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Background: Growing evidence suggests that gait training can improve stroke 
patients’ balance outcomes. However, it remains unclear which type of gait training 
is more effective in improving certain types of balance outcomes in patients with 
stroke. Thus, this network meta-analysis (NMA) included six types of gait training 
(treadmill, body-weight-supported treadmill, virtual reality gait training, robotic-
assisted gait training, overground walking training, and conventional gait training) 
and four types of balance outcomes (static steady-state balance, dynamic steady-
state balance, proactive balance, and balance test batteries), aiming to compare 
the efficacy of different gait training on specific types of balance outcomes in 
stroke patients and determine the most effective gait training.

Method: We searched PubMed, Embase, Medline, Web of Science, and Cochrane 
Library databases from inception until 25 April 2022. Randomized controlled 
trials (RCTs) of gait training for the treatment of balance outcomes after stroke 
were included. RoB2 was used to assess the risk of bias in the included studies. 
Frequentist random-effects network meta-analysis (NMA) was used to evaluate 
the effect of gait training on four categories of balance outcomes.

Result: A total of 61 RCTs from 2,551 citations, encompassing 2,328 stroke 
patients, were included in this study. Pooled results showed that body-weight-
support treadmill (SMD = 0.30, 95% CI [0.01, 0.58]) and treadmill (SMD = 0.25, 95% 
CI [0.00, 0.49]) could improve the dynamic steady-state balance. Virtual reality 
gait training (SMD = 0.41, 95% CI [0.10, 0.71]) and body-weight-supported treadmill 
(SMD = 0.41, 95% CI [0.02, 0.80]) demonstrated better effects in improving balance 
test batteries. However, none of included gait training showed a significant effect 
on static steady-state balance and proactive balance.

Conclusion: Gait training is an effective treatment for improving stroke patients’ 
dynamic steady-state balance and balance test batteries. However, gait training 
had no significant effect on static steady-state balance and proactive balance. 
To achieve maximum efficacy, clinicians should consider this evidence when 
recommending rehabilitation training to stroke patients. Considering body-
weight-supported treadmill is not common for chronic stroke patients in clinical 
practice, the treadmill is recommended for those who want to improve dynamic 
steady-state balance, and virtual reality gait training is recommended for those 
who want to improve balance test batteries.
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Limitation: Missing evidence in relation to some types of gait training is supposed 
to be taken into consideration. Moreover, we fail to assess reactive balance in this 
NMA since few included trials reported this outcome.

Systematic Review Registration: PROSPERO, identifier CRD42022349965.
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Introduction

Recently, stroke is the leading cause of death in China and the 
second leading cause of death worldwide (1, 2). Despite the fact that 
stroke mortality, prevalence, and incidence have decreased in the past 
20 years, its prevalence is increasing in young individuals (3). Thus, 
the significance of stroke rehabilitation has grown. Balance disorders, 
one of the most common symptoms after a stroke, can affect patients’ 
physiological and social functions (4, 5). Therefore, balance disorders 
place a heavy burden on both individuals and society.

Balance is one of the main functional goals of postural control and 
involves the coordination of movement strategies to stabilize the 
center of body mass during self-initiated and externally triggered 
stability perturbations (6). Balance disorders account for a series of 
gait-related disabilities, including problems with transferring, 
maintaining body posture, and locomotion (7, 8). Therefore, balance 
is an important component of gait to stabilize one’s body during 
mobility. Meanwhile, growing evidence suggests that gait training can 
improve balance outcomes (9, 10).

