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Glutaric aciduria type II (GA II) is an autosomal recessive metabolic disorder of fatty

acid, amino acid, and choline metabolism. The late-onset form of this disorder is

caused by a defect in the mitochondrial electron transfer flavoprotein dehydrogenase

or the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Thus far, the

high clinical heterogeneity of late-onset GA II has brought a great challenge for

its diagnosis. In this study, we reported a 21-year-old Chinese man with muscle

weakness, vomiting, and severe pain. Muscle biopsy revealed myopathological

patterns of lipid storage myopathy, and urine organic acid analyses showed a slight

increase in glycolic acid. All the aforementioned results were consistent with GA II.

Whole-exome sequencing (WES), followed by bioinformatics and structural analyses,

revealed two compound heterozygous missense mutations: c.1034A > G (p.H345R)

on exon 9 and c.1448C>A (p.P483Q) on exon 11, which were classified as “likely

pathogenic” according to American College of Medical Genetics and Genomics

(ACMG). In conclusion, this study described the phenotype and genotype of a patient

with late-onset GA II. The two novel mutations in ETFDH were found in this case,

which further expands the list of mutations found in patients with GA II. Because

of the treatability of this disease, GA II should be considered in all patients with

muscular symptoms and acute metabolism decompensation such as hypoglycemia

and acidosis.
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Introduction

Glutaric aciduria type II (GA II), also called multiple acyl-CoA dehydrogenase deficiency

or ethylmalonic-adipic aciduria (MADD; OMIM 231680), is a very rare autosomal recessively

inherited disorder with an inborn error of metabolism of amino acid, fatty acid, and choline (1)

due to functional defects in either electron transfer flavoprotein (ETF) encoded by the alpha-

or beta-subunit ETF gene (ETFA, OMIM 608053; ETFB, OMIM 130410) or ETF-ubiquinone

oxidoreductase (ETF: QO) encoded by the ETF dehydrogenase (ETFDH, OMIM 231675)

gene (2, 3).
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The clinical phenotype of GA II is substantially heterogeneous,

from relatively mild late-onset to severe birth defects, including

myopathy, cardiomyopathy, pancreatitis, and congenital anomalies

(4, 5). It has been categorized into three sub-groups based

on these different manifestations: neonatal onset with congenital

abnormalities (type 1, OMIM 608053), neonatal onset without

abnormalities (type 2, OMIM 231680), and mild and/or later onset

(type 3, OMIM 231680) (3, 6, 7). Defects in genes ETFA, ETFB,

and ETFDH are responsible for these three types, respectively (7).

Individuals with severe forms always have a rapidly fatal course.

Diagnosis of these severe forms mainly relied on the acylcarnitine

pattern in dried blood/plasma including short-, medium-, and long-

chain acylcarnitine change detected by tandem mass spectrometry

(MS/MS) and urine organic acid (UOA) profile (8). However, the

milder form, type 3 GA II, caused by the ETFDH gene, can present at

any age and always show diverse manifestations including fluctuating

proximal muscle weakness, intermittent rhabdomyolysis and other

nerve neuropathy, weakened or disappeared tendon reflex, and

fatty liver (9, 10). Moreover, many patients may present with an

episodic illness that poses a great challenge for its diagnosis (11–13).

Under these circumstances, molecular studies and genetic testing are

required to make a definitive diagnosis.

The therapeutic strategy usually involves a restricted diet

including the avoidance of fasting to prevent hypoglycemia and

metabolic acidosis, as well as a diet low in protein and fat together

with carnitine, ubiquinone, and riboflavin supplement, especially

for those with severe forms (14, 15). Patients with milder late-

onset forms always have an obvious improvement both in clinical

symptoms and metabolic profile with riboflavin supplementation.

Recent studies show that these patients, termed riboflavin-responsive

MADD (RR-MADD), have been seen to harbor ETFDH variants

encoding ETF:QO (16, 17).

