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playing regulatory roles in
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Technology, University of Isfahan, Isfahan, Iran, 2Department of Animal Genetics, Yasouj University,
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Introduction: Multiple sclerosis (MS), a non-contagious and chronic disease of

the central nervous system, is an unpredictable and indirectly inherited disease

a�ecting di�erent people in di�erent ways. Using Omics platforms genomics,

transcriptomics, proteomics, epigenomics, interactomics, and metabolomics

database, it is now possible to construct sound systems biology models to extract

full knowledge of the MS and recognize the pathway to uncover the personalized

therapeutic tools.

Methods: In this study, we used several Bayesian Networks in order to find

the transcriptional gene regulation networks that drive MS disease. We used

a set of BN algorithms using the R add-on package bnlearn. The BN results

underwent further downstream analysis and were validated using a wide range

of Cytoscape algorithms, web based computational tools and qPCR amplification

of blood samples from 56MS patients and 44 healthy controls. The results were

semantically integrated to improve understanding of the complex molecular

architecture underlying MS, distinguishing distinct metabolic pathways and

providing a valuable foundation for the discovery of involved genes and possibly

new treatments.

Results: Results show that the LASP1, TUBA1C, and S100A6 genes were most

likely playing a biological role in MS development. Results from qPCR showed a

significant increase (P < 0.05) in LASP1 and S100A6 gene expression levels in MS

patients compared to that in controls. However, a significant down regulation of

TUBA1C gene was observed in the same comparison.

Conclusion: This study provides potential diagnostic and therapeutic biomarkers

for enhanced understanding of gene regulation underlying MS.

KEYWORDS

multiple sclerosis (MS), Bayesian network, transcriptome, Cytoscape, qPCR

1. Introduction

Multiple sclerosis (MS) is a multifocal inflammatory autoimmune disease (1). Even

though MS is usually considered a white matter disease, but several studies have

demonstrated the involvement of gray matter impairment in conjunction with cortical and

deep (2–6) leading to progressive neuronal damage in genetically sensitive hosts (1). MS

is a complex multicomponent demyelinating disease and its pathophysiology consist of

redox, autoimmune, vascular, and neurodegenerative systems, to name a few. The clear-cut
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mechanisms of MS triggering, its development, and progression

are still obscure. In MS, impairing of the myelin sheath of neural

axons in the Central Nervous System (CNS) is observed (7, 8). MS

shows a long range of symptoms e.g., from pathological processes to

severe physical disabling. Gender preferences, genetical factors, and

geographical differences have been reported for people suffering

from MS. Over outburst of MS, monocytes, which are a preserved

subset of white blood cells, are activated by interferon-β (IFN-β)

(7). MS study is quite vivid, using Omics data, many authors have

used gene networks to get some insight into molecular mechanisms

of MS (9–19). The integration of information gleaned from

a variety of resources encompassing transcriptomics, genomics,

proteomics and patient clinical data could boost our understanding

of the mechanism(s) underpinning the reason for this disease

(20). In this regard, we can explore the signaling pathways

involved in MS (21), apply logical networks to model signaling

pathways in MS (22) and use networks to combine information

on transcriptome-interactome data from MS studies (17). We can

also apply theory of biochemical systems for improving therapeutic

drugs in re-myelination (15), create molecular networks based

on transcription factors and genes expressed in mononuclear

cells in MS patients (23), and design reactive networks between

distinct miRNA and target genes in T cells (23). This approach

will help explain the molecular mechanisms of the MS disease

(12). Supplementary Table 1 shows some examples of network-

based studies used with different MS biological data. As one can

see, Bayesian Network (BN) modeling paradigms have rarely been

applied in this setting. BN uses probability theory to reason under

uncertainty. BN as a graphical scheme (directed acyclic graph)

consists of a qualitative part (structural model) and a quantitative

part (local probability distributions), which allow for a different

kind of probabilistic inference, and quantitatively measures even

the smallest impact of a variable or set of variables on others. This

sort of modeling is of great importance in transcriptomic studies,

since it can reveal both qualitative and quantitative elements of

learned gene networks. BN has previously been used in several

transcriptomic studies (10, 24, 25).

Many existing categories of gene networks identify groups

of related genes as gene sets, making experimental follow-up a

formidable task. With BN, it is possible to determine whether

a gene is a driving source of changes in its gene network or

not, since both in-degree and out-degrees of connectivity of

each gene can be readily verified. The more out-degree gene

has, the higher likelihood of being a possible regulator one.