Gait training refers to specific types of physical therapies that help 
individuals strengthen and improve their walking capacity (11). 
Treadmill, body-weight-supported treadmill, robot-assisted gait 
training, virtual reality gait training, conventional gait training, and 
overground walking training are common types of gait training that 
have the potential to improve balance capacity (details in Table 1). 
Several studies have suggested that the aforementioned gait training 
could counteract the balance dysfunction caused by various diseases, 
such as stroke and Parkinson’s disease (9, 10). However, the effects of 
gait training on balance rehabilitation after stroke have been 
inconclusive. It remains unclear which type of gait training is the most 
effective. Canadian Guideline revealed that gait training (e.g., body-
weight-supported treadmill) might improve dynamic balance in the 
subacute phase after stroke (12). A recent meta-analysis suggested that 
overground walking training and robotic-assisted gait training showed 
no significant effect on balance outcomes while treadmill showed a 
significant effect on balance outcomes (13). Another systematic review 
and meta-analysis reported that no significant balance gains were 
obtained from gait training (e.g., body-weight-supported treadmill 
and robot-assisted gait training) (14).

According to Shumway-Cook and Woollacott (15), balance 
performance can be  divided into four types, including dynamic 
steady-state balance, static steady-state balance, proactive balance, and 
reactive balance. In addition, there are only small-sized correlations 
between different types of balance performance (16). With reference 
to these findings, balance outcome measures are further subdivided 
into five types, including static steady-state balance, dynamic 

steady-state balance, proactive balance, reactive balance, and balance 
test batteries (17). The first four types of balance outcome measures 
correspond, one by one, to the four types of balance performance, and 
the fifth type of balance outcome measure (balance test batteries) is 
added to assess the overall balance performance (18, 19). This 
classification has been used in several types of research to assess 
balance status and changes in response to exercise (20, 21). Thus, 
investigating the effect of gait training in specific type of balance 
outcomes might provide more comprehensive evidence in this field.

As mentioned earlier, evaluating the effects of gait training in 
post-stroke patients is of particular importance. However, selecting 
the optimal gait training to improve specific balance outcomes poses 
a challenge to clinicians. Because many gait training methods have not 
been directly compared in clinical trials, typical pairwise meta-
analysis cannot be performed on them. Even when direct comparisons 
are available, the evidence is inadequate to make any conclusions. 
Therefore, we performed an NMA to compare the effects of different 
types of gait training on each type of balance outcome, thus identifying 
the optimal gait training for stroke survivors.

Materials and methods

Search strategy and selection criteria

The NMA was followed by the PRISMA statement (22), and the 
review protocol has been registered on PROSPERO 
(CRD42022349965). We searched PubMed, Embase, Medline, Web of 
Science, and Cochrane Library databases from inception until 25 
April 2022, and the search strategy is described in 
Supplementary Table S1.

Inclusion criteria were based on the participants, interventions, 
comparators, outcomes, and study design (PICOS) approach (23). To 
be eligible for inclusion, studies had to meet the following criteria: (1) 
Population: adult stroke survivors who were considered suitable for 
gait training by the studies’ authors. (2) Intervention: treadmill, body-
weight-supported treadmill, virtual reality gait training, robotic-
assisted gait training, overground walking training, and conventional 
gait training. (3) Comparison: usual care, sham intervention, or no 
exercise intervention. (4) Outcome: balance outcome measurements 
(static steady-state balance, dynamic steady-state balance, proactive 
balance, and balance test batteries). In addition, we only assessed four 
types of balance outcomes due to the scarcity of studies on reactive 
balance. (5) Study design: randomized controlled trials.

The exclusion criteria were as follows: (1) intervention group 
including more than two types of gait training; (2) the type of physical 
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exercise being unclear; (3) not reporting sufficient data to calculate the 
effect size; and (4) conference abstract without a fully published article.

Data extraction and processing

Two independent investigators (M-L and Y-X) searched databases 
for relevant articles and removed duplicate records, with discrepancies 
adjudicated by a third investigator (TY-L). After removing duplicate 
records, pairs of independent investigators (CY-Z and XR-Z) screened 
references and extracted study-level data, with discrepancies 
adjudicated by a third investigator (TY-L). We also extracted study 
characteristics (name of the first author, country of origin, year of 
publication, intervention groups, and the sample size), participant 
characteristics (mean age, gender trends, and duration of the disease), 
and physical exercise characteristics (type, duration, frequency, 
and time).

