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Overground robotic-assisted gait training (O-RAGT) has been shown to improve

clinical functional outcomes in people living with stroke. The purpose of this

study was to identify whether a home-based O-RAGT program, in combination

with usual care physiotherapy, would demonstrate improvements in vascular

health in individuals with chronic stroke, and, whether any changes in vascular

outcomeswould be sustained 3months after completing the program. Thirty-four

participants with chronic stroke (between 3 months and 5 years post-stroke)

were randomized to either a 10-week O-RAGT program in combination with

usual care physiotherapy, or to a usual care physiotherapy only control group.

Participants’ (n = 31) pulse wave analysis (PWA), and regional [carotid-femoral

pulse wave analysis (cfPWV)] and local (carotid) measures of arterial sti�ness were

assessed at baseline, post-intervention, and 3-month post-intervention. Analysis

of covariance demonstrated a significant reduction (improvement) in cfPWV

between BL and PI for O-RAGT (8.81 ± 2.51 vs. 7.92 ± 2.17 m/s, respectively),

whilst the control group remained unchanged (9.87 ± 2.46 vs. 9.84 ± 1.76 m/s,

respectively; p < 0.05; ηp2 = 0.14). The improvement in cfPWV was maintained

3 months after completing the O-RAGT program. There were no significant

Condition by Time interactions for all PWA and carotid arterial sti�ness measures

(p > 0.05). A significant increase in physical activity, as determined by the time

spent stepping, was observed forO-RAGT between baseline and post-intervention

assessments (3.2 ± 3.0–5.2 ± 3.3%, respectively) but not for CON (p < 0.05).

The improvement in cfPWV, in combination with an increase in physical activity

whilst wearing the O-RAGT and concomitant reduction in sedentary behavior, are

important positive findingswhen considering the application of this technology for

“at home” rehabilitation therapy for stroke survivors. Further research is needed to

determine whether implementing “at home” O-RAGT programs should be a part

of the stroke treatment pathway.

Clinical trial registration: https://clinicaltrials.gov, identifier NCT03104127.
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Introduction

Globally, stroke is the second leading cause of mortality
and lost disability adjusted life years (1). Stroke recurrence and
mortality are impacted by several modifiable risk factors, and
as such are amenable to secondary prevention strategies (2).
Physical activity (PA) and exercise and are efficacious modifiable
risk factors that are widely encouraged in stroke survivors as
they have been shown to improve physical fitness (oxygen
uptake; 95% confidence interval (CI) 2.98–3.83 mL·kg·min−1

higher), enhance aspects of physical function (3m timed-up-
and-go test; 95%CI 2.05 to 4.78 s faster) (3, 4), as well as
reduce recurrent stroke (5) and cardiovascular disease risk (6).
Recovering the ability to walk following a stroke is also a priority
in this population (3). For people living with stroke who have
functional limitations, robotic-assisted gait training has been
shown to improve walking capacity, walking speed and motor
performance (7).

Over-ground robotic-assisted gait training devices (O-RAGT)
allow the patient to walk in a real-world environment, enabling
substantial kinematic variability while ensuring successful task
execution (8). The home-based use of O-RAGT may contribute
to the formation of habits that lead to long-term behavior
change as people are able to use such devices in a familiar
context (9). Previous research from our laboratory found clinicially
meaningful improvements in functional outcomes (i.e., 6-min walk
test, balance) after a 10-week daily, home-based, rehabilitation
program using O-RAGT, in the form of a wearable robotic knee
orthosis in chronic stroke patients (10). Furthermore, there was
an increase in PA (steps taken) on completion of the O-RAGT
which was maintained for a further 3 months after completion
of the O-RAGT program. Whilst it is known that O-RAGT led
to sustained improvements in PA and physical function (10), it
is unknown whether it also leads to sustained improvements in
markers of cardiovascular health, including blood pressure and
arterial stiffness (9). This is important considering that arterial
stiffness is a strong independent risk factor for cardiovascular
disease (11).