Herein, we report a 21-year-old male patient who is molecularly

confirmed as late-onset GA II. Whole-exome sequencing (WES)

revealed a compound heterozygous mutation for two variants in the

ETFDH gene, namely, a c.1034A>G (p.H345R) in exon 9 and a

c.1448C>A (p.P483Q) in exon 11, respectively, located in the FAD-

binding domain and UQ-binding domain. In addition, we predict the

protein structural changes caused by these mutations, and the results

proved these two novel mutations to be very likely pathogenic based

both on the clinical findings and protein changes.

Case report

The patient was a 21-year-old man who came from a non-

consanguineous family in Anhui Province. He was admitted to our

department due to limb weakness and severe pain accompanied by

vomiting for 2 months. In the last 2 weeks, after suffering from

influenza, progressive limb weakness reoccurred. He had difficulty

walking long distances and climbing the stairs and was too weak to

lift his hands to strip or comb the hair. Ten days before admission,

he experienced acid reflux, and then repeated nausea and vomiting

with gastric contents and bile, with no improvement after fasting

and resting up. One week ago, the symptom of limb weakness, pain,

and vomiting was noted to have obviously aggravated. Blood test

results in the local hospital showed 16,969 u/L creatine kinase (CK)

and 2,000 ng/ml myoglobin. Therefore, he was suspected to have

gotten rhabdomyolysis in the local hospital and was sent to our

department. The patient had normal development during the fetal

and infant periods. From 5 years old, he was unable to exercise

vigorously because of muscle soreness and aches after activities.

Since 2015, he has experienced intermittent acid reflux, nausea, and

vomiting; gastroscopy showed chronic superficial gastritis. He had

two hospitalizations due to severe vomiting, both occurred in winter.

He reported a history of hepatitis carriers for 3 years and denied

any history of diabetes and kidney disease. Neurological examination

showed limb muscle tenderness, and neck and proximal muscle

weakness (manual muscle testing (MMT) score: 4/5 in the neck, 4/5

in upper limbs, and 3/5 in lower limbs).

Besides the elevated level of CK andmyoglobin, other parameters

were also significantly increased including alanine aminotransferase

(ALT) 242 U/L (normal 7–40 U/L), aspartate aminotransferase (AST)

1,745 U/L (normal 13–35 U/L), creatine kinase-MB (CK-MB) 1,425.5

U/L (normal 0–16), myoglobin 2,000 ng/mL (normal 27–70 ng/mL),

and lactate dehydrogenase (LDH) 1,813 U/L (normal 120–250 U/L).

Urine routine: urine protein (+), urine ketone body (KET) (4+), and

urine latent blood (BLD) (3+).

MuscleMRI T2 of lower limbs revealed high signal intensity areas

in the bilateral lower limb muscles, indicating diffuse muscle injury

(Figures 1A–D). Abdomen ultrasound images showed obvious signs

of fatty liver (Figure 1E).

On admission, he was initially diagnosed with rhabdomyolysis or

inflammatory myopathy and was treated with methylprednisolone

(40mg for 2 days, followed by 20mg for another 2 days). After

renal function results returned to normal, the muscle biopsy

was performed. The results suggested vacuole myopathy with the

formation of vacuoles in muscle fibers (Figures 2A, B). The oil red

O staining showed diffuse fat granule aggregation, and periodic

acid-Schiff (PAS) staining showed no excessive glycogen content

(data not shown). The pathological results were consistent with the

manifestation of lipid-storage myopathy. UOA analysis showed that

glycolic acid slightly increased to 9.0 (normal 0–8), and no significant

increase was observed in the rest results. Blood acylcarnitine analysis

showed an increase in octanoyl carnitine (C8) and decanoyl carnitine

(C10), while the test results may come after glutaric acid-type

II treatment.

Whole-exome sequencing (WES) revealed a compound

heterozygous mutation in the ETFDH gene in the proband: c.1034A

> G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) on exon 11.