Outcomes

The main outcome data (expressed as mean and standard 
deviation) for changes in balance outcomes (static steady-state 
balance, dynamic steady-state balance, proactive balance, and balance 
test batteries) were extracted from initiation to the end of treatment. 
Only one representative outcome variable was included in the analysis 
when studies reported several variables under one of these outcome 
categories. In terms of dynamic steady-state balance, the highest 
priority was given to the usual walking speed. As a proxy for static 
steady-state balance, a single right leg stance with eyes opened was 
used. A functional reach test was preferably selected as a proxy for 
proactive balance. Berg balance scale was used as the most prominent 
balance test battery (17). If another test was used in a study, we chose 
to only include in our quantitative analysis those that had the most 
comparable temporal/spatial structure to the ones mentioned.

Assessment of heterogeneity and 
inconsistency

We assessed heterogeneity by reporting the I2 statistic, as described 
in Section 9.5.2 of the Cochrane Handbook for Systematic Reviews of 
Interventions. Using this section, we used the following interpretation 
of the I2 statistic: 0–40% might not be  important; 30–60% may 
represent moderate heterogeneity; 50–90% may represent substantial 

heterogeneity; and 75–100% may represent considerable heterogeneity 
(24). We used global and local methods to test the inconsistency of the 
research results. For global inconsistency, we evaluated inconsistency 
statistically using the design-by-treatment test (25). We assessed local 
inconsistency by splitting network estimates into the contribution of 
direct and indirect evidence (node-splitting test) (26). All 
heterogeneity and inconsistency analyses were performed with the 
statistical software R version 3.2.2.

Risk-of-bias assessment

Two independent investigators (CY-Z and XR-Z) assessed the risk 
of bias of the included RCTs by RoB 2 revised Cochrane risk-of-bias 
tool for randomized trials. The results were incorporated into the 
Confidence in Network Meta-Analysis (CINeMA) application to 
evaluate the credibility of each NMA’s findings. CINeMA grade 
confidence was divided into four categories: high, moderate, low, or 
very low (27).

Sensitivity analysis

We assessed the sensitivity of our findings by repeating each NMA 
after excluding studies at an overall high risk of bias. However, because 
more than one-third of the studies’ sample sizes were smaller than 30, 
sensitivity analysis was not performed on sample size (28).

Statistical analysis

Each type of balance outcome was drawn to the network graph. 
The random-effects frequentist NMA was fitted to assume a common 
random effect for all comparisons in the network. Balance outcomes 
for each parameter and each treatment comparison were estimated as 
standard mean difference (SMD) with 95% confidence intervals (CIs). 
The control group was used as the reference group in all forest plots. 
Meanwhile, the league tables were created to display the relative 
degree of balance outcomes for all comparisons among gait training. 
P-scores were applied to rank gait training on the basis of balance 
outcomes. P-scores ranged from 0 to 1, with a higher P-score 
indicating a greater effect. In addition, we compared the comparison-
adjusted funnel plot and Egger’s test to assess the risk of publication 
bias under specific circumstances, with Egger’s test suggesting 
publication bias when p < 0.05. Finally, the network plots and 

TABLE 1 Characteristics of included gait training.

Type Abbreviation Description

Treadmill TT gait training requires participants to walk on motorized treadmills without any other device assisted

Body weight-supported treadmill BWS-TT gait training uses a harness to provide partial body weight support in conjunction with a motorized treadmill

Robot-assisted gait training RA-GT gait training with robotic-orthosis attached to patients’ lower extremities, allowing the guidance force during 

ambulation

Virtual reality gait training VR gait training with VR systems, providing realistic environments in which people can have real-time interaction 

with objects and events

Conventional gait training CGT gait training administered by physiotherapist according to individual walking capacity of the participants

Overground walking training OWT gait training requires participants to walk around an outdoor circuit
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comparison-adjusted funnel plots were performed with StataSE 
version 16.0. Other network meta-analyses were performed with the 
statistical software R version 3.2.2.