This would be a crucial characteristic for example when looking

Abbreviations: BIC, Bayesian information criterion; BN, Bayesian Network;

CNS, central nervous system; DEGs, di�erentially expressed genes; DAG,

diacylglycerol; ER, endoplasmic reticulum; GEO, gene expression omnibus;

GWAS, genome-wide association study; IP3, inositol-1,4,5-triphosphate;

LASP1, The LIM and SH3 protein 1; MS, multiple sclerosis; NLS, nuclear

localization signal; NFATc3, nuclear factor of activated T cells 3; NF-

κB, nuclear factor-kappa B; PLC, phospholipase C; PPI, protein-protein

interaction; RIN, RNA integrity number; RRMS, relapsing-remitting MS; SPMS,

secondary progressive MS; TFs, transcription factors; TCR, T cell receptor;

YY1, Yi and Yang 1.

for potential drug targets. However, it is likely that a specific

transcription factor defining a particular cell type that drives

pathology, may not have a large number of out-degrees while

still being crucial. To this end, if a particular gene is expressed

across different cell types, for example like S100A6, then it may

be correlated with different genes, but this may be a spurious

correlation. Therefore, to leave off possible artifacts, we should

use extra source of information when interpreting the results.

Today, MS research is increasingly data-driven—a trend that

arguably shall continue at a much higher rate in times to

come. To tackle these large amounts of heterogeneous data,

and to derive insight into MS disease, many interdisciplinary

scientists have started using a variety of computational tools.

In this study, we aim to gain much insight into the regulatory

transcriptional gene network underlying MS using systems biology

approaches in the context of BN, that may yield mechanistically

interpretable results.

2. Methods

2.1. Network analysis

In this study, the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) was scanned using a

combination of several simple key words, and resulting DNA

microarray experiments related to MS, that fulfilled our criteria.

In the end, based on our criteria for choosing a suitable GEO

data set, the microarray series with accession number GSE17048

was downloaded from GEO using the GEO query package (26).

This accession was seen to have the highest number of arrays per

probe—a fact that would help minimize the rate of false positives

while training the regulatory gene BN. The GSE17048 contained 56

blood samples fromMS group [44 patients were in the RRMS phase

(relapsing-remitting) and 12 patients were in the SPMS phase

(progressive-secondary)]. The control population was 44 healthy

people without any symptoms. The average age of the patients was

39.5 years old and the control group was 39.23 years old, and in

terms of gender, the MS included 29 women and 15 men (higher

prevalence of the disease in women) and 23 men and 21 women

were studied in the control group. In order to remove noise from

the data, probes with the highest variance were obtained and used

as an input to train the gene regulatory BN using bnlearn, an R

add-on package (27, 28). The following codes were used to filter

the probes with highest variances: qt <- quantile[t(data1); probs =

c(0.0002,0.99)]; rows1 <- apply[t(data1), function(x) any(x < qt |

x > qt)]; data2 <- t(data1)[, rows1]. We obtained the best fitted

BN model on our data using Bayesian information criterion (BIC)

and its adjacency matrix, with the help of the Cytoscape-based

aMatReader plugin, with the Cytoscape (29) environment used for

further downstream scrutiny.

2.2. Downstream analysis

This was accomplished with the following Cytoscape add-

on packages. The jActiveModules were used to explore the
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FIGURE 1

The analysis pipeline used in this study1 ,2 ,3 ,4.

concept of gene modules and find sub-networks (30); MCODE

to identify putative complexes by finding regions of significant

local density (31); CytoHubba to explore the protein-protein

interaction (PPI) network of hub genes using eleven different

methods (32). The NetworkAnalyzer was used to determine the

hub genes, taking into account the degree of topological criteria

(e.g., the number of nodes, edges, and connected components,

along with the network diameter, radius, density, centralization,

heterogeneity, clustering coefficient, the characteristic path length,

the distributions of node degrees, neighborhood connectivity,

average clustering coefficients, and shortest path lengths) (33).

The iRegulon was used to detect targets / motifs/paths from

a set of genes; and the CyTargetLinker to integrate regulatory

reactions in network analysis. In addition, we used Metascape (34)

to annotate the multiple gene lists in our study. Even though

transcriptomic statistical analysis is generally based on probe level

data, the probe names were converted to their corresponding

gene names using g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) to

get better insight into the data. Results from the aforementioned

software were combined. Figure 1 shows the analysis used in

this study.

