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Prediction of short-term prognosis
of patients with hypertensive
intracerebral hemorrhage by
radiomic-clinical nomogram
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Hypertensive intracerebral hemorrhage (HICH) is the most common type of
spontaneous intracerebral hemorrhage in China which is associated with high
mortality and disability. We sought to develop and validate a noncontrast computed
tomography (NCCT)-based nomogram model to achieve short-term prognostic
prediction for patients with HICH. We retrospectively studied 292 patients with HICH
from two medical centers, and they were divided into training (n= 151), validation (n=
66), and testing cohorts (n = 75). Based on radiomics, univariate and multivariate, and
logistic regression analyses, four models (black hole sign, clinical, radiomics score,
and combined models) were established to predict the prognosis of patients with
HICH 30 days after the onset. The results suggested that the combined model had the
best predictive performance with the area under the receiver operating characteristic
curve (AUC) of 0.821, 0.816, and 0.815 in the training, validation, and testing cohorts,
respectively. In addition, a radiomics-clinical (R-C) nomogram was visualized. A
calibration curve analysis showed that the R-C nomogram had satisfactory calibration
in the three cohorts. A decision curve analysis demonstrated that the R-C nomogram
was clinically valuable. Our results suggest that the R-C nomogram can accurately and
reliably predict the short-term prognosis of patients with HICH and provide a useful
evaluation for making individualized treatment plans.

KEYWORDS

hypertensive intracerebral hemorrhage, short-term prognosis, radiomics, nomogram,
computed tomography

Introduction

Hypertensive intracerebral hemorrhage (HICH) is defined as the sudden primary
parenchymal hemorrhage in patients with clear hypertension, which occurs in the basal nucleus,
the thalamus, the ventricle, the cerebellum, or the brain stem. As the most common type
of spontaneous intracerebral hemorrhage (sICH), HICH accounts for ∼70% of sICH with
high mortality, incidence, and disability (1, 2). The 30-day mortality of HICH is as high as
45% (3). Despite the improvements in medicine in recent years, there has been no significant
breakthrough in the treatment (4). Therefore, to effectively intervene HICH, identifying the
prognostic risk factors early and establishing an efficient predictive model is important.
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Recently, some research studies focused on the prognosis study
of patients with sICH based on their clinical characteristics and
radiological signs. A lower Glasgow Coma Scale (GCS) score (5)
and larger hematoma volume (6) have been proven as independent
risk factors for poor prognosis. Although these clinical factors are
important, they do not cover all the predictive information obtained
from patients. Radiological signs such as the black hole sign, the
hypodensity sign, the blend sign, the swirl sign, the island sign, and
the satellite sign indicate poor prognosis (7). Among them, the island
sign and the satellite sign reflect the irregular shape of the hematoma
and may represent multifocal small bleeding around the main
hematoma, while the other signs reveal the heterogeneous density of
the hematoma, indicating active bleeding. However, the identification
of radiological signs is easily influenced by the subjective evaluation
of doctors (8). In addition, these radiological signs, as qualitative or
semiquantitative markers, have limited sensitivity and accuracy in
predicting the outcomes of sICH (9).

Radiomics provides new insights into hematoma because of its
ability to extract and analyze several quantitative imaging features
from various types of medical images (10). Several researchers
applied radiomics to predict hematoma expansion and prognosis in
patients with sICH (11–14). Nevertheless, regarding HICH, the most
common type of sICH, only a few studies relatively focus on it. In the
present research, we designed a study to compare the performances
of the black hole sign, the clinical model, the radiomics score (Rad-
score), and the combined model in predicting the prognosis of
patients with HICH. Then, we further attempted to establish an
individualized nomogram to facilitate doctors to assess prognostic
risk stratification for patients with HICH.