Results

Literature search and characteristics of the 
included studies

After duplicate removal, we  identified 1,353 relevant studies 
through a database searching strategy. After scanning titles and 
abstracts, we identified 148 articles. After full-text reading, we excluded 
87 articles for reasons as follows: irrelevant study design (n = 15), 
inappropriate control group (n = 12), inappropriate intervention group 
(n = 15), no outcomes of interest (n = 23), incomplete data (n = 12), and 
conference abstract (n = 10). Finally, we identified 61 eligible RCTs 
(29–88) (Figure 1) containing 2,328 stroke patients, 1,157 (49.7%) of 
whom received gait training and 1,171 (50.3%) a control intervention. 
Overall, 1,318 (56.6%) of participants were men, and the mean age 
ranged from 44.2 to 74.8 years. The mean disease duration ranged from 
19 days to 10.5 years. Supplementary Table S2 summarizes the 
characteristics of included RCTs.

Intervention

There were six different types of gait training included in this 
NMA: (1) treadmill; (2) body-weight-supported treadmill; (3) virtual 
reality gait training; (4) robotic-assisted gait training; (5) overground 
walking training; and (6) conventional gait training.

Of 66 eligible studies, treadmill was assessed in 24 studies (29–32, 
34, 35, 37, 45, 54, 57, 59, 62, 63, 65, 67–70, 72–75, 77, 78); body-
weight-supported treadmill in 16 studies (32, 36, 38, 49, 59–62, 64, 66, 
68, 71, 76, 83–85); conventional gait training in 9 studies (30, 38, 50, 
51, 53, 56, 72, 82); overground walking training in 10 studies (36, 37, 
60, 65, 67, 69–71, 74, 76); robotic-assisted gait training in 19 studies 
(31, 43, 46, 49–58, 66, 80–82, 87); and virtual reality gait training (33, 
39–48, 73, 75, 77, 79, 86) in 16 studies.

Risk of bias

The RoB2 analysis showed that 18 (29.5%) studies had a low risk 
of bias, 38 (63.0%) had some concerns, and 5 (8.2%) had a high risk 
of bias (Figure 2; Supplementary Table S3). For the randomization 
process, nine (14.8%) studies had some concerns and two (3.3%) had 
a high risk of bias; for deviations from intended interventions, 37 
(60.6%) studies had some concerns and 3 (4.9%) were at high risk of 
bias; for missing outcome data, four (6.6%) studies had some concerns 
and three (4.9%) had a high risk of bias; for measurement of the 
outcome, 61 (100%) studies had a low risk of bias; and for selection of 
the reported result, three (4.9%) studies had some concerns.

Dynamic steady-state balance

As shown in Figure 3A, the dynamic steady-state balance was 
available in 49 trials, comparing six types of gait training (517 patients) 

with control intervention (540 patients). Only body-weight-supported 
treadmill and treadmill appeared superior to control intervention 
significantly. Ranking on the basis of p-score identified virtual reality 
gait training as the best and conventional gait training as the worst 
(Figure 4A). No significant difference was found between gait training 
(Table  2). The I2 was 37.5%. Design-by-treatment test (p = 0.46, 
Supplementary Table S4A) and node-splitting test (0% comparison 
p < 0.05, Supplementary Table S5A) showed that no significant global 
and local inconsistency was observed. CINeMA grade confidence was 
low or very low in 14 (66.7%) comparisons (Supplementary Table S6A). 
Moreover, there was no publication bias in dynamic steady-state 
balance NMA (Egger’s test: p = 0.713, Supplementary Figure S1A).

Static steady-state balance

As shown in Figure 3B, the static steady-state balance outcome was 
available in four trials, comparing two types of gait training (53 patients) 
with the control intervention (52 patients). Compared with the control 
intervention, none of the included gait training (body-weight-supported 
treadmill, virtual reality gait training) showed any significant effect. 
Ranking on the basis of p-score identified virtual reality gait training as 
the best and body-weight-supported treadmill as the worst (Figure 4B). 
No significant difference was found between gait training (Table 3). The 
I2 was 0%. Due to the lack of direct comparison, we could not observe 
inconsistency between direct and indirect comparisons. CINeMA grade 
confidence was low or very low in three (100%) comparisons 
(Supplementary Table S5B). Moreover, we could not assess publication 
bias for the static steady-state balance due to the scarcity of studies.