1 https://www.ncbi.nlm.nih.gov/geo/.

2 https://www.r-project.org/ (2022).

3 https://www.bioconductor.org/ (2003–2022).

4 https://cytoscape.org/ National Institute of General Medical Sciences

(NIGMS).

2.3. Validation of LASP1, TUBA1C, and
S100A6 genes using quantitative real-time
PCR

2.3.1. Ethics statement
Following the bioinformatics analysis, validation of significant

differentially expressed genes (DEGs) (LASP1, TUBA1C, and

S100A6) was carried out using QRT-PCR. A total of 100 whole

blood samples (56MS cases, mean age: 39.5 years and 44

controls, mean age: 39.5 years), obtained from MS Research

Center and Al-Zahra Hospital in Isfahan (http://alzahra.mui.ac.

ir) were used. All procedures were approved and carried out in

accordance with Medical Research Ethics Committee of Iran under

code IR.UI.REC.1399.076.

2.3.2. RNA extraction
Total RNA was extracted from each sample according to

the standard TRIzol protocol (Bio BASIC, Canada) according to

manufacturer’s instructions. RNA concentration and quality were

determined using both Nanodrop (Thermo Scientific Tm Nano

Drope One C model) and gel electrophoresis. The existence of two

sharp bands representing 18S and 28S ribosomal RNA on a 1%

(w/v) ethidium bromide stained agarose gel during electrophoresis

through TAE buffer (40mM Tris-acetate, 1mM EDTA, pH 8.0)

at 100V for 30min confirmed the quality of the extracted RNAs.
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Those RNA samples with a RNA integrity Number (RIN) < 1.8

were excluded from further analysis. For all the RNA work DEPC-

Treated Water was used. High quality extracted total RNA was

stored at−70◦C until cDNA synthesis.

2.3.3. cDNA synthesis
Initially, DNAse I (Fermentase Cat # ENO 521) treatment

was used to remove genomic DNA before cDNA synthesis.

Next, cDNA synthesis was carried out using a commercial kit

provided by Yektatajhiz Company (Cat No.: YT4500) according

to manufacturer’s instructions. This involved keeping the samples

on ice under sterile conditions at 70◦C for 5 mins, 37◦C for 60

mins, 70◦C for 5 mins, and finally storing all synthesized cDNAs

at−20◦C.

2.3.4. Quantitative real time PCR analysis
To enable the validation of our candidate genes (LASP1,

TUBA1C, and S100A6), SYBR Green -based QRT-PCR was

performed using a LightCycler R© 96 (BioRad, Germany). The

sequence of all primers used are listed in the Table 1. These

were designed using the PRIMER3 program (http://frodo.wi.mit.

edu). QRT-PCR reactions were performed in duplicate and the

values of average cycle threshold (Ct) were determined for each

sample. The conditions of QRT-PCR amplification were: 1 cycle

at 95◦C for 2min, 40 cycles at 95◦C for 50 s, 60◦C for 30 s. The

human beta-actin gene (ACTB_HUMAN) was used as the internal

control. Hence, all calculated concentrations are relative to the

concentration of the standard, expressed in arbitrary units and

the quantification cycle values were automatically calculated with

Rotor-Gene software version 6.1.

The results were analyzed using the 2−11Ct method (35).

In this study, beta-actin gene (as a reference gene) and S100A6,

TUBA1C, and LASP1 genes [as target genes (TRG)] and CT data

from real-time expression of TUBA1C, LASP1, and S100A6 were

statistically analyzed (P < 0.05) by REST 2009 software. After

checking the normality of data, using the Kolmogorov Smirnov test

and the unpaired t-test in GraphPad Prism 8 software, a significant

difference in the expression levels of genes LASP1, TUBA1C, and

S100A6 was observed between patients and healthy individuals.

TABLE 1 Primers designed for QRT-PCR.

