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Background: Previous studies have explored the application of non-invasive
biomarkers of language dysfunction for the early detection of Alzheimer’s disease
(AD). However, language dysfunction over time may be quite heterogeneous
within di�erent diagnostic groups.

Method: Patient demographics and clinical data were retrieved from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database for the participants
without dementia who had measures of cerebrospinal fluid (CSF) biomarkers and
language dysfunction. We analyzed the e�ect of longitudinal neuropathological
and clinical correlates in the pathological process of semantic fluency and
confrontation naming. Themediation e�ects of AD biomarkers were also explored
by the mediation analysis.

Result: There were 272 subjects without dementia included in this analysis. Higher
rates of decline in semantic fluency and confrontation naming were associated
with a higher risk of progression to MCI or AD, and a greater decline in cognitive
abilities. Moreover, the rate of change in semantic fluency was significantly
associated with Aβ deposition, while confrontation naming was significantly
associatedwith both amyloidosis and tau burden. Mediation analyses revealed that
both confrontation naming and semantic fluency were partially mediated by the
Aβ aggregation.

Conclusion: In conclusion, the changes in language dysfunction may partly stem
from the Aβ deposition, while confrontation naming can also partly originate from
the increase in tau burden. Therefore, this study sheds light on how language
dysfunction is partly constitutive of mild cognitive impairment and dementia and
therefore is an important clinical predictor.

KEYWORDS

Alzheimer’s disease, confrontation naming, semantic fluency, amyloid, tau,

neurodegeneration

Introduction

With the global increase in the aged population, the socio-economic burden of

Alzheimer’s disease (AD) has been continuously up-ticking on both patients and their

caregivers (1, 2). The pharmacological treatments show a poor risk–benefit relationship

because of the frequent discontinuation and limited improvement in patients’ health
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conditions (3, 4). Recent studies suggest that the reduction

of etiological risk factors and multidomain interventions could

prevent cognitive decline and dementia in AD patients (5).

Importantly, missing disease symptoms and a delayed diagnosis

can significantly disturb the treatment initiation, especially in the

early stage, resulting in a poor outcome (6). Amyloid-β (Aβ) and

tau aggregation-associated neurodegeneration might start decades

before the actual manifestation of AD symptoms, whose presence

could be recognized as the AD continuum according to the

biological definition of AD based on the ATN (Aβ deposition

[A], pathologic tau [T], and neurodegeneration [N]) hallmarks

(7, 8). Amyloid deposition might accelerate tau pathology and

then lead to neurodegeneration (9), but certain inconveniences

of these biomarkers in practical scenarios prevent their further

clinical usage.

There has been a consensus about language dysfunction in

AD and related dementia cases, while the disease-related language

features and their implications in mild cognitive impairment

(MCI) diagnosis are not well-characterized (10). Previous studies

have found that semantic fluency and name recalling are initially

affected by the breakdown of other facets in these patients (11).

Semantic fluency has been found to segregate MCI subjects

from healthy controls and can be exploited to predict the risk

of pathological conversion of MCI to AD (12, 13). Naming

tasks permit clinicians to gauge the extent of lexical–semantic

disintegration and confrontation with naming, thereby indicating

that the disorders are not simply resulting from the age-associated

decline in semantic and/or visuoperceptual knowledge (14, 15).

MCI patients have been found to retrieve names of famous persons

or public figures, even after the deliverance of a semantic cue, which

is shown as the major complaint amongMCI and AD patients (16).

Although language dysfunction is common in the early

stage of typical AD, the mechanism underlying the pathological

process is still unexplored. Recently, it has been revealed that

Aβ accumulation may have a significant impact on the language

network in the early stage of AD (17). Another study shows

that an increased burden of pathological tau aggregates may also

associate with declined capacity in name memorization in the

primary progressive aphasia with underlying AD neuropathology

(18). However, the implications of amyloid and tau pathologies

underlying the AD pathomechanism are not well-defined.

Therefore, we evaluated the longitudinal associations of the

progression of language impairment in animal confrontation

naming in both cognitively unimpaired (CU) andMCI participants

based on the expression of neurocognitive and neuroimaging

markers of AD. Furthermore, we explored the potential

mechanisms of language impairment and whether the ATN

framework might mediate the progression of AD pathology.