Elevated brachial blood pressure, an important risk factor for
stroke (12), is widely cited as a marker that needs to be controlled
post-stroke by pharmacological and lifestyle management (13),
which could include the engagement in exercise interventions
(14). However, central haemodynamic components such as aortic
arterial stiffness are better predictors of vascular disease than
brachial blood pressure (15). This is because measures of arterial
stiffness, such as pule wave velocity (PWV), integrate the damage
of risk factors on the arterial wall over a long period, whereas
traditional risk factors, including blood pressure, hyperglycaemia
and dyslipidaemia, can acutely fluctuate (16). As the aortic walls
stiffen, PWV increases which causes a rise in central systolic
pressure and a widening of aortic pulse pressure (17). In ischemic
stroke, low aortic stiffness, as measured by carotid-femoral PWV
(cfPWV) is associated with early favorable outcome, independently
of other known prognostic factors (17). However, whether a
walking-based O-RAGT program elicits favorable changes in aortic
arterial stiffness in people with chronic stroke is unknown.

The purpose of this study was to identify whether: (i) a
home-based O-RAGT program, in combination with usual

care physiotherapy, would demonstrate improvements in
cardiovascular health (e.g., cfPWV, blood pressure) in individuals
with chronic stroke, and, (ii) any changes in cardiovascular health
outcomes would be sustained for 3 months. It was hypothesized
that regular participation in a 10-week O-RAGT program would
improve vascular health in individuals living with stroke.

Materials and methods

This study was a parallel group, randomized controlled
clinical trial, reported in accordance with Consolidated Standards
of Reporting Trials (CONSORT) guidelines (18). The study
protocol received institutional human research ethics approval and
was registered with ClinicalTrials.gov Protocol Registration and
Results System (NCT03104127; https://clinicaltrials.gov/ct2/show/
NCT03104127).

Participants

Participants with chronic stroke (>3 months since stroke
diagnosis) were recruited from a single neuro-physiotherapy
practice (Hobbs Rehabilitation, Winchester, UK). All participants
were diagnosed with stroke by a specialist neurologist/stroke
consultant from a UK National Health Service Trust and had
completed rehabilitation activities (i.e., inpatient and outpatient)
in accordance with recommended guidelines (19). Written
informed consent was obtained from all participants prior to the
commencement of the study.

Inclusion criteria included: Individuals between 3 months and
5 years post-stroke, who were living in the community, medically
stable, and cognitively capable, able to stand and step with an aid
or with assistance (defined as a Functional Ambulation Categories
between 2 and 5) (20), and who were receiving physiotherapy
or attending a community-based, stroke support group at the
time of study enrolment. Exclusion criteria included: body mass
index (BMI) ≥40 kg/m2, major arrhythmias, unresolved deep
vein thrombosis, recent fractures of the symptomatic limb, open
wounds, severe osteoporosis, and/or individuals who were non-
weight bearing.

Experimental design

Participants were tested between 07:00 and 10:00 am in the
physiology laboratory at the University of Winchester. Participants
refrained from intense physical activity for 24 h prior to testing, and
could only consume water for the 12 h before testing. Following
an initial Functional Ambulation Classification and Modified
Rankin Scale assessment to provide an indication of the degree
of disability, participants lay supine for 15min. Thereafter, pulse
wave analysis (PWA), and regional (cfPWV) and local (common
carotid) measures of arterial stiffness were assessed. Participants
were randomized using covariate adaptive randomization (21) to
either a 10-week home-based O-RAGT program, which included
weekly “usual care” physiotherapy, or to a 10-week “usual care”
physiotherapy only program (CON). Randomization involved
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sequentially assigning participants to O-RAGT or control by
taking into account their age (age?70 vs. <70years), systolic blood
pressure (SBP ≥ 160 vs. < 160 mmHg) and time since stroke
(< 12 vs. ≥ 12 months). Identical assessments were completed at
baseline, post intervention (PI) and 3-months post-intervention
(3PI). Participants and researchers collecting outcome data were
aware of the allocated treatment condition, however, data analysts
were blinded to the allocation.