No. Gene Name Seq.(5-3) TM

1 H-TUBA1C F TTCCACCCTGAGCAACTC 60

R AACCAAGAAGCCCTGAAG

2 H-S100A6 F AGCACACCCTGAGCAAGA 60

R TCACCTCCTGGTCCTTGT

3 H-LASP1 F GAGCAGCAGCCTCACCAC 64

R TACCGCTTCCCGCCAC

4 β-actin F TGGAGGTACCACCATGTACC 60

R CACATCTGCTGGAAGGTGGA

3. Results

The fundamental idea behind this analysis was to shed some

light into gene-gene interactions underpinning MS disease with

regard to cause and effect (36). In this study, we reused GSE17048

experiment data which contained the profiled mRNA expression

for all known genes in whole blood from 144 health individuals,

99 with MS (43 PPMS, 36 RRMS, and 20 SPMS). As meta-

data of GSE17048 shows in the Gene Expression Omnibus–NCBI,

in the conducting the experimental design, whole blood mRNA

expression was compared between different types of MS and age-

matched healthy control. The nature of probability distribution

induced by a gene regulatory BN will allow diverse probabilistic

gene queries to be answered in linear time. This makes BN to be

practically appealing. The results of comparison of the network

structures determined from various algorithms, including Hill

Climbing, Tabu Search, Max-Min Hill Climbing, and Restricted

Maximize algorithms with different scoring functions, are shown

in Table 2. Some key properties of BN are fundamental in judging

estimated results.

Figure 2 shows some properties of trained BN gene networks.

Topological parameters can characterize the location of genes

in a gene network (37). Using NetworkAnalyzer, the following

network topological parameters were calculated in our data. This

was based on clustering coefficient (0.003), number of nodes

(1,707), connected components (857), network diameter (26),

network radius (1), shortest paths (192,463), characteristics path

(8.313), the average number of neighbors (1.992), network density

(0.0), isolated nodes (854), number of self-loops (0), multi-edge

node pairs (0), and analysis times (1.467). The nature of probability

distribution induced by a gene regulatory BN allowed diverse

probabilistic gene queries to be answered in linear time. However,

many structural BN parameters may be important. One of the

key parameters (shown in Table 2) is the branching factor. This

parameter plays a significant role in development of the gene

network. Each Node (gene) will have its own branching measure,

which will determine the out degree of that gene. If the branching

factor value is not uniform in the network, an average branching

factor can generally be calculated. This value turned out to be

different depending on the type of algorithm used. Max-Min Hill

Climbing returned a higher average than Restricted Maximize.

In terms of system level understanding of research, the higher

the branching factor, the more frequently gene regulators can be

identified in the network. Biological networks have a modular

architecture (38). MCODE can find connected and dense areas of

the gene network based on network topology measures. In our

analysis, 12 different modules were detected usingMCODE, among

which, 7 modules had 3 nodes; 3 edges with different interaction

modes; 3 modules had 6 nodes and 7 edges; 1 module 15 nodes

and 17 edges and finally 1 module had 6 nodes and 6 edges

(Supplementary Figure 1). The active subnetworks were obtained

using jActiveModules. The jActiveModules comprised 5 modules,

where ILLMN_1742167 (TUBA1C), ILLMN_1665909 (LASP1),

and ILLMN_1713636 (S100A6) were seen to be enriched modules

(Figure 3). The number of modules detected by this method was

different than those identified with theMCODE based method.
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TABLE 2 Estimation of structural Bayesian network parameters with di�erent algorithms.

Parameters Score based algorithm Hybrid algorithm

Hill climbing Tabu search Max-min hill climbing Restricted maximize

No. of Nodes 1,707 1,707 1,707 1,707

No. of Arcs 1,700 1,500 2,485 2,188

Undirected arcs 0 0 0 0

Directed arcs 1,700 1,500 2,485 2,188

Markov blanket 3.32 2.69 4.64 3.93

Neighborhood size 1.99 1.76 2.91 2.56

Branching factor 1 0.88 1.46 1.28

No. of tests 4,354,565 413,365 9,721,786 7,228,057

loglik-g −1,308,146 −1,308,146 −1,318,282 −1,313,436

AIC-g −1,312,560 −1,312,560 −1,323,884 −1,319,335

BIC-g −1,319,115 −1,319,115 −1,332,202 −1,328,094

loglik-g, The multivariate Gaussian log-likelihood (loglik-g) score; AIC-g, Akaike Information Criterion score; BIC-g, Bayesian Information Criterion score.

FIGURE 2

Some topological measures of trained gene regulatory BN visualized by NetworkAnalyzer. (A) Shortest path length distribution. The path length is

the number of edges along the path. The distance dij between a pair of di�erent nodes i and j is the length of the shortest path connection. (B)

Between-ness centrality. The Between-ness centrality of a node reflects the amount of control that this node exerts over the interaction of other

nodes in the network. (C) Distribution of in-degree gene connectivity measure. (D) Distribution of out-degree gene connectivity measure.
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FIGURE 3

Extracted molecular modules using jActiveModules.