Proactive balance

As shown in Figure 3C, the proactive balance was available in 26 
trials, comparing six types of gait training (437 patients) with control 
intervention (421 patients). Compared with the control intervention, 
none of the included gait training showed any significant effect. Ranking 
on the basis of p-score identified body-weight-supported treadmill as 
the best and overground walking training as the worst (Figure 4C). 
We did not find a significant difference in proactive balance between gait 
training according to the league table (Table 4). The I2 was 0%. Design-
by-treatment test (p = 0.72, Supplementary Table S3C) and node-splitting 
test (0% comparison p < 0.05, Supplementary Table S4C) showed that no 
significant global and local inconsistency was observed. CINeMA grade 
confidence was low or very low in 14 (66.7%) comparisons. Moreover, 
we did not find publication bias in proactive balance NMA (Egger’s test: 
p = 0.909, Supplementary Figure S1B).

Balance test batteries

As shown in Figure 3D, the balance test batteries were available in 32 
trials, which compared six types of gait training (494 patients) with control 
intervention (485 patients). Balance test battery analysis showed that 
virtual reality gait training and body-weight-supported treadmill appeared 
superior to control intervention significantly. Ranking on the basis of 
p-score identified virtual reality gait training as the best and conventional 
gait training as the worst (Figure 4D). Virtual reality gait training, body-
weight-supported treadmill, and robotic-assisted gait training appeared 
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superior to conventional gait training (Table 5). The I2 was 30%. Design-
by-treatment test (p = 0.74, Supplementary Table S3D) and node-splitting 
test (0% comparison p < 0.05, Supplementary Table S4D) showed that no 
significant global and local inconsistency was observed. CINeMA grade 
confidence was low or very low in 17 (81.0%) comparisons. Moreover, 
there was no publication bias in balance test batteries NMA (Egger’s test: 
p = 0.503, Supplementary Figure S1C).

Sensitivity analysis

The findings essentially remained the same in static steady-
state balance and proactive balance sensitivity analyses 

(Supplementary Figures S2B,C). With regard to dynamic steady-
state balance sensitivity analysis (Supplementary Figure S2A), the 
order of body-weight-supported treadmill and virtual reality gait 
training was reversed. However, virtual reality gait training did 
not have a significant effect on dynamic steady-state balance, 
thus, the removal of these studies did not have a significant effect 
on our primary results. With regard to balance test battery 
sensitivity analysis (Supplementary Figure S2D), the body-
weight-supported treadmill achieved a higher p-score than 
virtual reality gait training but did not differ significantly from 
the control group. Hence, the primary findings from NMA 
remained unchanged after the sensitivity analysis. Assessments 
of heterogeneity in all sensitivity analyses were also similar.

FIGURE 1

PRISMA flowchart illustrating the selection of studies included in our analysis.

FIGURE 2

Risk of bias graph for each included study.
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Discussion

Previous studies suggested that gait training showed its potential 
to improve the balance outcomes of stroke patients (10, 11). However, 
it remains unclear which type of gait training is more effective in 
improving specific balance outcomes. Therefore, this study aimed to 
summarize the related articles to compare the effects of different gait 
training on different types of balance outcomes in stroke patients. 
Moreover, our study has some strengths. First, a large number of adult 
stroke survivors (n = 2,328) were included. Second, to ensure a good 
level of evidence, we only included RCTs. Third, assessing balance 
gains in specific types also strengthened this study. Finally, no 
evidence of inconsistency, substantial heterogeneity, or publication 
bias was found in any NMA, and sensitivity analyses showed similar 
results to the overall findings.

To assess optimal gait training, this study performed an NMA to 
combine data from 61 RCTs including six different types of gait 

training of 2,328 stroke patients. Our main findings indicated that 
body-weight-supported treadmill and virtual reality gait training were 
the most promising gait training to improve dynamic steady-state 
balance and balance test batteries, respectively.