Materials and methods

Participants

All patients with a confirmed diagnosis of hypertension and
intracerebral hemorrhage (ICH) from two tertiary care centers
(center 1, the Second Affiliated Hospital of Chongqing Medical
University and center 2, the Nanchong Central Hospital) were
retrospectively reviewed between October 2014 and January 2020.
Hypertension was defined as a systolic blood pressure of >140 mm
Hg and/or a diastolic blood pressure of >90 mm Hg, or self-
reported hypertension refers to being diagnosed by a physician and
using antihypertensive medicines during the past 2 weeks. ICH was
diagnosed by noncontrast computed tomography (NCCT) images,
which resemble patchy high-density shadows (50–80 Hounsfield
units) within the brain parenchyma. The inclusion criteria for this
study were as follows: (1) the age of patients of >18 years old
and (2) the time of baseline cranial NCCT of <24 h. The exclusion
criteria were as follows: (1) primary intraventricular hemorrhage or
multifocal hematoma, (2) hematoma less than 1 ml in volume at the
baseline, (3) secondary ICH due to head trauma, abnormal vascular
structures, coagulation dysfunction, blood diseases, systemic diseases,
and brain tumors, (4) severe artifacts on NCCT images, and (5) data
missing. This study was approved by the ethics committee of our
hospital (decision number [2019] 19) and the requirement for patient
informed consent was waived.

The flowchart of patient inclusion is shown in Figure 1. Finally,
217 consecutive patients with HICH from center 1 and 75 consecutive

patients with HICH from center 2 were retrospectively reviewed. All
patients in center 1 were randomly divided into training (n = 151,
70%) and validation cohorts (n = 66, 30%) by using a computer-
aided algorithm. Patients from center 2 served as the testing cohort
(n= 75).

Clinical and imaging characteristics and
conventional prognosis assessment

The demographic characteristics, the results of laboratory
examinations, and NCCT imaging characteristics of the three
cohorts were collected from the Hospital Information System
and the Picture Archiving and Communication System of the
two centers and are summarized in Supplementary material
(Supplementary Table S1). The black hole sign was defined as a
hypodense area completely encapsulated by the hyperattenuating
hematoma with ≥28 Hounsfield unit difference between the
two regions (15). On NCCT, the midline shift, intraventricular
hemorrhage, subarachnoid hemorrhage, and black hole sign were
blindly assessed by three experienced radiologists. If there was
disagreement among them, these characteristics would be evaluated
after consultation.

At 30 days after the onset, the prognosis of patients with HICH
was evaluated by the modified Rankin Scale (mRS) scores, with
scores 0–3 representing a good outcome and 4–6 representing a poor
outcome (16).

Image acquisition

Three different CT scanners (Aquilion ONE, Canon Medical
Systems, Otawara, Japan; Ingenuity, Philips Healthcare, Best,
Netherlands; and Lightspeed VCT, GE Medical Systems, Waukesha,
WI, USA) were used to obtain all NCCT images. The standard head
CT scanning protocol was as follows: a tube voltage of 120 kV, a tube
current of 250–300 mA, a matrix size of 512 × 512, gantry rotation
of 0.4–0.6 s, a field of view of 25 cm, a slice thickness of 1 mm, and a
detector width of 0.5 mm or 0.625 mm. The scanning range was from
the skull base to the cranium.

Radiomics analysis

The radiomics analysis in this study was carried out according
to the standard pipeline (17). The pipeline for the radiomics analysis
is as follows: (1) image preprocessing, (2) lesion segmentation, (3)
feature extraction, (4) feature harmonization, (5) features selection,
and (6) model construction and evaluation.

First, image normalization was performed to reduce the possible
impact of different scanning devices on the results, which is
detailed in the Supplementary material. Second, an experienced
radiologist (ZMZ, 8 years of service) manually drew the edge of
the hematoma layer by layer on an axial image of NCCT by
using the Artificial Intelligence Kit (AK) software (version 3.4.1,
GE Healthcare). Then, the volume of interest (VOI) was generated
by using the AK software and the volume of the hematoma was
calculated automatically by summing the number of voxels of
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FIGURE 1

A flowchart of patient inclusion.

the VOI. Using AK software, a total of 396 radiomic features
were extracted automatically from VOI. All radiomic features
were categorized into five types: (1) morphological features (n
= 9); (2) texture features based on other methods (n = 54);
(3) histogram features (n = 42); (4) gray-level cooccurrence
matrix (GLCM) features (n = 100); and (5) run-length matrix
(RLM) features (n = 191). The interclass correlation coefficient
(ICC) was employed to evaluate the stability of the radiomic
features. The reproducibility analysis is also detailed in the
Supplementary material.