FIGURE 4

The MCC method captures essential genes in the top ranked list.

Figure 3 shows predicted modules in different modes of

interaction. Module-level analysis explores the organization of

biological systems and reconstructs module networks [A network

module is a group of nodes (hub genes) that work together.

Node or Vertex is a connection point or a branch point or

an end point in a connection. And the path that connects the

nodes to each other is called edge]. Figure 3 shows a module-

level view of our gene regulatory BN network that denotes

a high-level representation of the regulatory machinery of the

MS gene network topology. Dense module searching of two

MS Genome-Wide Association Study (GWAS) datasets identified

several genes (GRB2, HDAC1, IL2RA, JAK2, KEAP1, MAPK1,

RELA, and STAT3). These genes were enriched for glial cell

differentiation (14). CytoHubba provides a user-friendly interface

for discovering important nodes in biological networks (32).

CytoHubba considers the shortest path between groups of nodes.

Among the 11 proposed algorithms, MCC fitted better than the

others. In Figure 4 and Table 3, we present the top 10 identified

probes. Many of the genes, such as TUBA1C, LASP1, and S100A6

shown in Figure 4, are close to the hub genes and were actually

identified as hub genes by other algorithms such as CyTargetLinker.

The iRegulon software then allowed us to identify regulons using
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TABLE 3 The 10 top genes/probes identified by the MCCmethod.

Probe ID Transcript ID Gene Name

ILMN_2180682 ENSG00000105887 “MTPN”, myotrophin

ILMN_1797342 ENSG00000187239 “FNBP1”, formin binding protein 1

ILMN_1713636 ENSG00000197956 “S100A6”, S100 calcium binding

protein A6

ILMN_1663512 ENSG00000135940 “COX5B”, cytochrome c oxidase

subunit 5B

ILMN_2333319 ENSG00000011304 “PTBP1”, polypyrimidine tract

binding protein 1

ILMN_1792150 ENSG00000012779” “ALOX5”, arachidonate

5-lipoxygenase

ILMN_1682993 ENSG00000105374 “NKG7”, natural killer cell granule

protein 7

ILMN_1665909 ENSG00000002834 “LASP1”, LIM and SH3 protein 1

ILMN_1742167 ENSG00000167553 “TUBA1C”, tubulin alpha 1c

ILMN_1691611 ENSG00000227453 “HNRNPA1P63”, heterogeneous

nuclear ribonucleoprotein A1

pseudogene 63

TABLE 4 The top 10 transcription factors (TFs) estimated to a�ect hub

genes.

Transcription
factors (TF)

NES∗ AUC∗∗ Target genes

STAT5A 3.017 0.043 LASP1, TUBA1C

NFATC1 3.12 0.044

MTA3 3.193 0.044

NFKB1 4.005 0.037

ZNF362 3.381 0.026

SPI1 6.961 0.037 LASP1, S100A6

GABPB1 4.865 0.03

DLX1 3.354 0.046 TUBAC, S100A6

YY1 6.592 0.036 LASP1, TUBA1C, S100A6

NFATC3 5.383 0.032

∗Normalized enrichment score (NES). ∗∗Area under the cumulative recover.

motif discovery in a set of regulated genes. Identified transcription

factors affecting the hub genes are listed in Supplementary Table 2

and Supplementary Figure 2 and their common factors identified

are given in Table 4. The most significant, the STAT5A protein,

mediates the responses of many cell ligands, such as IL2,

IL3 and different growth hormones. In this study, the gene

identifiers were uploaded to Metascape and used in conjunction

with KEGG pathways, GO biological processes, Reactome gene

complexes, canonical and CORUM pathways (39). The results of

the enrichment analysis, including descriptions, function, ontology,

expression, etc. are shown in Table 5, Supplementary Table 3, and

Supplementary Figure 3.

Genes were ranked from top to bottom based on degree,

closeness and betweenness [higher degree (hub), higher

betweenness (throat) and higher closeness centrality (shortest

distance with other genes in the network)]. In terms of these

parameters, three genes (LASP1, TUBA1C, and S100A6) showed a

significant correlation with MS disease. These were thus identified

as hub genes (Supplementary Table 4). In this study, probes

ILLMN_1665909, ILLMN_1742167, and ILLMN_1713636 had

high degrees of 15, 13, and 11, respectively and were identified as

hub probes. In total of 850 probes had zero input edges, 200 probes

had 1 in-degree. ILLMN_1665909, with the highest out-degree

(13 out-degree) and 2 in-degree (mapped to human LASP1) plays

an important role in regulating activity. Its encoded cytoplasmic

protein binds focal adhesion proteins and plays a role in cell

signaling, migration, and proliferation. ILLMN_1742167, with

12 out-degree and 1 in-degree mapped to the human tubulin

gene (TUBA1C), and ILLMN_1713636 with 9 out-degree and 2

in-degree mapped to the S100A6 gene (Figure 2).