Methods

Study population

Clinical and pathological data of the participants were retrieved

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (https://adni.loni.usc.edu/), including the expression

of cerebrospinal fluid (CSF) biomarkers, positron emission

tomography (PET), and neuropsychological assessment. As a

public–private partnership, the ADNI database is led by the

principal investigator, Michael W. Weiner, MD, and participants

between 55 and 90 years of age who are regularly recruited

at 57 sites in the United States and Canada. The participants

undergo a series of initial tests that are repeated at intervals over

subsequent years. For up-to-date information on AD and MCI,

see www.adni-info.org. This study included 272 ADNI participants

who completed their neuropsychological assessments and CSF

biomarker screening tests with a follow-up for 3 years at least.

Definitions of the participant classifications, including CU and

MCI, have been described elsewhere (19). The threshold value of

CSF Aβ1-42 was 880 pg/ml or 1.11 SUVR for the FBP PET scan.

CSF pTau was used to assess T+ with a cutoff value of more than

26.64 pg/mL or 1.37 SUVR for the FTP PET scan, while N+ was

considered when tTau ≥300 pg/mL (19).

Neuropsychological assessment

The 60-item version of the Boston naming test (BNT) and

category semantic fluency animals were used for the assessment

of confrontation naming and semantic fluency. The lower score

indicates an elevated level of language dysfunction. The optimal

cutoff value for semantic fluency and confrontation naming at

baseline were 13 (20) and 22 (21), respectively.

For the evaluation of global and specific cognition domains,

we used the Mini-Mental State Examination (MMSE) and AD

Assessment Schedule-Cognition (ADAS-Cog), respectively. The

immediate recall, learning scope, delayed recall, and recognition

from the Rey auditory learning test were used for the assessment

of immediate memory, while the Trail Making Test parts A and

B were employed for the assessment of processing speed and

executive functions. The Digit Span Backward and Digit Span

Forward tests were applied to assess the attention and working

memory, while the command and copy tasks of the Clock Drawing

Test were used for the visuospatial functional analysis. Functional

activities were evaluated by the functional activity questionnaire,

and neuropsychiatric symptoms were identified using the Geriatric

Depression Scale and Neuropsychiatric Inventory Questionnaire.

The higher score on several scales indicates an elevated level of

specific cognitive domains, including global cognition, processing

speed, execution, functional activities, and neuropsychiatric

symptom. Supplementary material 1 was available for detailed

information about the neuropsychological assessment.

Clinical disease progression

Patients were assigned to the clinical disease progression group

if their clinical manifestations changed over time compared to

others who had stable disease conditions (hereafter, the stable

group). Additionally, the participants who did not meet the criteria

of AD and/or MCI at follow-up were also assigned to the stable

group (22).
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Statistical analyses

A t-test was used to compare the demographic and clinical data

between the CU and MCI groups. One-way analysis of variance

(ANOVA) with Tukey’s correction was used for the continuous

variables, while the chi-squared (χ2) test was applied for the

categorical variables to compare the demographic and clinical data

across different ATN profiles at the baseline and follow-up. The

correlation of study variables (the baseline and mean change rate

of semantic fluency and confrontation naming) with demographic

and clinical characteristics at the baseline were assessed by the

Pearson correlation test for continuous variables and the chi-

squared (χ2) test for categorical variables, while the outliers with

mean more than three times of SD were also excluded.

The linear model was used to determine the association

of global cognition and executive function with the baseline

and change rate of semantic fluency and confrontation naming

controlling for age, sex, education, andAPOE4 status.We use linear

models to further explore the independent influence of Aβ and tau

pathologies on the baseline and change rate of semantic fluency

and confrontation naming by including CSF Aβ and tau and the

predictors in the multivariable model, controlling for the same

covariables above. Furthermore, the Kaplan–Meier survival curve

and the Cox proportional hazards model were used to evaluate

the predictive abilities of changes in language assessments for the

disease progression (to MCI or AD). Survival curves of clinical

progression were plotted based on the mean annual change in

semantic fluency and confrontation naming, while the median of

change rate was used as cutoff values.

Moreover, we performed mediation analyses with

bootstrapping (5,000 iterations) methods to analyze the mediation

effects of Aβ and tau/phospho-tau accumulations on the

associations of change rates in confrontation naming and semantic

fluency for the cognitive decline and clinical progression, while we

adjusted age, years of education, sex, and APOE4 status based on

the schematic model as shown in Figure 1. All statistical analyses

were performed using R version 4.1.2 with the package “glm,”

“ggplot2,” “mediation,” “survival,” and “arm” and SPSS 23.0. All

tests used a significance level of a p-value of < 0.05.

FIGURE 1

Schematic model of amyloid and tau deposition as the mediator
between the change rate of semantic fluency and confrontation
naming and clinical progression.

Results

Demographic characteristics

A total of 272 non-demented elderly individuals with the

baseline and follow-up data of neuropsychological and CSF

biomarker assessments were included in this study. The age of

participants ranged from 54 to 89 years and years of education

from 12 to 20 years. The study population had 36.5% of female

participants and 43% of APOE4-positive subjects.