In terms of dynamic steady-state balance, body-weight-supported 
treadmill and treadmill showed significant efficacy when compared to 
control intervention, while the other five types of gait training did not. 
This result was consistent with the previous studies (89). Gait speed 
could be  improved by repetitive mass motor task practice. When 
compared to conventional therapy, the body-weight-supported 
treadmill has the advantage of dynamic balance measured by gait 
speed because it provides more intensive, repetitive, and task-oriented 
training during the same time span (90). Moreover, body-weight-
supported devices have a positive effect on spatial and temporal gait 
characteristics by improving body weight distribution between paretic 
and non-paretic parts (91). The treadmill was the second better gait 
training to improve dynamic steady-state balance. One possible 

A B

C D

FIGURE 3

Network plots of the outcomes of the comparisons between gait training and controls in the NMA. (A) Dynamic steady-state balance; (B) Static steady-
state balance; (C) Proactive balance; (D) Balance test batteries. TT, treadmill; BWS-TT, body-weight-supported treadmill training; RA-GT, robot-assisted 
gait training; VR, virtual-reality gait training; CGT, conventional gait training; OWT, overground walking training. Treatments with direct comparisons are 
linked with a line; the thickness of connecting lines corresponds to the number of trials evaluating the comparison; the size of the circle is proportional 
to the sample size.
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explanation was that treadmill and body-weight-supported treadmill 
shared the same training process. Both of them involved repetitive 
mass motor task practice. In addition, patients’ characteristics, 
particularly stroke stage, should be taken into consideration when 
interpreting the effect of gait training on balance outcomes. 
Considering body-weight-supported treadmill is not a common 
intervention in the chronic stroke stage (92, 93), treadmill might be an 
alternative choice.

In terms of static steady-state balance, our findings showed that 
no gait training was superior to the control intervention significantly. 
This finding is consistent with previous studies assessing the effect of 

gait training on stroke patients (40, 94). For example, a randomized 
controlled trial suggested that gait training with various weight shifts 
might have no significant effect on static postural control (95). In 
other words, balance capacity improved by dynamic tasks might have 
no effect on static balance. Meanwhile, it has been common knowledge 
that gait training mainly requires dynamic balance. Therefore, 
unsurprisingly, no type of gait training showed any effect on static 
steady-state balance.

Another interesting finding of our study was that gait training did 
not show a significant effect on proactive balance. Thus, this finding 
did not support our hypothesis that gait training was effective to 
improve proactive balance. A previous study reported that stroke 
patients’ capacity to recover effective mobility was only moderately 
associated with their capacity to improve proactive balance (96). This 
fact suggests that gait performance does not necessarily reflect post-
stroke patients’ capacity to maintain proactive balance. However, the 
other studies reported significant improvement in the proactive 
balance of stroke patients after enhanced gait training (combining gait 
training with other task-oriented balance training) (66, 97). Therefore, 
the question of whether or not gait training has a positive effect on 
proactive balance is still open. The discrepancies between our results 

A B

C D

FIGURE 4

Forest plots of the efficiency of comparisons between gait training and controls. (A) Dynamic steady-state balance; (B) Static steady-state balance; 
(C) Proactive balance; (D) Balance test batteries. TT, treadmill; BWS-TT, body-weight-supported treadmill training; RA-GT, robot-assisted gait training; 
VR, virtual-reality gait training; CGT, conventional gait training; OWT, overground walking training. 95% CI ≥ 0 means intervention group is superior to 
control group significantly; P-scores were applied to rank gait training on the basis of balance outcome. P-scores ranged from 0 to 1, a higher P-core 
indicating a greater effect.

TABLE 2 League table for dynamic steady-state balance estimate gait training according to their relative effects and 95% credibility intervals (95% CIs).