First, radiomic feature harmonization was performed as
detailed in the Supplementary material. Radiomic feature selection
was done using the Python software (version 3.2). Specifically,
24 radiomic features were first selected by using the Student’s
t-test. After using the least absolute shrinkage and selection
operator (LASSO) and 10-fold cross-validation, only six optimal
radiomic features (cluster prominence feature, cluster shade feature,
MinIntensity feature, correlation feature, volumeCC feature,
and the low-intensity large area emphasis feature) remained
(Figure 2).

The Rad-score of each patient with HICH was calculated
according to the six optimal features: Rad-score = (

∑
β∗i Xi +

Intercept); in the formula, Xi represents the i-th selected feature, βi
was its coefficient, and intercept = 0.403. The radiomic score based
on the NCCT images is described in Supplementary Figure S1 of the
Supplementary material.

Model construction and evaluation

First, the risk factors of the clinical and radiological
variables were screened by univariate analysis; a P-value of
<0.1 was considered to be statistically significant. Then, the
above significant risk factors were included in a multivariate
analysis to determine the independent risk factors; a P-value
of <0.05 was considered to be statistically significant. The
independent risk factors of the clinical and radiological
variables were input into the logistic regression model (enter
method) to construct the clinical model. The clinical model
and the Rad-score model were employed together to build the
combined model.

All models were verified separately in the validation cohort and
testing cohort. The area under the receiver operating characteristic
curve (AUC) was calculated to evaluate the discriminative ability of
each model in the three cohorts.

A nomogram was constructed based on the optimal prediction
model. The DeLong test was applied to compare the AUC of
the nomogram among the three cohorts. A calibration curve
was employed to graphically evaluate the calibration capability
of the nomogram in each cohort, which described the degree
of fit between the actual and nomogram-predicted prognosis
of patients with HICH at 30 days. A decision curve analysis
(DCA) was performed to assess the clinical application benefits of
the nomogram.
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FIGURE 2

Descriptions of the six optimal radiomic features used to calculate the
Rad-score. The x-axis represents the individual radiomic features, with
their coe�cients in the LASSO regression analysis plotted on the
y-axis.

Statistical analysis

Statistical analysis was performed using the R software
(version 3.6.0; http://www.Rproject.org). Continuous variables
were summarized as means ± standard deviation or as medians
and interquartile ranges as appropriate, and categorical variables
were presented using counts (percentages). The normality of
continuous variables was evaluated by the Kolmogorov–Smirnov
test. Independent sample t-test or Mann–Whitney U-test was used
for continuous variables. The chi-square test or Fisher’s exact test was
applied to compare categorical variables.

Results

Baseline characteristics

In the training cohort, 61 out of the 151 (40.4%) had poor
outcomes (mRS > 3 at 30 days). Between good outcomes and poor
outcomes, there were significant differences in age (P = 0.063), GCS
score (P < 0.001), serum glucose (P = 0.003), creatinine (P = 0.070),
baseline HICH volume (P = 0.044), midline shift (P = 0.001), black
hole sign (P < 0.001), and Rad-score (P < 0.001) (Table 1). The
multivariate analysis revealed the following independent predictors
of the 30-day poor outcomes at baseline (Table 2): GCS score (odds
ratio [OR] = 0.729, 95% confidence interval [CI]: 0.615–0.865, and

P < 0.001), midline shift (OR = 2.864, 95%CI: 1.206–6.799, and P =
0.017), and black hole sign (OR= 3.304, 95%CI: 1.313–8.311, and P=
0.011). Although we did not find significance in relation to hematoma
volume, the most important factor for determining the prognosis of
patients with HICH (18), we still included it to construct the clinical
model at the baseline.