Semantic fluency and confrontation naming at the baseline

were positively correlated with the decline of global cognition

and specific cognitive domains, including executive function

(Supplementary Tables 1, 2). Lower semantic fluency was

associated with poorer global cognition (β = −0.326, p <

0.001) and executive function (β = −0.342, p < 0.001). Poorer

confrontation naming was also assessed with the decline in global

cognition (β = −0.361, p < 0.001) and executive function (β =

−0.466, p < 0.001) (Supplementary Table 3).

Longitudinal analysis

The yearly differences (standard deviation; SD) in

confrontation naming and semantic fluency test results were,

respectively, 0.26 (1.48) and 1.06 (2.23). A higher rate of decrease

in confrontation naming was associated with poorer cognition (R

= −0.155, p < 0.001), executive function (R= −0.131, p = 0.003),

and functional activity (R = −0.188, p < 0.001) at the baseline.

Moreover, a higher rate of decrease in confrontation naming was

also related to immediate recall (R = 0.159, p < 0.001), learning

ability (R= 0.109, p= 0.017), delayed recall (R= 0.182, p< 0.001),

and delayed recognition (R= 0.107, p= 0.019) (Figure 2).

A higher rate of decrease in semantic fluency was associated

with poorer cognition (R = −0.101, p = 0.021), executive function

(R = −0.108, p = 0.013), and functional activity (R = −0.135,

p = 0.005) at the baseline. Similarly, a higher rate of decrease in

confrontation naming was associated with immediate recall (R =

0.140, p = 0.001), learning ability (R = 0.141, p = 0.002), delayed

recall (R = 0.140, p = 0.002), and delayed recognition (R = 0.108,

p= 0.018).

The relationship between the change rate of semantic fluency

and confrontation naming and global cognition is as follows. The

greater decline of semantic fluency was associated with poorer

global cognition (β=−0.326203, p= 0.001) and executive function

(β = −0.302, p < 0.001). Poorer confrontation naming was

also assessed with the decline in global cognition (β = −0.174,

p = 0.003) and executive function (β = −0.213, p < 0.001)

(Supplementary Table 4).

The Kaplan–Meier survival analysis showed that the worse

performance on semantic fluency was significantly associated

with a shorter estimated time of progression to MCI or

AD (p = 0.0013), while the performance on confrontation

naming was not so significant (p = 0.15). The greater decline

in confrontation naming was correlated with a higher risk

of progression (p = 0.0048), while the decline in semantic

fluency was not so significant (p = 0.16) (Figure 3). Subgroup
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FIGURE 2

Associations of the rate of change of semantic fluency with the global cognition (A), executive function (B), confrontation naming with the global
cognition (C), and executive function (D).

analysis showed a greater decline in both semantic fluency

and confrontation naming with higher progression to AD

(Supplementary Figure S2).

Language dysfunction among ATN profiles

These results suggest that rates of change in semantic

fluency (R = 0.102, p = 0.019) and confrontation naming

(R = 0.155, p < 0.001) were significantly associated with

the baseline Aβ level. Notably, the Aβ-positive pathology was

associated with significantly decreased levels of confrontation

naming and semantic fluency. Significant associations were also

noticed between the confrontation naming change rate and baseline

tau level (R = −0.138, p = 0.002) or baseline neurodegeneration

(R = −0.136, p = 0.002) (Figure 4), while the association

between semantic fluency and tau level was non-significant

(Supplementary Figure S1).

In multivariable analysis, the levels of Aβ (β = 0.171, p =

0.002), p-tau (β = −0.184, p = 0.003), and tau (β = −0.179, p

= 0.003) were associated with the change rate of confrontation

naming, while non-significant results were found for the change

rate of semantic fluency (Supplementary Table 5).

Longitudinal analysis revealed a greater decline in

confrontation naming for MCI subjects with different ATN

profiles at 1-year (F (2,153) = 4.302, p = 0.015), 2-year (F

(2,131) = 3.982, p = 0.021), and 3-year (F (2.84) = 5.156, p =

0.008) follow-ups. There was no significant difference between

the semantic fluency at 1-year (F (2,164) = 0.317, p = 0.729),

2-year (F (2,153) = 2.257, p = 0.108), and 3-year (F (2.85)

= 2.496, p = 0.089) follow-ups. Among the CU participants,

worse but not significant performance differences were observed

(Figure 5).
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FIGURE 3

Kaplan–Meier survival analysis for non-demented participants for semantic fluency at the baseline (A), the change rate of semantic fluency (B),
Kaplan–Meier survival analysis for non-demented participants for confrontation naming at baseline (C), and the change rate of confrontation naming
(D).