Outcome measures

Pulse wave velocity
The SphygmoCor XCEL device enables simultaneous

assessment of proximal and distal arterial waveforms using
a tonometer and volume-displacement cuff, respectively, to
determine arterial pulse transit time. Carotid–femoral pulse transit
time was measured as the time between diastolic feet of the
proximal (tonometer) and distal (cuff) arterial pulse waveforms
(22). PWV was calculated by dividing pulse transit time by arterial
path length, or PWV distance. For cfPWV, the tonometer was
placed on the left carotid artery and the oscillometric cuff on
the left thigh at the level of the femoral artery. The carotid–
femoral was estimated by measuring the linear distance from the
suprasternal notch to the top of the cuff at the center line of the
leg and subtracting the distance from the suprasternal notch to the
carotid artery. Accordingly, cfPWV was calculated as: cfPWV =

carotid-femoral distance/carotid-femoral pulse transit time. Two
measurements were taken, but if a difference of > 0.5 m·s was
recorded, a third measure was completed and an average taken of
the closest two.

Pulse wave analysis
For PWA, oscillometric pressure waveforms were recorded on

the left upper arm by a single observer using the SphygmoCor
XCEL device (AtCor Medical, Sydney, Austrailia), following
standard manufacturer guidelines (23). Each single measurement
cycle consisted of a 60 s brachial blood pressure recording
followed by a 10 s sub-systolic recording. A corresponding aortic
pressure waveform was then generated using a validated transfer
function (24), from which central systolic blood pressure (cSBP),
augmentation index (AIx) and augmentation pressure, were
derived. Peripheral blood pressures andmean arterial pressure were
also measured. Two measurements were taken, but if a difference
of > 5 mmHg in peripheral blood pressure and a difference of >

4% for AIx was recorded (as per manufacturer guidelines), a third
measure was completed and an average taken of the closest two.
Measurements were taken at heart level to ensure no changes in AIx
were found due to alterations in arm angle. Augmentation index
was normalized to a heart rate of 75 bpm (AIx75).

Common carotid arterial sti�ness
A trained ultrasound operator with extensive experience (>10

years) collected all common carotid arterial stiffness measurements
using a portable uSmart 3,300 Ultrasound system (Terason,
USA) equipped with a 13–6 MHz bandwidth transducer that

provided high resolution brightness mode measurements. The
left common carotid artery of the participants was examined,
in a supine position, and with their head tilted at 45◦ (angled
to the right) on completion of PWA and PWV measurements.
The left common carotid artery was assessed 1–2 cm beneath
the bifurcation (25). Magnification and focal zone settings were
adjusted to optimize the image of the proximal and distal vessel
walls, while ultrasound global (e.g., acoustic output, gain, dynamic
range, gamma and rejection) and probe-dependent (e.g., zoom
factor, edge enhancement, frame averaging and target frame rate)
settings were standardized (26). Three 10 s video recordings,
captured at 30 frames·s, were obtained during which participants
were asked to hold their breath. Videos were recorded using
external video capturing software (LiteCam HD, Englewood Cliffs,
NJ, USA). The video clips were analyzed offline using automated
edge-detecting software (FMD Studio, Quipu, Italy). Custom
written Excel Visual Basic code was used to fit peaks and troughs
to the diameter waveforms in order to calculate measures of arterial
stiffness, compliance and distensibility.

Accelerometry

Participants wore an ActivPAL3TM device (PAL Technologies
Ltd., Glasgow, Scotland) for seven consecutive days and nights
at baseline, PI and 3PI. The ActivPAL3 device was wrapped in a
protective TegadermTM (3M, St Paul, USA) and attached to the
anterior aspect of the upper third of the thigh, on the asymptomatic
side. The ActivPAL3 provided a daily measure of the: (1) percentage
of time spent sitting or lying, (2) percentage of time spent standing,
(3) percentage of time spent stepping, and (4) step counts.