3.1. Real-time reverse transcription
polymerase chain reaction

As given in the Material and Methods section, we used RT-

PCR to validate the results of Bayesian gene network. RT-PCR,

that actually reflects product accumulation, is a routine lab-based

method to validate array based transcriptomic results. In this study,

the LASP1, TUBA1C, and S100A6 genes turned out to be playing

regulatory roles in MS. In validating aforementioned genes, using

RT-PCR experiment, it was indicated that the patterns of relative

gene expression for these genes (LASP1, TUBA1C, and S100A6)

were significant between MS cases and controls (P < 0.05). The

calculations based on the formula –11ct shown the amount of

mRNA transcripts of LASP1 and S100A6 genes, increased (5.491

and 36.556 times respectively) in patients though a decrease (0.166

times) in TUBA1C gene expression was seen in MS patients (P <

0.05) (Table 6 and Figure 5).

The results after studying the normality of the distribution

of variables using the one sample Kolmogorov–Smirnov test and

unpaired t-test in GraphPad Prism 8 software show a significant

difference in expression levels of LASP1, TUBA1C, and S100A6

genes between patients and healthy controls. P-values were:

TUBA1C < 0.0001, S100A6 < 0.0001, LASP1 < 0.003. Mean

expression of TUBA1C, LASP1, and S100A6 genes in patient

samples was 7.4, 5.6, and 2.9 respectively and 4.9, 8.1, and 8.0,

respectively in healthy individuals. Results from statistical analysis

also showed a decrease in TUBA1C gene expression and an increase

in LASP1 and S100A6 gene expression in MS patients compared to

the control group (Figure 6).

4. Discussion

At present, the cause of MS is not fully understood, but

knowledge of the genetic factors involved is essential for effective

diagnosis and identification of themost appropriateMS therapeutic

interventions. In this study, three genes (LASP1, TUBA1c, and

S100A6) with high degree, high closeness centrality and high

betweenness measures were highlighted as potential MS candidate

regulator markers. These three genes (LASP1, TUBA1c, and

S100A6) seem to be the most significant in the MS disease
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TABLE 5 Metascape results LASP1, TUBA1C, and S100A6 genes.

Input ID Gene ID Tax ID Gene symbol Description Biological process (GO) Subcellular location
(Protein atlas)

LASP1 3927 H. sapiens LASP1 LIM and SH3

protein 1

GO: 0034220 ion transmembrane

transport; GO: 0009967 positive

regulation of signal transduction; GO:

0023056 positive regulation of signaling

Cytosol; Plasma membrane

(Supported) Focal adhesion

sites (Approved)

TUBA1C 84790 H. sapiens TUBA1C tubulin alpha 1c GO: 0030705 cytoskeleton-dependent

intracellular transport; GO: 0000226

microtubule cytoskeleton organization;

GO: 0051301 cell division

Microtubules (Supported)

S100A6 6277 H. sapiens S100A6 S100 calcium

binding protein

A6

GO: 0048146 positive regulation of

fibroblast proliferation; GO: 0048145

regulation of fibroblast proliferation; GO:

0007409 axonogenesis

Cytosol; Plasma membrane

(Enhanced)

TABLE 6 REST software data compared LASP1, TUBA1c, and S100A6 genes in MS patient and control groups.

Gene Type Reaction e�ciency Expression Std. error 95% C.I. P(H1) Result

ACTB REF 1.0 1.000

LASP1 TRG 1.0 5.491 1.183–32.843 0.335–266.871 <0.001 UP

TUBA1C TRG 1.0 0.166 0.058–0.523 0.027–1.417 <0.001 DOWN

S100A6 TRG 1.0 36.556 9.630–140.562 2.367–416.452 <0.001 UP

P(H1), Probability of alternate hypothesis that difference between sample and control groups is due only to chance; TRG, Target; REF, Reference; Interpretation: LASP1 is UP-regulated in sample

group (in comparison to control group) by a mean factor of 5.491 (S.E. range is 1.183–32.843); LASP1 sample group is different to control group. P(H1)= 0.000. TUBA1c is DOWN-regulated in

sample group (in comparison to control group) by a mean factor of 0.166 (S.E. range is 0.058–0.523). TUBA1c sample group is different to control group. P(H1)= 0.000. S100a6 is UP-regulated

in sample group (in comparison to control group) by a mean factor of 36.556 (S.E. range is 9.630–140.562). S100A6 sample group is different to control group. P(H1)= 0.000.