Mediation analysis

The total, direct, and indirect associations of the change

rate of confrontation naming with amyloid and tau deposition

were assessed separately based on the schematic model shown

in Figure 1. The proportion of association mediated between

the change rate of confrontation naming and the probability of

clinical progression mediated by Aβ42 and tau were 29% and

22%, respectively (Table 1), indicating that the greater decline

in confrontation naming could be related to both amyloid

degeneration and neurodegeneration. Although non-significant

results were found for the change rate of semantic fluency

through mediation analysis, subgroup analysis also found that

the proportion for the clinical progression from MCI to AD was

43%, indicating amyloid deposition could modulate the decline in

semantic fluency fromMCI to AD (Supplementary Table 6).

Discussion

Our study confirmed that worse performance of language

dysfunction was a significant risk factor for the clinical progression

of cognitive impairments. Furthermore, the influence of semantic

fluency and confrontation naming on the cognition and risk of

pathological conversion to MCI or AD was partially mediated

by amyloid pathology, while the confrontation naming itself

could be mediated by tau pathology and neurodegeneration. All

these findings thus supported the fact that the greater decline of
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FIGURE 4

Associations of the rate of change of semantic fluency (A), confrontation naming (B) with the amyloid deposition, associations of the rate of change
of confrontation naming with tau deposition (C), and neurodegeneration (D).

semantic fluency might provide imperative information for early

detection and intervention, while the cerebral amyloid deposition

might mediate the effect of language dysfunction on cognitive

impairment. The greater decline in confrontation naming could be

related to both tau pathology and neurodegeneration.

Language dysfunction has been identified as an important

indicator of preclinical AD detection (23). Our findings further

confirmed the association between the change rates of semantic

fluency and cognition and altered executive function before the

onset of clinically significant cognitive dysfunctions, indicating

that semantic fluency could be used as an imperative predictor

for the disease progression rate. As a quick and relatively simple

test, semantic fluency has been recommended as an accurate and

efficient tool for screening early dementia symptoms (24, 25),

in line with the worse performance for semantic fluency with a

higher risk of progression. Recent studies have also confirmed the

diagnostic accuracy of language assessment, semantic fluency as

an example, for participants without dementia, even by automated

detection (26, 27). Naming difficulties have also been observed in

AD patients, attributing to the progressive degradation of semantic

knowledge memory, which might be the reason underlying the

non-significance of worse performance with the higher risk of

progression (28). Semantic fluency tasks allow the identification

of lexical–semantic impairment, deficits in semantic and working

memory, as well as impaired executive function (29), while

confrontation naming heavily relies on processing speed, learning,

andmemory (30). Our results highlighted that not only the baseline

of semantic fluency and confrontation naming but also the change

rates of semantic fluency and confrontation naming positively

correlated with the decline of memory and executive function.

Although our longitudinal findings confirmed the greater

decline in semantic fluency in the AD continuum, differences
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FIGURE 5

Performance of semantic fluency (A) and confrontation naming (B) for non-demented participants between di�erent ATN profiles. CU, cognitive
unimpaired; MCI, mild cognitive impairment.

TABLE 1 Adjusted direct and indirect associations of the change rate of confrontation naming with clinical progression via Aβ42, p-tau or t-tau.

Measure The change rate of confrontation naming The change rate of semantic fluency

β (95%CI) p β (95%CI) p

Aβ42

Total association −0.03 (−0.07 to 0.00) 0.08 −0.04 (−0.08 to−0.02) <0.001∗∗∗

Direct association −0.02 (−0.06 to 0.01) 0.675 −0.04 (−0.04 to−0.01) <0.001∗∗∗

Indirect association via Aβ42 −0.01 (−0.02 to 0.00) 0.04∗ −0.01 (−0.01 to 0.00) 0.2

Proportion mediated, % 29 6

P-tau

Total association −0.03 (−0.08 to 0.01) 0.16 −0.04 (−0.07 to−0.02) <0.001∗∗∗

Direct association −0.02 (−0.08 to 0.02) 0.24 −0.04 (−0.06 to−0.01) <0.001∗∗∗

Indirect association via p-tau −0.01 (−0.02 to 0.00) 0.10 −0.01 (−0.02 to 0.00) 0.2

