
superoxide anion (O-), hydroxyl radical (OH), and peroxide. SOD
is an important antioxidant enzyme in the cell that can catalyze
O2 and H2O2 generation from superoxide anion free radicals such
that the intracellular superoxide anion free radicals are present at a
harmless level. When brain tissue is deprived of blood and oxygen,
SOD and other important antioxidant enzymes will also be damaged,
and the increased ROS will consume a large amount of SOD. The
free radical scavenging ability is reduced, and excessive accumulation
in the body occurs. Excess oxygen free radicals and unsaturated
fatty acids in brain tissue undergo lipid peroxidation to form lipid
peroxides, which accumulate in the body and produce toxic effects
on the human body. MDA is the final product of lipid peroxidation.
Therefore, the level of SOD activity indirectly reflects the body’s
ability to scavenge free radicals, while MDA reflects the severity of
the body’s cells being attacked by free radicals (37). The results of this
study showed that the SOD level in the test group was significantly
higher than that in the control group immediately after hypothermia
treatment and at 1 day after surgery. The MDA level in the test
group immediately after surgery was lower than that in the control
group, and MDA level at 1 day after surgery was significantly lower
than that in the control group. The difference in MDA tended to be
significant over time. These results suggest that selective intraarterial
hypothermia combined with intravascular interventional therapy
based on microcatheter technology can better alleviate oxidative
stress, which is an important mechanism for hypothermia treatment
to reduce the disability rate and improve the long-term prognosis of
patients with cerebral infarction.

In ischaemic stroke, the inflammatory response plays the role
of a double-edged sword, with both beneficial and harmful aspects.
In fact, after stroke, the activation of microglia, astrocytes, and
endothelial cells has a neuroprotective effect and can promote nerve
regeneration and recovery. However, these cells recruit immune
cells that express inflammatory mediators, resulting in disruption
of the blood-brain barrier (BBB), which in turn leads to neuronal
death, cerebral oedema, and haemorrhagic transformation (38). IL-6
is an important proinflammatory cytokine that can promote the
inflammatory response of damaged cells in ischaemic stroke. It
can be detected in the brain tissue, cerebrospinal fluid, and blood
of patients with acute cerebral infarction and is associated with
expansion of cerebral infarction (39). IL-10 is an anti-inflammatory
factor. Previous studies have shown that it can promote tissue
repair. In particular, IL-10 can reduce the toxic effect of excitatory
amino acids on neurons after cerebral ischaemia (40–42). This study
confirmed that hypothermia can inhibit IL-6, increase IL-10, and play
a protective role in the brain.

Basic studies have confirmed that RBM3 plays a key role in
hypothermia-induced neuroprotection, but research data on RBM3
detection from clinical studies are limited (17, 43–46). Our study
found that RBM3 was elevated in the test group and was associated
with a good prognosis, which provided convincing evidence for
RBM3 as a novel therapeutic target in ischaemic stroke. Our study
also found that RBM3 was positively correlated with IL-10 and
SOD. This association may be the main mechanism by which RBM3
exerts its neuroprotective effect. Of course, the exact regulatory
pathways between RBM3, IL-10, and SOD molecules require
further study.

TABLE 4 Evaluation of safety.

Variable Test group
(n = 71)

Control
group
(n = 71)

P

Symptomatic
intracranial
hemorrhage

11 (15.5%) 13 (18.3%) 0.654

Death 5 (7.0%) 6 (8.5%) 0.754

Intracranial
vasospasm

2 (2.8%) 1 (1.4%) 1

HCT abnormal 3 (4.2%) 1 (1.4%) 0.62

Coagulation
abnormalities

2 (2.8%) 3 (4.2%) 1

Pneumonia 17 (23.9%) 15 (21.1%) 0.688

Urinary system
infection

15 (21.1%) 18 (25.4%) 0.551

There are limitations in our study. Firstly, during the study,
we monitored rectal temperature, but not brain parenchymal
temperature. Currently, appropriate devices for direct monitoring
of brain temperature in patients with acute cerebral infarction are
lacking. Such a device needs to meet several requirements. First,
the device must be non-invasive. In previous basic studies, probes
were used to measure brain temperature, but they are not clinically
applicable because they aggravate the risk of nerve cell damage
and bleeding in patients. Second, the device for monitoring brain
temperature must be installed easily and quickly. “Time is brain,”
and the device should not delay the time to vascular patency due
to the need to monitor brain temperature. Third, intraoperative
real-time monitoring is needed. Regretfully, at present, there is
no monitoring brain temperature device that meet the above
requirements at the same time. Secondly, selective brain cooling
through IA route do not qualify all patients with stroke. Although
our study confirmed that this invasive cooling method is feasible
and safe, not all patients need to afford a risk of procedure related
complications. Lastly, there are no specialized cooling catheters
in the market. In our study, we used routing catheters which
are designed for mechanical thrombectomy, Thus, the thermal
insulation performance of the catheters could affect the efficiency
of selective intraarterial hypothermia. However, it is foreseeable that
specialized medical devices for selective intraarterial hypothermia
will be available in the near future with advancements in science
and technology.

Conclusion

Selective intraarterial hypothermia combined with mechanical
thrombectomy based on microcatheter technology is safe and
effective for the treatment of acute cerebral infarction. It inhibits
transformation of the ischaemic penumbra to the infarct core
area to some extent, scavenges some oxygen radicals, reduces
cellular inflammatory damage after acute infarction and ischemia-
reperfusion, and promotes cellular production of RBM3, which
ultimately improves the functional prognosis of patients after
90 days.
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