FIGURE 5

Boxes represent the interquartile range, or the middle 50% of observations. The dotted line represents the median gene expression. Whiskers

represent the minimum and maximum observations.

process. S100A6 functions in a wide range of cell types as a

member of the S100 family and this family expression in MS

patients could be considered as a diagnostic biomarker for MS.

Its inhibition of demyelinating nerve cells suggests that S100

proteins could act as a candidate therapeutic target in MS (40).

Komatsu et al. reported increased expression of S100A6 (Calcyclin),

a calcium-bound protein of the S100 family, in human colorectal

adenocarcinoma (41). Peterova et al. reported an overexpression

of S100 protein-encoding mRNA in both colorectal cancer cell

lines and surgically resected specimens of colorectal cancer (42).

A study by Bartkowska et al. (43) showed that in response

to different stress conditions, the level of S100A6 decreased in

several brain structures, indicating that S100A6 may modulate

stress responses. The genome-widemethylation array has identified
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FIGURE 6

Validation of the expression of TUBA1C, LASP1, and S100A6 genes by real-time PCR. Unpaired t-test was used to detect di�erences in gene

expression between 2 groups patients & controls using the Graph Pad Prism 8 software. Significance: P-value TUBA1C < 0.0001, P-value S100A6 <

0.0001, P-value LASP1 < 0.003.

a few hypomethylated immune-related genes, amongst them

S100A6 which shows up-regulation in autoimmune encephalitis

patients (44). Even though S100A6 is involved in many biological

phenomena, its biological activity is still unknown (45). At the

transcriptional level, upstream stimulatory factor and Nuclear

factor-kappa B (NF-κB) activates the S100A6 gene promoter,

although p53 might act indirectly to suppress transcription of the

S100A6 gene (46). TUBA1C is a member of Microtubules which

are vulnerable to degradation and disorganization in a variety of

neurodegenerative diseases (47–49). Malfunction of microtubules

(e.g., TUBA1C) is also considered as the central physiopathological

mechanism of neurodegenerative diseases. The abnormalities in

the regulatory pathways of microtubules disrupt the properties

and functions of microtubules, leading to nerve damage (50). A

decreased expression of the TUBA1C gene in Parkinson’s disease

has already been demonstrated by quantitative analysis of gene

expression (51). LASP1)The LIM and SH3 protein 1), a focal

adhesion adaptor protein, is an actin-binding, signaling pathway-

regulated phosphoprotein which localizes within multiple sites of

dynamic actin assembly. It has the potential to interact with various

molecules, and is highly expressed in the adult CNS. Microarray

data has revealed that alterations in LASP1 proteins affect cell

migration, adhesion, and cytoskeletal organization (52). LASP1,

significantly expressed by CNS neurons, is localized at synaptic

sites (53).