O-RAGT device

The O-RAGT device (Alter-G, Bionic Leg orthosis, Fremont,
CA, USA) is a battery-operated, externally-wearable, dynamic
device worn by stroke patients during rehabilitation. The device
provides sensory inputs (i.e., auditory and sensory feedback),
mobility assistance for users with reduced lower-limb function, and
is fitted and worn in a manner similar to an orthopedic knee brace.
The orthosis shell functions as the user interface that transfers the
assistive torque to the human body, while an actuation unit assists
the movement of the limb.

O-RAGT program

Participants were familiarized with the O-RAGT device before
commencing the 10-week home-based program. Participants were
encouraged to undertake at least 30min per day of continuous or
non-continuous bouts of walking and sit-to-stand exercises, at a
moderate ratings of perceived of exertion (RPE 12–13). There was
no maximum daily wear-time. O-RAGT settings associated with
a participant’s weight, assistance, resistance, threshold and knee
extension angle settings were individualized and re-assessed every 2
weeks. Participants reported their number of steps, duration of use,
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activities undertaken and RPE for each day of activity. During this
time, participants also continued their “usual care.”

Usual care physiotherapy

Participants in both the control group and O-RAGT program
undertook one-to-one, “usual care” physiotherapy sessions for
the duration of the study. This included stretching and muscle
strengthening exercises, functional movement activities (e.g.,
walking, step-ups, sit-to-stand) and soft-tissue massage. There
were also group therapy activities which were based on the same
principles but with less therapist engagement. For the duration of
the 10-week program participants were advised to engage in at least
30min of physical activity each day, undertaking similar functional
movement patterns as those reported above.

Data analysis

Demographical and clinical comparisons between Conditions
(O-RAGT, CON) was undertaken at baseline with independent
sample t-tests (e.g., age, time since stroke, Functional Ambulation
Classification, Modified Rankin Scale, PWA, cfPWV and carotid
arterial stiffness outcomes) and chi-square tests (e.g., sex, stroke
diagnosis), as appropriate.

To assess the effect of the O-RAGT intervention on the
aforementioned regional and local hemodynamic properties, mixed
model, two-factor analysis of covariance (ANCOVA), Condition
(O-RAGT, control) x Time (BL, PI, 3PI), adjusted for baseline
measures and age, were used to assess all PWA, cfPWV, carotid
artrial stiffness and accelerometry outcomes. For PWV analysis,
Mean Arterial Pressure was also used as a covariate. Partial eta
squared (ηp2) was used to demonstrate the strength of the effect of
exercise on the various outcome measures with 0.0099, 0.0588 and
0.1379 representing a small, medium and large effect, respectively
(27). Alpha was set at 0.05. Statistical analyses were performed
using Statistical Package for Social Sciences version 26 (SPSS, Inc.,
Chicago, IL, USA). All data are reported as means (s.d.), unless
otherwise specified.

Results

Participant recruitment and retention are presented in Figure 1.
The 31 participants who attended all three assessments (BL, PI,
3PI) were generally older males who had been living with stroke for
between 1 and 5 years (Table 1). For O-RAGT, there was an increase
in daily wear time (50 ± 20–72 ± 41 mins) and steps taken with
the robotic device (887 ± 520–945 ± 542 steps), and decreases in
RPE (12.8 ± 2.2–10.4 ± 3.2), from the first to the last week of the
O-RAGT intervention, respectively. There were no adverse events
whilst participants wore the O-RAGT device.

There were no differences at BL between Conditions for all
outcomes except for cfPWV (Table 2). ANCOVA demonstrated a
significant Condition by Time interaction for cfPWV (p < 0.05;
Partial η

2 = 0.224; Table 2). The O-RAGT group demonstrated a
significant reduction (improvement) in cfPWV between BL and

PI, whilst the CON was unchanged. The improvement in cfPWV
was maintained at 3PI for O-RAGT. There were no significant
Condition by Time interactions for all other PWA or arterial
stiffness outcomes (p > 0.05; Table 2, Supplementary Table A).