Sanger sequencing showed that these two mutations, respectively,

come from the proband’s father and mother (Figure 3). Nomutations

were identified in other related genes such as ETFA or ETFB gene.

Both mutations were not reported in the Human Gene Mutation

Database and were not found in 100 healthy Chinese control

individuals. ETF:QO was shown to have three functional domains:

FAD-binding domain, 4Fe−4S cluster domain, and UQ-binding

domain. The p.H345R and p.P483Q, respectively, lied in the

FAD-binding domain and UQ-binding domain. Bioinformatic and

structural analysis was conducted to predict the effect of the revealed

variants on the functional properties of the proteins.

The missense mutation c.1034A > G led to the change from

histidine to arginine at 345th amino acid, with no physical and

chemical properties change. Multiplex sequence alignment of the

ETFDH protein across eight different species and 100 vertebrate

genomes showed that Histidine (H) at codon 345 was highly
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FIGURE 1

The muscle MRI of lower limbs and abdomen ultrasound. The T1-weight images (A, B) showed slightly atrophy of bilateral lower limbs. Fat suppression

(T2-weighted short tau inversion recovery, T2-STIR) images (C, D) have high signal intensity in the bilateral limb muscles, which indicates muscle injury.

The abdomen ultrasound (E) showed obvious signs of a fatty liver compared with the health control (F).

FIGURE 2

The histopathologic manifestation of the patient’s muscle. The formation of vacuoles was found in the muscle fibers for hematoxylin-eosin staining (A).

The oil red O staining showed di�use fat granule aggregation (B).

conserved among species (Figure 4A). This mutation was graded as

variant uncertain significance (VUS) according to ACMG. Results

predicted by MutationTaster and SIFT supported that p.H345R of

ETFDH was a tolerated mutation, while Polyphen-2 identified it as

benign. The structural analysis showed a polar interaction change

between the wild-type and mutant structures of the ETFDH protein

(Figure 4B).

The missense mutation c.1448C>A led to the change from

proline to glutamine at 483rd amino acid, and the physical and

chemical properties change included the size of the side chain

change, resulting in the amino acids weight change from 115 to

146. Multiplex sequence alignment also showed that Proline (P) at

codon 483 was highly conserved among species (Figure 4C). The

mutation was graded as likely pathogenic according to ACMG.
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FIGURE 3

Sanger traces for PCR products of the proband and his parents. Sanger traces for PCR products of the proband indicated a compound heterozygous

mutation in ETFDH gene: c.1034A > G (p.H345R) on exon 9 (A) and c.1448C>A (p.P483Q) on exon 11 (B). Sanger traces for PCR of his parents. The

c.1034A > G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) on exon 11 come from the father and mother (C–F), respectively.

Results of Polyphen-2, MutationTaster, and SIFT all supported that

p.P483Q of ETFDH was a deleterious mutation. The structural

analysis revealed a polar interaction change (Figure 4D) and a

stability decrease between the wild-type and mutant structures of the

ETFDH protein.

The patient received a high dose of riboflavin (150 mg/day)

with a low-fat diet (lipid restricted to 25% of total calories) after

diagnosis. Symptoms of muscle weakness were progressively relieved

in 3 weeks and recovered completely in 2months. In addition, routine

blood examinations such as CK, AST, and ALT decreased to normal

values at the 6-month follow-up. Until now, the patient remained on

riboflavin treatment (150 mg/day) and a low-fat diet. Fortunately, he

had no muscle weakness recurrence and was competent for daily life

during the 3-year follow-up.

Discussion

Glutaric aciduria type II is a highly heterogeneous disease

characterized by various manifestations with different degrees. RR-

MADD, caused by ETFDH gene mutations, is the most common

phenotype (18). In this study, we described a patient with two novel

compound heterozygous mutations in the ETFDH gene: c.1034A >

G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) on exon 11.