A couple of significant transcription factors (TFs) that interact

with these hub genes were identified in this study. The YY1

TF (Yi and Yang 1) is a multifactorial protein that, depending

on the cell tissue, can activate or suppress gene expression

(54). It is expressed in the nervous system. The YY1 promoter

lacks the usual TATA box but has a rich GC sequence and

therefore resembles a large subset of housekeeping and growth

regulator genes. These features suggest that it may play an

important role in development. In the CNS, myelination is

performed by oligodendrocytes. YY1 function in oligodendrocytes

was first reported by Berndt et al. (55). YY1 activates the

promoter of myelin lipids and has been identified as an important

player in myelination of the central nervous system during

growth. In multiple neurodegenerative diseases, YY1 function

is degraded through distinct mechanisms, including protein

utilization, protein degradation, and ectopic nuclear/cytoplasmic

shuttle (N/C). These disorders inhibit YY1 transcriptional activity

and lead to gene transcriptional abnormalities that contribute

to disease pathogenesis. A future goal in YY1 research is to

discover other potential mechanisms that lead to YY1 dysfunction

in neurodegenerative diseases, such as ectopic changes after

translation (56). The other TF identified in study was Nuclear

Factor of Activated T Cells 3 (NFATc3), a member of NFAT

family. NFATc3 acts as signal integrators because their function

is to bind STAT3, c-Jun, CREB, and ATF3 factors at specific

DNA binding sites. NFATc3 cannot be regulated alone and act as

calcium-dependent transcription factors. The antigen-mediated T

cell receptor (TCR) mediates multiple signaling cascades, including

phospholipase C (PLC) -dependent pathways that are secondary

messengers of inositol-1,4,5-triphosphate (IP3) and diacylglycerol

(DAG). IP3 binds to the IP3 receptor in the endoplasmic reticulum

(ER) and releases Ca2+ ions into the cytoplasm (57). In this way,

NFATc1-4, activates intracellular calcium via dephosphorylation

(35). The findings show that NFATc3 is defined as a marker of a

specific subset of astrocytes that are activated in response to lesions,

as well as some degree of heterogeneity among astrocytes that may

have consequences for cells in the nervous system (58). Preliminary

findings in neuroblast cells have shown that various treatments that

alter tubulin polymerization, such as reducing the mineral zinc,

prevent the transfer of NFATc3 to the nucleus. In agreement with

a functional relationship between NFAT and microtubules, it has

been observed that the degradation of several proteins that control

the proper organization of the microtubule network, and the actin-

cytoskeletal linker, disrupts the nucleus and transcriptional activity

of NFAT. Overall, it indicates the involvement of microtubules in

NFAT nuclear stimulation (59). The LASP1 gene enhances NFAT2

nuclear translocation by activating the nuclear factor Akt (60).
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NFAT can affect processes such as axon growth, synaptogenesis,

Schwann cell differentiation, and myelination (58). In general,

it can be concluded that increase of the expression of LASP1

and S100A6 genes and decrease the expression of the TUBA1C

gene in multiple sclerosis disrupts NFAT transcriptional activity.

Although the role of NFAT in regulating the immune system is well

established, our knowledge of NFAT in human disease is limited.

The function of NFAT in other aspects of human immune or

inflammatory diseases is also largely unknown (61).

The involvement of hub genes identified in this study in other

disorders have been reported as well. Patients with MS are known

to suffer from a number of digestive problems (62) and studies have

shown that LASP1 (63) and S100A6 genes have high expression in

the digestive system. A link can therefore be established between

the expression of these genes, MS, gastrointestinal problems and

possibly other types of human cancers (64). Also, LASP1 plays

a crucial role in the growth and metastasis of gastric cancer

and other cancers (52, 63, 65–68). For example, LASP1 can

cause the progression and metastasis of colorectal cancer (CRC),

but its mechanism is still unclear (69). A connection between

LASP1 and S100A has reported underpinning LASP1 binds to

the calcium-binding protein family (S100A) and increases its

expression in colon cancer (Kappa = 0.347, P < 0.01) (70).

On this basis, the present study confirmed the importance of

three gene expression patterns (LASP1, S100A6, and TUBA1C) for

understanding the transcriptome complexity ofMS. This leads us to

conclude that upregulation of LASP1 and S100A6 genes along with

down-regulation of TUBA1C is central to MS pathology. To our

knowledge, this is the first report to evaluate the level of expression

of the above genes for discovery of a transcriptomic signature

for MS disease. These findings provide a potential mechanism for

some significant biomarkers responsible for the pathogenesis of

MS. However, we still have a long way to go to understand the larger

transcriptomic profile for this disease. This study provides initial

data to further investigate the possible role of these genes in the

pathogenesis of MS.

5. Conclusions

Results of the present study indicate that the analysis of gene

expression data based on gene-gene interaction networks can

provide opportunities to determine the genes involved in MS. The

importance of three candidate marker genes in this disease were

highlighted. These candidate marker genes, LASP1, TUBA1C, and

S100A6, identified by the biological systems approach, have been

further confirmed in the laboratory. The significant difference in

the expression of these three genes in patients with MS will help

further research on this disease and its treatment. This useful tool

can serve as a good starting point for identifying new therapies and

understanding the basic mechanisms controlling normal cellular

processes and disease pathologies. It is crucial to point out here

that for learning Bayesian gene network in this study, we did

not separate sets of possible signaling protein molecules and

transactional factors beforehand in our data, and consider them

to be parents (causatives) in the learned network. By doing so,

the learned Bayesian gene network probably would be biologically

much more appealing. We aim to do this in a due course in

the future.
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