Finally, the variables of the combined model: GCS score (odds
ratio [OR]= 0.730, 95% confidence interval [CI]: 0.617–0.864, and P
< 0.001), hematoma volume (OR = 0.984, 95%CI: 0.950–1.020, and
P = 0.381), midline shift (OR = 2.366, 95%CI: 0.988–5.669, and P =
0.053), black hole sign (OR = 3.897, 95%CI: 1.530–9.926, and P =
0.004), and Rad-score (OR= 289.438, 95%CI: 6.132–13,662.583, and
P = 0.004).

Model evaluation

The AUCs of black hole sign, Rad-score, clinical, and combined
models in the training, validation, and testing cohorts were (0.624,
0.727, 0.760, and 0.821), (0.622, 0.728, 0.751, and 0.816), and (0.633,
0.726, 0.759, and 0.815), respectively (Figure 3). The combined model
was verified as the optimal model with the highest AUC among the
three cohorts. Based on the combined model, a visualized radiomic-
clinical (R-C) nomogram was established (Figure 4). The DeLong test
showed no significant difference in the AUC of the R-C nomogram
between the training and validation cohorts (P = 0.491), between the
training and testing cohorts (P = 0.250), and between the testing and
validation cohorts (P = 0.697).

The calibration curve of the R-C nomogram showed favorable
agreement among the three cohorts with regard to the predicted and
observed probabilities of high-risk 30-day poor outcomes (Figure 5).
The Hosmer–Lemeshow test showed no statistical significance in the
training (P = 0.155), validation (P = 0.089), and testing cohorts (P
= 0.067).

A decision curve analysis revealed that the R-C nomogram for
predicting the 30-day prognosis provided greater net benefit than
the treat-all-patients and the treat-none-patients in the training,
validation, and testing cohorts, which suggested the clinical value of
the R-C nomogram (Figure 6).

Discussion

Recently, although some studies have established different
prognostic prediction models on patients with sICH, there are
relatively few studies that focus on patients with HICH alone
(19, 20). Most of them only include radiomic features or clinical
factors and lack external data validation. Focusing on HICH, we
included patients with HICH from two centers and constructed
four models with more data to verify their 30-day outcome
predictive power.

A noncontrast computed tomography is the first-line imaging
method for acute ICH in the world, which can be used to reflect the
heterogeneity and morphological characteristics of hematoma. Some
NCCT-based radiological signs have been employed to predict the
prognosis of patients with sICH (7). In our study, the black hole sign
showed the lowest performance in contrast to the other three models
(AUCs of 0.624 in the training cohort, 0.622 in the validation cohort,
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TABLE 1 Comparison of baseline characteristics between patients with good outcomes and those with poor outcomes in the training cohort.

Variables Poor outcome
(n = 61)

Good outcome
(n = 90)