The electron transfer flavoprotein dehydrogenase gene is located

on chromosome 4q32.1 and consists of 13 exons. To date, more than

200 mutations in the ETFDH gene have been identified in Human

Gene Mutation Database (HGMD), including various types such

as missense, nonsense, insertion, deletion, and splicing mutations

(19). The following hot spot mutations were the most frequently

identified mutations in Chinese: c.250G > A (p.A84T), c.770A > G

(p.Y257C), and c.1227A > C (p.L409F) with a frequency of 12.2%,

15.0%, and 12.2%, respectively (20). Some reports have revealed

that the genotype of GA II patients with ETFDH mutations was

correlated with their diverse phenotype (21). For example, nonsense

mutations in both alleles of the ETFDH gene resulting in truncation

may affect protein structure or stability, which always presents

with more severe manifestations. However, the definite correlation

between the genotype and phenotype of ETFDH mutated late-onset

mild GA II has not been fully confirmed due to limited patients

and other factors such as infections and poor nutrition. Missaglia

described five GA II patients with various ETFDH mutations

and varying degrees of clinical symptom severity. Similar to our

patient, most patients had two compound missense mutations and

mainly presented with muscle weakness or exercise intolerance. In

addition, our patient had extra-muscle symptoms such as vomiting

and fatty liver, while some previously reported patients presented

with severe neurological symptoms and metabolic disorders, which

further illustrated the high heterogeneity of the disease (22).

Therefore, inherited metabolic disease should be considered in

clinical work when patients have unexplained myasthenia, exercise

intolerance, or other extra-muscle symptoms such as vomiting,

seizure, encephalopathy, and hypoglycemia. Blood acylcarnitine

analysis and urine organic acid tests could be performed to screen

for GA II. Genetic testing should be further conducted to confirm the

diagnosis (23).
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FIGURE 4

The bioinformatic analysis of the two mutations observed in the proband. Allelic spectrum and location by the functional domain of reported pathogenic

mutations of the ETFDH gene were shown. Multiplex sequence alignment of the ETFDH protein across eight di�erent species shows that H345 and P483

are highly conserved among species (A, C). The structure (B, D) was built by means of homology modeling based on 2 gmh with Identity 95. The structure

is modeled by RosettaCM. The partial 3D structures of both mutations revealed polar interaction changes in the ETFDH protein.

As a component of the electron-transfer system in mitochondria,

the ETF:QO protein forms a short pathway to mediate ATP

production by electron transfer from over nine mitochondrial flavin-

containing dehydrogenases to the respiratory ubiquinone pool (24–

26). It is composed of a 4Fe-4S cluster and one molecule of flavin

adenine dinucleotide (FAD) binding domain and the UQ-binding

domain (5). It has been reported that regions in the FAD domain

could decrease protein stability. While the lack of part of the UQ-

binding region and 4Fe4S cluster severely affected the ETFDH-

mediate electron-transfer pathway (27). The two mutations c.1034A

> G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) detected in

our study were, respectively, located in the FAD-binding domain

and UQ-binding domain. For the first mutation, the structural

analysis showed a polar change for the ETFDH protein and the

second mutation revealed a polar change and stability alteration

for this protein. As a previous study reported, ETFDH missense

variants could cause the misfolding of related proteins, thus inducing

structural instability in the protein (28, 29).

According to ACMG guidelines, the pieces of evidence for

pathogenic or likely pathogenic variants are graded as four levels: very

strong (PVS1), strong (PS1–4), moderate (PM1–6), and supporting

(PP1–5) (19). The first mutation affects the amino acid residue 345

causing a substitution of histidine to arginine, putatively affecting the

FAD-binding domain. The acid 345H is located in the FAD-binding

domain and 15 DMs were located within 30 residues around this

residue, indicating that this area is a mutational hot spot related to

the disease (PM1). Furthermore, this mutation was absent in Exome

Aggregation Consortium (ExAC) or 1,000 Genomes Project (PM2).