Proportion mediated, % 22 6

Tau

Total association −0.03 (−0.07 to 0.00) 0.08 −0.04 (−0.07 to−0.01) <0.001∗∗∗

Direct association −0.02 (−0.07 to 0.01) 0.30 −0.04 (−0.07 to−0.01) <0.001∗∗∗

Indirect association via Tau −0.01 (−0.02 to 0.00) 0.02∗ −0.01 (−0.01 to 0.00) 0.14

Proportion mediated, % 27 7

∗indicates significance at p < 0.05. ∗∗∗indicates significance at p ≤ 0.001.

among ATN profiles were not significant. The mediation analysis

showed that the influence of semantic fluency was partially

mediated by the amyloid pathology from MCI to AD but not by

tau pathology or neurodegeneration. Therefore, semantic fluency

could be a sensitive biomarker for identifying early AD symptoms

and predicting the risk of pathological conversion of MCI into

AD (31). Previous studies indicate that there have been significant

differences in terms of semantic fluency between MCI subjects

with amyloidosis and AD patients (32, 33). However, it is reported

that semantic fluency lack specificity and cannot differentiate

between AD and other forms of dementia, including Parkinson’s

disease (34, 35). Moreover, a steeper decline in semantic fluency

could be observed between Aβ status approximately 2.5 years

before neuroimaging by Aβ-PET in non-demented participants

(36). Similar to our results, the meta-analysis also confirmed that

semantic fluency is associated with amyloid burden, particularly

for those studies which did not select individuals with subjective

impairment (37). One possible reason behind the weak association

between amyloid accumulation and semantic fluency impairment

at the earliest stage might be the sigmoid curve of amyloid

accumulation (38). It might be possible that semantic fluencymight

be more sensitive to amyloid pathophysiology in a diffuse manner,

which would be obvious at a late stage after abundant amyloid

accumulation, and more studies are needed to reveal the possible

mechanism underlying the dysfunction of semantic fluency and

amyloid accumulation. Taken together, these findings suggest that
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the semantic fluency decline could be regarded as an early sign

of AD spectrum (39); however, there might be some overlapping

symptoms during the advancement of disease courses for different

types of dementia

In terms of confrontation naming, our longitudinal findings

confirmed the greater decline among the participants with different

ATN profiles. The mediation analysis also revealed that the

influence of confrontation naming was correlated with amyloidosis,

tau pathology, and neurodegeneration. Our results exhibited that

confrontation naming was partially mediated by both amyloidosis

and tau pathology. Previous studies also reported statistically

significant associations in terms of the decline in confrontation

naming only when both amyloidosis and hippocampal atrophy

were evident (40). Variations in confrontation naming are primarily

shared between the tau pathology and brain atrophy (51%)

for primary progressive aphasia with underlying AD pathology,

especially in the left anterior temporal lobe (32), indicating a

more specific dysfunction in the language network compared

with semantic fluency. The hypometabolism of the left temporal

lobe, the temporopolar cortex in particular, demonstrated severe

confrontation naming impairment (41), indicating that the

temporopolar cortex might act as an important semantic hub

in the language network. Not only the indirect measure of

tau PET (42) but also three-dimensional quantitative maps of

neurofibrillary tangle burden confirmed the roles of tau burden in

the temporal lobe, especially in the temporopolar cortex (43, 44).

Collectively, the decline in confrontation naming could be a

potential biomarker for both tau burden and amyloidosis, in

particular in the temporopolar cortex. The main strength of

our article is to include longitudinal assessments of language

impairment, clinical progression, pathological mechanisms, and

causal mediation analyses. Our analysis suggested that participants

with a faster decline of language impairment might suggest clinical

progression, while the rehabilitation of language impairment

might delay or slow the clinical progression. In participants with

worse confrontation naming, amyloid and tau deposition may

act together to contribute to clinical progression, while amyloid

deposition may contribute to the progression from MCI to AD

in participants with a decline of semantic fluency. Confrontation

naming is related to more specific dysfunction marked by tau and

atrophy, while semantic fluency might be more sensitive to amyloid

pathophysiology, especially fromMCI to AD.

There are also certain limitations in this study. First, the

BNT and AFT were chosen to evaluate the severity of language

dysfunction in the present study, which was only a part of the

clinical features of language dysfunction, and thus prevented us

from analyzing the acoustic features of the participants. Moreover,

the effect of other potential confounding factors (e.g., other

genetic factors and vascular risk factors) was not included in

our analyses, which might also be the reason underlying the

relatively low correlation coefficient. Linear regression was further

conducted to confirm the roles of language dysfunction in global

cognition, executive function, and ATN biomarkers. Similar results

confirmed the stability of correlation analysis. Therefore, further

large-scale community-based longitudinal studies are warranted

to validate these associations, especially when both lexical and

acoustic features of the participants are considered.
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