VR NA 0.29 (−0.74; 1.32) 0.47 (−0.22; 1.16) NA NA 0.18 (−0.22; 0.59)

0.04 (−0.38; 0.46) BWS-TT 0.34 (−0.12; 0.81) 0.30 (−0.34; 0.94) −0.06 (−0.42; 0.31) 0.09 (−0.64; 0.81) 0.30 (−0.13; 0.73)

0.09 (−0.30; 0.48) 0.05 (−0.21; 0.31) TT −0.29 (−0.89; 0.32) 0.31 (−0.03; 0.65) 0.28 (−0.19; 0.75) 0.29 (−0.03; 0.61)

0.12 (−0.28; 0.51) 0.08 (−0.25; 0.40) 0.03 (−0.27; 0.33) RA-GT NA 0.14 (−0.47; 0.75) 0.31 (−0.11; 0.73)

0.20 (−0.25; 0.66) 0.16 (−0.12; 0.45) 0.12 (−0.16; 0.39) 0.09 (−0.29; 0.47) OWT NA NA

0.29 (−0.20; 0.78) 0.25 (−0.14; 0.63) 0.20 (−0.15; 0.55) 0.17 (−0.22; 0.56) 0.08 (−0.34; 0.51) CGT NA

0.34 (−0.01; 0.68) 0.30 (0.01; 0.58) 0.25 (0.00; 0.49) 0.22 (−0.07; 0.51) 0.13 (−0.21; 0.47) 0.05 (−0.34; 0.44) CON

Bold values mean significant difference. Blue means relative degree of direct comparison between gait training. Light red means relative degree of combined comparison between gait training. 
Deep red means gait training. TT, treadmill; BWS-TT, body-weight-supported treadmill training; RA-GT, robot-assisted gait training; VR, virtual reality gait training; CGT, conventional gait 
training; OWT, overground walking training; CON, control group.

TABLE 3 League table for static steady-state balance estimate gait 
training according to their relative effects and 95% credibility intervals 
(95% CIs).

BWS-TT −0.19 (−0.90; 0.53) .

−0.19 (−0.90; 0.53) CON −0.38 (−0.84; 0.08)

−0.57 (−1.42; 0.29) −0.38 (−0.84; 0.08) VR

Blue means relative degree of direct comparison between gait training. Light red means relative 
degree of combined comparison between gait training. Deep red means gait training. BWS-TT, 
body-weight-supported treadmill training; VR, virtual reality gait training; CON, control group.
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and some of those previously documented might be the consequence 
of the fact that most gait training included in our study is a single task 
rather than a combined task, resulting in a reduction in efficacy.

Our result indicated that virtual reality gait training was the 
optimal gait training for balance test batteries. One possible 
explanation is that VR provides a greater number of weight transfer 
opportunities in different directions than other types of gait training. 
Another explanation is that virtual reality training could mimic real 
barriers in the screen image and, thus, enabled the reproduction of a 
rhythmic weight shift on the paretic side (98). Our results concerning 
balance test batteries are similar to published research suggesting that 
virtual reality gait training could significantly improve the berg 
balance scale score (99). Moreover, a body-weight-supported treadmill 
was the second best gait training to improve balance test batteries of 
stroke patients. An explanation is that the body-weight-supported 
treadmill provides partial weight support, with which related training 
can be  conducted at higher intensities (100). Meanwhile, high-
intensity training is particularly effective in the rehabilitation of 
neurological diseases, including stroke (101).

There are several limitations to our study. First, missing evidence for 
some types of included gait training was identified in our NMA. For 
example, treadmill accounted for 26.8% of the intervention data. 
However, conventional gait training only accounted for 10.1%. 
Therefore, readers should take these results with caution due to 
inadequate data for direct comparisons for some types of gait training. 
Next, we failed to assess reactive balance in this NMA since few included 
trials reported reactive balance. Reactive balance is an important balance 
outcome to assess patients’ capacity to stabilize one’s body during 
perturbation. Future trials are supposed to consider reactive balance as 
an essential balance outcome when designing studies.