The multiplex sequence alignment of the ETFDH protein across eight

different species and 100 vertebrates showed that Histidine (H) at

codon 345 in the ETFDH gene is highly conserved among species,

which indicated that this mutation might have a relatively negative

impact. The homology modeling of ETFDH protein showed that

there were five polar interactions in the wild type, while the mutant

H345R had six, which cause the protein structural change. Multiple

lines of computational evidence were found to support the deleterious

effect on the gene, including the conservation and evolutionary

analysis, structural modeling, and computational prediction such as

MutationTaster and SIFT (PP3). In this case, the patient’s phenotype

is highly specific for GA II (PP4). Based on these findings, it could
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be classified as “likely pathogenic” according to ACMG (2 PM +

2 PP).

The second mutation affects the amino acid residue 483 causing

proline to glutamine. The acid 483P is located in the UQ-binding

domain and 19 DMs were located within 30 residues around

P483, also indicating a mutational hot spot (PM1). This mutation

was not found in ExAC or 1000 Genomes Project (PM2). In

the ClinVar database, a different mutation c.1448C>T (p.P483L)

at the same amino acid was reported to be “likely pathogenic”

(PM5). Furthermore, the Proline (P) at codon 483 is also highly

conserved among species. The homology modeling of the ETFDH

protein showed that there was no polar interaction in the wild

type, while the mutant P483Q had one, which could cause the

protein structural change. Furthermore, we found that the 483rd

Proline mutated to other 19 amino acids could cause a significant

rise of the structural folding free energy, resulting in a decline of

thermodynamic stability. The deleterious effect was supported by

the conservation and evolutionary analysis, structural modeling, and

computational prediction including MutationTaster, Polyphen2, and

SIFT (PP3). Considering the patient’s phenotype (PP4), this mutation

should be classified as “likely pathogenic” (3 PM+ 2 PP).

Similar tomost patients with late-onset GA II, our patient showed

a good response to riboflavin treatment. Riboflavin, commonly

known as vitamin B2, is the precursor of flavin cofactors, which

exists extensively in our daily food and is metabolized to (FMN)

and FAD (30). Thus, the role of riboflavin in stabilizing certain

forms of ETF: QO variant proteins is undoubted. The common

view supports long-term, high-dose therapy of riboflavin. However,

a recent study showed that most patients did not need continuous

high-dose riboflavin treatment. Patients had a low risk of recurrence

with intermittent and low-dose riboflavin treatment. Some patients

even remained asymptomatic after discontinuation of riboflavin. A

hypothesis is that riboflavin increased FAD-binding flavoproteins,

which could release more FAD to the mitochondrial matrix during

degradation, remaining a larger circulating FAD pool even after

discontinuation of riboflavin (5). In addition to riboflavin treatment,

a low-fat, low-protein, and high-carbohydrate diet should be

provided to reduce metabolic disorders and ensure an adequate

energy supply. L-carnitine and coenzyme Q10 can also be given

to patients with carnitine deficiency and coenzyme Q10 deficiency,

respectively (31). Since the high clinical heterogeneity and treatability

of late-onset GA II, screening the hot spot mutations in Chinese

patients clinically suspected of GA II could be beneficial for its early

diagnosis and treatment, during which the WES strategy would be a

great tool to identify novel pathogenic spots.

Conclusion

In summary, we described the phenotype and genotype of a

patient with late-onset GA II. Two novel likely pathogenic mutations,

c.1034A > G (p.H345R) and c.1448C>A (p.P483Q) mutations were

identified, enriching the spectrum of ETFDH mutations associated

with GA II. Due to its atypical symptoms and its good responsibility

to riboflavin of late-onset mild GA II, the precise diagnosis is of great

importance, and genetic testing would be useful to avoidmisdiagnosis

and missed diagnosis.
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