P-value

Age (y) 62.92± 13.84 58.73± 13.22 0.063

Men 35 (57.4%) 59 (65.6%) 0.309

Diabetes mellitus 11 (18.0%) 10 (11.1%) 0.228

Admission SBP (mmHg) 182.57± 34.01 175.97± 26.64 0.184

Admission DBP (mmHg) 101.44± 20.69 102.72± 17.06 0.679

Onset-to-CT time (h) 2.00 [1.25–3.50] 3.00 [1.38–4.00] 0.163

GCS score 11.00 [9.00–14.00] 13.00 [12.00–14.00] < 0.001

WBC (109/L) 9.05 [7.15–11.06] 8.53 [7.07–10.49] 0.339

Hemoglobin (g/L) 135.70± 19.44 141.56± 24.98 0.126

Platelets (109/L) 179.90± 74.64 197.87± 57.47 0.115

APTT (s) 33.20 [31.25–35.25] 34.40 [31.28–38.13] 0.135

INR 1.03± 0.11 1.03± 0.09 0.746

Fibrinogen (g/L) 3.08± 0.82 3.21± 1.02 0.433

Serum glucose (mmol/L) 7.88 [6.13–9.11] 6.14 [5.43–8.27] 0.003

Serum Mg(mmol/L) 0.82± 0.11 0.82± 0.10 0.929

Serum Ca(mmol/L) 2.21± 0.15 2.24± 0.19 0.299

Serum Na(mmol/L) 139.54± 5.10 139.76± 3.65 0.778

Creatinine(umol/L) 56.50 [46.95–74.90] 65.25 [52.35–82.75] 0.070

Urea(mmol/L) 5.96 [4.36–7.49] 5.62 [4.36–6.80] 0.445

Uric acid(umol/L) 296.87± 112.85 328.55± 119.15 0.104

HDL-C (mmol/L) 1.12 [0.96–1.37] 1.11 [0.90–1.28] 0.405

LDL-C (mmol/L) 2.42± 0.96 2.54± 0.82 0.418

Serum albumin (g/L) 40.79± 5.00 42.04± 5.22 0.144

ApoA-I (g/L) 1.54± 0.31 1.50± 0.34 0.468

ApoE (mg/L) 36.73± 13.81 35.44± 9.46 0.526

Baseline HICH volume (ml) 17.63 [8.31–22.61] 11.60 [6.97–18.90] 0.044

Midline shift 31 (50.8%) 23 (25.6%) 0.001

IVH extension 19 (31.1%) 22 (24.4%) 0.363

SAH 3 (4.9%) 1 (1.1%) 0.303

Black hole sign 24 (39.3%) 13 (14.4%) < 0.001

Rad-score 0.45± 0.12 0.38± 0.10 < 0.001

Surgical intervention 17 (27.9%) 22 (24.4%) 0.637

30-day mRS 4.00 [4.00–5.00] 3.00 [2.00–3.00] < 0.001

Data are presented as mean and standard deviation, median and interquartile ranges, or numbers and percentages in parenthesis. SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS,
Glasgow Coma Scale; WBC, white blood cell count; APTT, activated partial thromboplastin time; INR, international normalized ratio; Mg, magnesium; Ca, calcium; Na, sodium; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ApoA-I, apolipoprotein A-I; ApoE, apolipoprotein E; HICH, hypertensive intracerebral hemorrhage; IVH, intraventricular
hemorrhage; SAH, subarachnoid hemorrhage; Rad-score, radiomics score; mRS, modified Rankin Scale.

and 0.633 in the testing cohort). This is in line with Li et al.’s results
that showed the low sensitivity of the black hole sign (21).

Risk factors, including the GCS score, hematoma volume, age,
and intraventricular hemorrhage (IVH), have been proven to be
predictors of the prognosis for patients with sICH (5, 6, 18, 22–26).
Based on these risk factors, many clinical scores have been developed
such as the ICH score (27), the FUNC score (Functional Score)

(23), and the ICH-FOS score (ICH Functional Outcome Score) (28).
Nevertheless, these clinical scores only focused on the clinical aspects
and basic hematoma features and they have relatively low accuracy.
In these clinical scores, the hematoma volume evaluated by the Tada
formula is proved to be inaccurate, especially for irregular hematomas
(29). In our research, we used the AK software to semiautomatically
calculate hematoma volume and improve accuracy. In addition, to
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our knowledge, different treatment methods will affect the prognosis
of patients with HICH. However, in our study, there was no statistical
difference between the treatment methods and the prognosis; we
speculated that it might be caused by the relatively small sample of
patients with HICH.

Radiomics automatically extracts a large number of high-
throughput and quantitative features from the medical images,
which include first-, second-, and higher-order statistics (30). It
can find features invisible under the naked eye in contrast to the
traditional practice of regarding medical images as pictures for visual
interpretation only. Our Rad-score model successfully predicted the
30-day outcomes of patients with HICH. However, the predictive
power (AUCs of 0.727, 0.728, and 0.726 in the training, validation,
and testing cohorts) was slightly lower than that of the clinical model
(AUCs of 0.760, 0.751, and 0.759 in the training, validation, and
testing cohorts). The study by Pszczolkowski et al. demonstrates a
similar result to ours, showing the lower predictive performance
of the radiomics model compared to the clinical model (11). In
addition, Wu et al. found that more combinations of different
types of data would increase the performance of the prediction of
prognosis for patients with HICH (19). Our clinical model covered
the clinical factors and the black hole sign, which might increase the
predictive power.