For the accelerometry outcomes, a significant Condition by
Time interaction was observed for the time spent stepping (p <

0.05; Supplementary Table B). The O-RAGT group demonstrated
a significant increase in time spent stepping between BL and PI.
There were no significant Condition by Time interactions for all
other accelerometry outcomes (p > 0.05; Supplementary Table B).

Discussion

This study demonstrated improvements in cfPWV in chronic
stroke survivors following a combination of daily, home-based
O-RAGT, in the form of a wearable robotic knee orthosis, and
usual care physiotherapy. The improvement in cfPWV which was
observed on completion of the 10 week program was maintained
three-months post-intervention (3PI). The improvement in
cfPWV, in combination with an increase in wear-time and physical
activity whilst wearing the O-RAGT, are important positive
findings when considering the application of this technology for “at
home” rehabilitation therapy for stroke survivors.

Short-term e�ect of O-RAGT (baseline to
post-intervention)

Carotid-femoral PWV predicts mortality in patients with
essential hypertension (28) and is a strong predictor of
cardiovascular disease in a range of clinical populations (29).
Past research has shown significant improvements in cfPWV
following 12 weeks of supervised aerobic or resistance training
in patient populations when compared to usual care (30). Our
study demonstrated that cfPWV decreased by, on average, 0.91
m/s (∼12%) in the O-RAGT group at PI, compared to a 0.12
m/s (∼1%) in the control group. This is highly encouraging as
a 1 m/s reduction in cfPWV is the minimal clinically important
difference, and is strongly associated with decreased cardiovascular
disease risk (29). Although O-RAGT did not quite elicit this
minimal clinically important difference, the statistically significant
interaction and the large effect size (ηp2 = 0.135) indicates a robust
and promising impact on regional arterial stiffness.

In the present study there were no statistical changes in central
haemodynamic (PWA) or local carotid arterial stiffness parameters
(Table 2; Supplementary Table A). Past research has demonstrated
that aerobic training interventions typically elicit reductions in
SBP (95% CI) of up to 5.0 mmHg (31), while during a large-
scale analysis of randomized trials, a 5 mmHg reduction of SBP
following pharmacological treatment reduced the risk of major
cardiovascular events by ∼10% (32). Accordingly, although not
statistically significant, the ∼6 mmHg reduction in SBP and cSBP
for O-RAGT participants is comparable with prior literature and
highly encouraging given the limitedmobility of the population and
the low-intensity O-RAGT intervention implemented. It is notable
that unlike cfPWV, local carotid artery stiffness did not change in
response to O-RAGT, but this is perhaps not surprising given that
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FIGURE 1

Consort statement.

regional measures of arterial stiffness summate a larger portion of
the arterial tree (e.g., cfPWV) and thefore may better detect the
impact of cardiovascular disease risk factors (i.e., blood pressure
and physical activity). Further, it is well-recognized that regional
and local measures of arterial stiffness are not always closely
associated (12). Although not significant, the average changes in
local carotid artery stiffness, compliance and distensibility for O-
RAGT particpants between BL and PI were −17, 10, and 16%,
respectively. Past research has shown larger changes in common
carotid arterial compliance (17%) and distensibility (22%) in people
with stroke who engaged in a moderate to high intensity exercise
program (33). Woolley et al. (33) also observed reductions in SBP
and DBP of 6 and 12%, respectively, and stated that as these
changes were concomitant with the reduction in carotid artery
stiffness, it may be suggested that reduced blood pressures had

greater influence on local (carotid) arterial stiffness than potential
modifications to the elastic properties of the vessel.

Longer-term e�ect of O-RAGT
(post-intervention to 3-month
post-intervention)

Long-term outcomes are of utmost importance when
evaluating the clinical importance of interventions. An important
characteristic of successful behavior change is that individuals
continue to engage in lifestyle modifications once the stimulus
(i.e., use of the O-RAGT device) has been removed. A recent
meta-analysis for stroke patients revealed that end-of-intervention
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TABLE 1 Participant demographics at baseline.