Conclusion

In summary, this NMA suggested that gait training was effective 
to improve some types of balance outcomes of stroke patients. 
Considering body- weight-supported treadmill is not a common 
intervention in the chronic stroke stage (92, 93), treadmill is 
recommended for those who want to improve their dynamic steady-
state balance. Virtual reality gait training is recommended for those 
who want to improve their balance test batteries. This study 
emphasizes the importance of gait training to improve the balance 
outcomes of stroke patients and guides clinicians to formulate better 
gait training prescriptions.
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TABLE 4 League table for proactive balance estimate gait training according to their relative effects and 95% credibility intervals (95% CIs).

BWS-TT NA 0.33 (−0.13; 0.79) NA 0.16 (−0.36; 0.68) −0.16 (−1.04; 0.72) NA

0.08 (−0.39; 0.56) CGT NA NA 0.21 (−0.17; 0.59) −0.15 (−0.73; 0.42) NA

0.21 (−0.15; 0.57) 0.12 (−0.32; 0.57) CON NA 0.34 (−0.39; 1.06) −0.18 (−0.63; 0.27) −0.04 (−0.29; 0.22)

0.49 (−0.19; 1.18) 0.41 (−0.29; 1.11) 0.29 (−0.34; 0.91) OWT NA −0.44 (−1.00; 0.12) NA

0.24 (−0.15; 0.64) 0.16 (−0.18; 0.49) 0.04 (−0.35; 0.43) −0.25 (−0.93; 0.43) RA-GT 0.35 (−0.57; 1.27) NA

0.06 (−0.34; 0.45) −0.03 (−0.45; 0.39) −0.15 (−0.43; 0.13) −0.44 (−1.00; 0.12) −0.19 (−0.58; 0.20) TT 0.08 (−0.27; 0.43)

0.16 (−0.25; 0.56) 0.07 (−0.39; 0.54) −0.05 (−0.27; 0.18) −0.33 (−0.96; 0.29) −0.08 (−0.50; 0.34) 0.10 (−0.17; 0.38) VR

Blue means relative degree of direct comparison between gait training. Light red means relative degree of combined comparison between gait training. Deep red means gait training. TT, 
treadmill; BWS-TT, body-weight-supported treadmill training; RA-GT, robot-assisted gait training; VR, virtual reality gait training; CGT, conventional gait training; OWT, overground 
walking training; CON, control group.

TABLE 5 League table for balance test batteries estimates gait training according to their relative effects and 95% credibility intervals (95% CIs).

VR NA NA 0.22 (−0.41; 0.86) −0.05 (−0.92; 0.81) 0.43 (0.07; 0.79) NA

−0.01 (−0.49; 0.47) BWS-TT −0.01 (−0.71; 0.70) −0.09 (−0.97; 0.79) NA 0.51 (0.04; 0.98) NA

0.03 (−0.52; 0.59) 0.04 (−0.46; 0.54) OWT 0.10 (−0.41; 0.61) NA NA NA

0.16 (−0.23; 0.54) 0.16 (−0.26; 0.59) 0.12 (−0.32; 0.56) TT −0.59 (−1.66; 0.48) 0.31 (−0.11; 0.72) NA

0.22 (−0.21; 0.64) 0.22 (−0.29; 0.74) 0.18 (−0.41; 0.77) 0.06 (−0.38; 0.50) RA-GT 0.05 (−0.35; 0.44) 0.61 (0.10; 1.13)

0.41 (0.10; 0.71) 0.41 (0.02; 0.80) 0.37 (−0.13; 0.87) 0.25 (−0.07; 0.57) 0.19 (−0.16; 0.54) CON NA

0.83 (0.16; 1.50) 0.84 (0.11; 1.56) 0.80 (0.02; 1.58) 0.67 (0.00; 1.35) 0.61 (0.10; 1.13) 0.42 (−0.20; 1.04) CGT

Bold values mean significant difference. Blue means relative degree of direct comparison between gait training. Light red means relative degree of combined comparison between gait training. 
Deep red means gait training. TT, treadmill; BWS-TT, body-weight-supported treadmill training; RA-GT, robot-assisted gait training; VR, virtual reality gait training; CGT, conventional gait 
training; OWT, overground walking training; CON, control group.
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