Previous studies showed that the R-C combined model usually
has a higher prediction ability. Chen et al. found that, compared with

TABLE 2 Multivariate analysis of baseline characteristics of poor outcomes
in the training cohort.

Variable OR 95%CI P-value

Age (y) 1.025 0.994–1.057 0.121

GCS score 0.729 0.615–0.865 <0.001

Creatinine 1.001 0.998–1.004 0.336

Serum glucose (mmol/L) 1.063 0.923–1.225 0.394

Baseline HICH volume (ml) 0.983 0.951–1.017 0.327

Midline shift 2.864 1.206–6.799 0.017

Black hole sign 3.304 1.313–8.311 0.011

OR, indicates odds ratio; CI, confidence interval; GCS, Glasgow Coma Scale; HICH,
hypertensive intracerebral hemorrhage.

the clinical or radiomics model, the combined model has the highest
sensitivity and AUC in predicting hematoma expansion in sICH
patients (31). In addition, in a study about predicting the outcomes of
acute ischemic stroke at 6 months after hospital discharge, the AUC
of the R-C combined model is 0.868 in the training cohort and 0.890
in the validation cohort, which is significantly higher than that of the
clinical or radiomics model (32). Similarly, a machine learning model
based on PET/CT radiomics and clinical characteristics predicted
the tumor immune microenvironment profiles of nonsmall cell lung
cancer, which showed that the R-C combined model has the best
performance (33). In our research, the GCS, hematoma volume,
midline shift, black hole sign, and Rad-score were employed to build
the R-C combined model for predicting the short-term prognosis of
HICH patients. It was verified to have the best predictive performance
(AUCs of 0.821, 0.816, and 0.815 in the training, testing, and
validation cohorts) compared with our other three models. At the
same time, the R-C nomogram constructed based on the combined
model has been proven to be in good agreement with the actual
clinical outcomes by the calibration curves of the three cohorts.
It could provide a personalized 30-day prediction for patients
with HICH.

However, this study had some limitations. First, although image
normalization was performed prior to image analysis, the impact of
imaging data from different CT scanners on the performance of the
prediction models remained unclear. Second, among the numerous
radiological signs, only the most representative black hole sign in
terms of density heterogeneity was employed in this study (7), and
hence, other radiological signs need to be examined in the future.
In addition, although all patients with HICH were treated according
to the Chinese guidelines for diagnosis and treatment of acute
intracerebral hemorrhage, different treatment measures received by
patients may confound the factors for predicting prognosis. Finally,
this study was a retrospective study, and prospective studies with a
higher number of patients need to be conducted in the future.

Conclusion

The combined model consisting of the black hole sign, GCS
score, midline shift, hematoma volume, and Rad-score can predict
the short-term prognosis of patients with HICH early, easily, and
accurately. After visualizing the model as an R-C nomogram, it is

FIGURE 3

The receiver operating characteristic curves of the black hole sign, Rad-score model, clinical model, and combined model for assessing the 30-day
clinical functional outcomes in the training, validation, and testing cohorts.
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FIGURE 4

The radiomics-clinical nomogram for assessing the 30-day clinical functional outcomes. Five variables, two points, and a risk estimation were
incorporated into the nomogram. To use this nomogram, we added the points corresponding to each variable to get the total points and then find the
corresponding risk estimation.

FIGURE 5

The calibration curves for the radiomics-clinical nomogram in the training, validation, and testing cohorts.

FIGURE 6

The decision curves for the radiomics-clinical nomogram in the training, validation, and testing cohorts.
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more convenient for clinicians to make correct clinical decisions and
devise the best treatment plan.
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