Demographic O-RAGT CON p

n % n %

Sex Male 14 88 13 87 0.945

Female 2 12 2 13

Age (years) 59.6± 10.1 64.2± 10.7 0.228

Stroke diagnosis Ischemic 15 94 13 87 0.505

Hemorrhagic 1 6 2 13

Hemiparetic side Left 11 69 9 60 0.611

Right 5 31 6 40

Orthotic∗ Yes 9 56 10 66 0.955

No 7 44 5 34

Walking aid∗∗ Yes 14 88 12 80 0.570

No 2 12 3 20

Time since stroke
(months)

31± 19 28± 21 0.679

FAC 3.4± 1.0 3.3± 1.1 0.793

MRS 3.3± 0.6 3.4± 0.7 0.672

Age, time since stroke, FAC, and MRS are presented as mean± SD. All other demographics are presented as total number and percentage.
CON, Control group; FAC, Functional Ambulation Categories; MRS, Modified Rankin Scale; O-RAGT, Over-ground-Robotic Assisted Gait Training.
∗Orthotic refers to a soft or hard foot and/or ankle brace.
∗∗

Walking aid refers to use of a walking stick, tripod or quadripod.

benefits gained from regular physical fitness training do not
persist following completion of an intervention (4). In non-stroke
populations, some exercise studies have shown that following
1-month cessation of an exercise intervention, PWV values revert
back to pre-intervention baseline levels (34, 35). However, in our
study the improvement in cfPWV at PI was maintained at 3PI.
This finding may be underpinned by the fact that the increase in
physical activity (e.g., time spent stepping) observed between BL
and PI was sustained between PI and 3PI (Supplementary Table B).
For example, participants undertook an additional ∼1,700
steps per day at the time of the PI assessment compared to BL
(∼39% improvement), which was generally maintained at the
3PI assessment. This positive change in habitual activity patterns
may have important practical implications for the adoption of
over-ground, lower-limb robotic technology in the rehabilitation
of stroke patients. As we recruited a chronic stroke population, it
will be of interest to see whether similar changes in cfPWV and
habitual activity patterns occur when implementing O-RAGT
interventions with acute stroke patients (≤ 3 months), and
whether such devices are beneficial for individuals who do not
receive ongoing rehabilitation.

The encouraging findings surrounding cfPWV is unique as the
O-RAGT program focused on walking, a low-intensity activity,
with RPEs of 11 to 13 typically recorded in the activity diaries
(Supplementary Table B). Past research has often shown favorable
changes in PWV when training interventions have prescribed
moderate to vigorous volumes of physical activity (36, 37).
However, low-intensity exercise may be more achievable and
sustainable than higher intensity programs as feelings of enjoyment
and wellbeing are strong motives for continued participation (38).
Ekkekakis and colleagues’ review into the pleasure and displeasure

people feel whilst exercising reported that pleasure is reduced
mainly above the ventilatory or lactate threshold, but that pleasant
percpetions are often observed below such threshold intensities
(39), which would likely have been the case in our study. Due to
the encouraging findings of the present study and those associated
with functional outcome measures (10), measures of enjoyment
during and following robotic technology use at low-intensities of
physical activity should bemonitored in both the short- and longer-
term (e.g., 12 months PI), as this type of technology and O-RAGT
program could have a substantial impact in aiding the recovery of
chronic stroke surivors.

Strengths and limitations

In order to contextualize the present findings, specific
limitations must be addressed. Firstly, the small sample size was
determined based on a primary outcome measure which was
not a focus in this study (6-min walk test) (10). However, an
a priori sample size calculation based on the cfPWV reported
between groups at PI demonstrated that a sufficienct sample
size was recruited (n = 13 per group). Secondly, regional
(cfPWV) and local (carotid) measures of arterial stiffness were
only investigated on participants’ left-side. As the stroke diagnosis
(and hemisphere affected) varied between participants (Table 1),
the assessment of regional and local stiffness measures on both
the right and left-side may have been informative, particularly
for those participants for whom the right carotid artery may
have been symptomatic. Thirdly, participants were recruited from
an independent neuro-physiotherapy practice which could be a
determining factor to whether a home-based program is successful.
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TABLE 2 PWA, cfPWV and local arterial sti�ness outcome measures reported at baseline (BL) and post-intervention (PI, 3PI) for O-RAGT and control

(CON) conditions.

Assessment Condition x Time interaction

BL PI 3PI F p ηp2

SBP (mmHg) O-RAGT 139± 14 133± 14 135± 13 2.161 0.123 0.061

CON 142± 17 143± 21 142± 19

DBP (mmHg) O-RAGT 83± 12 81± 11 82± 10 0.086 0.917 0.003

CON 81± 9 80± 8 81± 10

cSBP (mmHg) O-RAGT 130± 13 125± 13 127± 12 1.207 0.306 0.040

CON 130± 16 130± 18 128± 18

cDBP (mmHg) O-RAGT 84± 11 82± 11 82± 10 0.356 0.701 0.012

CON 84± 10 81± 10 81± 9

cPP (mmHg) O-RAGT 46± 12 44± 10 45± 11 1.428 0.248 0.047

CON 48± 14 49± 15 48± 13

AIx75 O-RAGT 27.8± 13.4 24.6± 11.5 26.4± 12.7 1.169 0.317 0.034

CON 26.1± 8.5 25.1± 8.9 24.2± 8.7

MAP (mmHg) O-RAGT 101± 11 97± 12 97± 10 0.188 0.829 0.005

CON 99± 10 98± 11 98± 11

cfPWV (m/s) O-RAGT 8.81± 2.51 7.92± 2.17 7.89± 2.30 4.261 0.023∗ 0.135

CON 9.87± 2.46 9.84± 1.76 9.87± 1.77

β-stiffness O-RAGT 10.5± 4.9 8.7± 3.6 9.3± 3.7 1.147 0.325 0.038

CON 9.0± 2.2 9.4± 2.2 9.3± 3.0

AIx75, AIx at 75 b·min−1 ; BL, Baseline; cfPWV, Carotid-femoral pulse wave velocity; cDBP, Central diastolic blood pressure; CON, Control; cPP, Central pulse pressure; cSBP, Central systolic
blood pressure; DBP, Diastolic blood pressure; MAP, Mean arterial pressure; O-RAGT, Over-ground robotic-assisted gait training; PI, Post-intervention; SBP, Systolic blood pressure; 3PI,
three-month post-intervention.
∗Significant Test x Condition interaction (p < 0.05).

The selected population were likely to be highly motivated to
engage in rehabilitation due to the costs associated with engaging
in physiotherapy with an independent provider. The total dosage
of physical activity in the O-RAGT condition was likely higher
than the control condition and could have also been a reason
for the observed findings. Finally, findings should be interpreted
with caution as multiple analyses inflate the risk of type I error,
while researchers responsible for collecting outcome data were not
blinded to group allocation. Strengths to the study included the
use of gold-standard non-invasice measures of arterial stiffness, the
inclusion of a 3-month PI assessment, and the implementation of a
home-based exercise programwhichmay have enabled participants
to undertake a higher volume of walking as the participants
could wear the O-RAGT device at any time or day during
the program period. The observed increases in habitual physical
activity could help prevent secondary complications associated
with cardiovascular disease and future cardio- or cerebro-vascular
events (i.e., reducing strokes) if such programs are implemented
over the longer-term.

In conclusion, the present study has demonstrated that
participation in a 10-week, home-based, O-RAGT program,
in combination with weekly, usual care physiotherapy, can
elicit greater improvements in regional (cfPWV) measures of
arterial stiffness in people with stroke than “usual care” alone.

Importantly, the changes reported in cfPWV were maintained at
3PI assessment suggesting this may be a sustainable and efficacious
treatment option once access to the O-RAGT device has been
removed. Individuals randomized to the O-RAGT program also
demonstrated increases in physical activity which could have the
potential to improve quality of life. However, larger randomized
controlled trials are required to identify whether the use of O-
RAGT is appropriate to recommend as a part of usual care, while
further research is also needed to determine whether implementing
“at home” O-RAGT programs should be a part of the stroke
treatment pathway.
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